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Abstract

Background: Transcription initiation by RNA polymerase Il is unidirectional from most genes. In
plants, divergent genes, defined as non-overlapping genes organized head-to-head, are highly
represented in the Arabidopsis genome. Nevertheless, there is scarce evidence on functional
analyses of these intergenic regions. The At5g06290 and At5g06280 loci are head-to-head oriented
and encode a chloroplast-located 2-Cys peroxiredoxin B (2CPB) and a protein of unknown
function (PUF), respectively. The 2-Cys peroxiredoxins are proteins involved in redox processes,
they are part of the plant antioxidant defence and also act as chaperons. In this study, the
transcriptional activity of a small intergenic region (351 bp) shared by At5g06290 and At5g06280 in
Arabidopsis thaliana was characterized.

Results: Activity of the intergenic region in both orientations was analyzed by driving the -
glucuronidase (GUS) reporter gene during the development and growth of Arabidopsis plants
under physiological and stressful conditions. Results have shown that this region drives expression
either of 2cpb or puf in photosynthetic or vascular tissues, respectively. GUS expression driven by
the promoter in 2cpb orientation was enhanced by heat stress. On the other hand, the promoter
in both orientations has shown similar down-regulation of GUS expression under low temperatures
and other stress conditions such as mannitol, oxidative stress, or fungal elicitor.

Conclusion: The results from this study account for the first evidence of an intergenic region that,
in opposite orientation, directs GUS expression in different spatially-localized Arabidopsis tissues
in a mutually exclusive manner. Additionally, this is the first demonstration of a small intergenic
region that drives expression of a gene whose product is involved in the chloroplast antioxidant
defence such as 2cpb. Furthermore, these results contribute to show that 2cpb is related to the
heat stress defensive system in leaves and roots of Arabidopsis thaliana.

Background trol transcription efficiency. There are several key genetic
A promoter region of an eukaryotic protein-encoding  elements within a core promoter: the TATA box, an initia-
gene usually consists of a core promoter region of around  tor element, the downstream promoter element usually
50 bp nucleotides adjacent to the transcription initiation  found in TATA-less promoters, and the TFIIB-recognition
site, and multiple distal DNA regulatory elements to con-  element [1,2]. The TATA boxes are usually located about
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25 to 30 bp upstream of the transcription start site (TSS),
while the less conserved initiator elements span the TSS.
These sequences contribute to an accurate transcription
initiation and to the TATA-containing promoters strength.
In Arabidopsis core promoters, the TATA box is located
between -50 and -20 relative to the TSS and, instead of the
initiator element around the TSS, the YR rule (Y: Cor T; R:
A or G) applies to most of them. Another element is the
pyrimidine patch (Y Patch), although its role is still
unknown. These three elements are orientation-sensitive
[3]. Other promoter elements found in Arabidopsis and
rice are regulatory element groups (REGs), which appear
upstream of the TATA box (-20 to -400), and exist in an
orientation-insensitive manner [3].

Transcription initiation by RNA polymerase II is unidirec-
tional from most genes. However, several reports indicate
that divergent transcription is likely a common feature for
active promoters [4-7].

Divergent genes, defined as non-overlapping genes organ-
ized head-to-head in opposite orientation, represent a
36.5% of the total gene pairs when separated by less than
1 kb in the Arabidopsis genome [8]. Nevertheless, there is
scarce evidence on functional analyses of the intergenic
regions between those gene pairs. Previous findings of
head-to-head oriented genes sharing an intergenic region
with putative bidirectional promoters were reported in
Brassica napus [9], Capsicum annuum [10], and by compu-
tational analysis in rice, Arabidopsis, and black cotton-
wood [11]. Large-scale studies of expression data in
Arabidopsis revealed that neighbouring genes in the
genome are co-expressed [12], and that the lengths of the
intergenic sequences have opposite effects on the ability
of a gene to be epigenetically regulated for differential
expression [13]. Two recent papers have shown activity of
larger intergenic regions in rice (1.8 kbp) and Arabidopsis
(2.1 kbp), functioning as bidirectional promoters of chy-
motrypsin protease inhibitor [14] and chlorophyll a/b-
binding protein [15] genes, respectively. These systems
were assessed in a heterologous background using onion
epidermal cells [14], and also in stable transgenic plants,
the latter intended to be used for genetic engineering-
based crop improvement [15].

All divergent gene pairs are potential sources of bidirec-
tional promoters. To define the function of the corre-
sponding intergenic regions and their transcriptional
regulation is of great interest for plant molecular biolo-
gists.

In this study, a divergent promoter of a protein-encoding
gene pair (At5406290 and At5¢06280) with an intergenic
region of 351 bp was analyzed. The At5g06290 and
At5g06280 loci encode a 2-Cys peroxiredoxin B (2CPB),
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which are a chloroplast-located protein [16], and a pro-
tein of unknown function (PUF), respectively http://
www.arabidopsis.org. The 2-Cys peroxiredoxins are pro-
teins involved in redox processes, and their functions are
related to the antioxidant defence of the plant [17], pho-
tosynthesis, abiotic stress response, and possibly chloro-
plast-to-cytosol signalling [18]. In yeast, peroxiredoxins
could act as molecular chaperons, increasing resistance to
heat stress [19]. The expression pattern of the At5¢06290
and At5206280 was tested by fusing the intergenic region
in opposite orientation to B-glucuronidase (GUS) reporter
gene during the development and growth of Arabidopsis
plants as well as during stress situations.

Results

Functional analysis of the intergenic region between
At5g06280 and At5g06290 in Arabidopsis plants during
their development and growth

To test functionality of the intergenic region shared by the
divergent genes At5g06280 and At5¢06290 during Arabi-
dopsis life cycle, the DNA fragment was fused to GUS in
both orientations (Prom280:GUS and Prom290:GUS,
respectively). Accordingly, we cloned a 530 bp DNA frag-
ment (the 351 bp intergenic region and the 5' untrans-
lated regions) upstream of GUS in the binary vector
pBI101.1. The constructs were introduced into wild-type
Arabidopsis plants by floral dip, multiple transgenic
plants were obtained, and more than 3 independent lines
were examined for each construct throughout develop-
ment. GUS staining was performed in Arabidopsis plants
during life cycle (Figure 1, stages 1.0 to 6.9 according to
[20]). Interestingly, Prom280:GUS plants have shown
staining almost exclusively in the petiole and vascular
bundle of midrib in all the leaves (Figure 1C, 1E, 1G and
11), sepals (Figure 1K), but not in the cotyledons (Figure
1A), while Prom290:GUS plants have shown staining
mainly in the leaf mesophyll (Figure 1B, 1D, 1F, 1H and
1J), sepals (Figure 1L), and siliques (Figure 1M and 1N).
It is worth noticing that stronger GUS staining was
observed for Prom290:GUS plants (it was visualized even
after three hours of staining) in comparison with
Prom280:GUS plants at all growth stages (data not
shown). Results indicate that the intergenic region
between At506290 and At5306280 directs GUS expres-
sion in a spatially exclusive manner depending on the
promoter orientation during Arabidopsis development
and growth (Figure 1).

As 2CPB is a chloroplastic protein [16], we analyzed the
putative intracellular location of PUF using ChloroP 1.1
Server [21] and the deduced amino acid sequence of
At5406280. The prediction results have shown that PUF
(156 residues) is likely to be a plastidic protein, because it
has an amino-terminal extension indicative of chloroplast
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Expression of At5g06280 and At5g06290 during life cycle of Arabidopsis. Histochemical detection of GUS in Arabidop-
sis plants from Prom280:GUS and Prom290:GUS lines of different ages. The Arabidopsis growing stages (according to [20]) are
indicated at the right bottom corner of the pictures. GUS activity are seen in Prom280:GUS line (C, E, G, |) in the petiole and
vascular bundle of midrib in all the leaves, but not in the cotyledons (A). The Prom290:GUS line (B, D, F, H, J) has evidenced
staining in mesophillic tissue of the leaves at all stages. (K) Open flower of Prom280:GUS line showing staining of the vascular
tissues of the sepals. (L) Open flower of Prom290:GUS line with stained sepals. (M) Senescent flower of Prom290:GUS line. (N)
Siliques of Prom290:GUS line showing the stained style and stigmatic tissue. Siliques of Prom280:GUS line were not stained at all
(data not shown).
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transit peptide (score 0.506). For comparison, 2CPB score
was 0.598 using this web tool.

Response of Prom280:GUS and Prom290:GUS plants to
various stresses

Different stress conditions lead to the production of reac-
tive oxygen species (ROS) as a consequence of membrane
and protein damage [22]. The expression of 2-Cys perox-
iredoxins are reported to be redox regulated [23]. There-
fore, it was decided to test the response of Prom280:GUS
and Prom290:GUS plants to various environmental
stresses. Firstly, the effect of temperature treatment in 10-
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Figure 2

Expression of GUS in Prom280:GUS and Prom290:GUS
plants in response to temperature treatments. Ten-
day-old plants were grown on MS agar plates photoau-
totrophically at 21°C, and incubated for 48 h at 37°C and
4°C. GUS staining of Prom280:GUS and Prom290:GUS plants
before (A and B) and after transferring the plants to higher
(37°C, C and D) or lower (4°C, E and F) temperature condi-
tions. GUS activity was quantified in whole aerial part using
4-methylumbelliferone [MU] as substrate, and results are
reported in a relative scale (G and H). Control of
Prom280:GUS line was 6.52 = 1.04 nmoles MU/min/mg pro-
tein, and control of Prom290:GUS line was 76.56 + 18.84
nmoles MU/min/mg protein. Each point represents a single
replicate. Asterisks (**) indicate significant differences
between treatments and controls according to Student's t-
Test at P < 0.005. Plants transformed with pBI10I.1 (I). Roots
of Prom290:GUS line after heat treatment (37°C) (J).

day old Arabidopsis seedlings was analyzed. Plants of
both transgenic lines were incubated for 48 h at 37°C or
4°C and, after the treatment, they were submitted to GUS
staining procedure. Figure 2 shows that leaves from both
plant lines were stained stronger under heat stress (Figures
2C and 2D), maintaining the same tissue specificity to the
control condition (Figures 2A and 2B). In addition, the
root tips were stained in the case of Prom290:GUS plants
(Figure 2]). In both plant lines the GUS staining pattern
was conserved under cold stress (Figures 2E and 2F),
although the expression levels were weaker than control
conditions as revealed by quantification of the GUS stain-
ing intensity (Figures 2G and 2H). Furthermore, no
expression was detected in the plants carrying the vector
without the intergenic region (empty vector) (Figure 2I).
Further analysis of puf and 2cpb expression using the
response viewer of Genevestigator software http://
www.genevestigator.ethz.ch/[24] is presented in Figure 3.
Under several cold treatments, the aerial part of Arabidop-
sis plants have evidenced decreased expression of puf and
2cpb, while under heat conditions, the plants have evi-
denced enhanced expression of both genes (Figure 3).
Similar responses were observed in the expression of GUS
in Prom280:GUS and Prom290:GUS plants submitted to
temperature stress (Figure 2). Additionally, in roots of
Prom290:GUS plants, the expression of 2¢cpb is markedly
increased by heat stress (Figure 2J), which is consistent
with data obtained from roots under the same stress treat-
ment (Figure 3).

To confirm the effect of heat treatment on the induction
of 2CPB, 10-day old wild-type Arabidopsis plants were
submitted for 2 days at 37°C, and the total protein of
leaves and roots were extracted and analyzed by SDS-
PAGE and immunoblotting. Results are presented in
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Expression levels of the genes after heat or cold stress as shown by Genevestigator. Response viewer of Geneves-
tigator software shows that At5g06280 and At5g06290 genes decrease their expression levels in all cold stress experiments

and increase their levels with heat stress treatments.

Additional file 1. The total protein pattern has shown
slight differences between control and treated plants in
the leaf or root tissues, especially in higher molecular
masses larger than 66 kDa. Immunoblot analysis of these
tissues has shown induction of 2CPB in both leaves and
roots after heat treatment (Additional file 1, bottom
panel). These data indicate that heat treatment was able to
increase not only 2CPB protein level in root and leaf of

wild-type plants (Additional file 1), but also GUS activity
in the same tissues as observed in Prom290:GUS plants
(Figures 2D and 2J).

Other sources of ROS are biotic and abiotic stresses. The
effect of different stress conditions on the expression lev-
els of Prom280:GUS and Prom290:GUS plants were evalu-
ated, and the results are presented in Figure 4. GUS
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Effect of several stresses on GUS expression in Prom280:GUS and Prom290:GUS lines. Ten-day-old Arabidopsis
seedlings were grown on MS agar at 21°C and incubated for 6 h to high light (800 pmol m-2s-!). For other stress conditions,
Arabidopsis plants were cultivated on MS agar supplemented with 50 mM NaCl, 0.1 puM MV, 100 mM mannitol or 1.3 mg/mL
elicitors. GUS activity was quantified in whole aerial part using MU as substrate. Each point on the bar represents a single rep-
licate (blue bars for Prom280:GUS line and red bars for Prom290:GUS line). Asterisks (**) indicate significant differences
between treatments and controls according to Student's t-Test at P < 0.05. Note the scale difference between Prom280:GUS

and Prom290:GUS lines.
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expression was similarly reduced in both Arabidopsis
lines under oxidative stress caused by methyl viologen
(MV), a redox cycling compound, fungal elicitor, and
mannitol. Additionally, GUS expression was down-regu-
lated by high light and NaCl in Prom280:GUS lines, while
in Prom290:GUS lines were unaffected. It is worth men-
tioning that the expression of GUS in Prom280:GUS lines
was ten times lower than in Prom290:GUS plants when
calculated per mg of protein of the aerial parts of the
plant. This could be due to a dilution effect of GUS activity
specifically located in vascular bundles of the leaf in
Prom280:GUS lines, in comparison with the whole leaf
expression pattern of GUS in Prom290:GUS plants.

These results suggest that puf and 2¢pb are stress-respon-
sive genes, although they are not always affected in the
same way by the same stress conditions.

In search of cis-elements in the promoter of puf and 2cpb
In silico analysis of the divergent promoter was performed
looking for cis-elements using the Plant Promoter Data-
base (ppdb) [25], PlantCARE [26], PLACE [27], and
Athamap [28] web tools. Analysis revealed no TATA box
available. The elements distribution in the 530 bp region
is shown in Figure 5. We identified binding sites for four
homeodomain-leucine =zipper transcription factors:
ATHB1, which was reported to be involved in differentia-
tion of the palisade mesophyll cells and leaf development
[29,30]; ATHB2, which is responsive to far-red light [31];
ATHBS, which is a transcription factor involved in the reg-
ulation of light-dependent developmental phenomena
[29]; and transcription factors similar to ZmHox2a, which
have the homeodomains ZmHOX2a(1) and
ZmHOX2a(2) [32]. Furthermore, a Y Patch near puf TSS,
and seven REGs near 2¢cpb TSS were identified; however,
their functions are still unknown. An AACA element,
which was described as a negative regulatory element in
vascular promoters that represses activity in other cell
types [33], were identified in seven positions. Lastly, a
CCAAT bogx, present in the promoter of heat shock protein
(Hsp) genes [34], was found four times, and the nCITn
element present in the promoters of several Hsp genes [35]
was found 23 times. This analysis displayed no other over-
represented cis-element in the promoter region under
study.

Distribution of distances between genes and their nearest
neighbours in Arabidopsis genome

To further characterize this 351 bp promoter on genome-
wide scale, the distribution of intergenic regions of similar
lengths into the Arabidopsis genome was studied. For that
purpose, the distribution of distances between Arabidop-
sis genes and their nearest neighbours in the same and
opposite strands were explored. The distances between
the TSS of the nearest gene neighbours for each of the

http://www.biomedcentral.com/1471-2199/10/95

27,141 genes predicted (see Methods) after filtering out
genes annotated as pseudogenes and transposons were
calculated. The distribution of distances between 5'ends
of genes on opposite strands is bimodal, which could be
deconvoluted in two peaks centred at 323 bp (around 140
gene pairs between 300 and 350 bp length) and 2.5 kbp
(Figure 6A). This type of distribution was not present in
all the around 14,000 genes with the nearest neighbours
on the same strand (Figure 6B), or when the distances
were calculated between the 3'ends of the genes on oppo-
site strands (Figure 6C). Noticeably, only 4.3% of the gene
pairs with 5'ends on the same strand are closer than 1,000
bp (Figure 6B), while 75% of the gene pairs with 3'ends
on opposite strands are closer than 1,000 bp, with 1,234
of them having overlapping regions (Figure 6C, inset). We
designated the region between the two non-overlapping
5'ends of genes located on opposite strands as a putative
bidirectional promoter. This analysis shows that out of
6,438 divergent gene pairs (Figure 6A), 2,469 are putative
bidirectional promoters of less than 1,000 bp in the Ara-
bidopsis genome. Most of the head-to-head oriented
genes (98%) have predictably shown non-overlapping
bidirectional promoters, and only 874 (13.8%) gene pairs
are less than 323 bp in length.

Discussion

With the availability of complete genome sequences for a
number of organisms, functionality of intergenic regions
has attracted more attention. Computational analysis has
shown that divergent gene pairs with intergenic regions
less than 1 kb are quite abundant in the sequenced
eukaryotic genomes of both plants and animals [5,8]. The
interest in studying intergenic region functionality is
increasing not only to better understand divergent tran-
scription, but also to use them as a new toolkit to manip-
ulate genomes [36]. In plants, particularly, very few
reports about this matter are available. An example of
such investigations in plants in which data from compu-
tational assistance and bidirectionalization were inte-
grated to construct a synthetic transcriptional unit for
high-level reporter-gene expression in response to specific
elicitors was reported, thus yielding exciting results [37].
In this study, it has been found that the region shared by
two divergent genes in the chromosome 5 of Arabidopsis
thaliana (At5806280 and At5806290) functions as a pro-
moter in both orientations. In addition, this study was
able to demonstrate that tissue and developmental expres-
sion patterns differed between puf and 2¢cpb. Head-to-head
genes from other organisms such as human, mouse, and
rat genomes statistically tend to perform similar func-
tions, and gene pairs associated with the significant co-
functions seem to have stronger expression correlations
[38]. In this case, the gene products of At5g06280 and
At5406290 are both presumably located in the chloro-
plasts, although it is unknown if their functions are
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+ TTTTGATTTA ATTATCAAAG TATGATCATC AACAC TCGAACAT
- AAAACTAAAT TAATAGTTTC ATACTAGTAG TTGTG GGCCAA GTAGCTTGTA
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Y Patch B REG AACA —nTTCn

Figure 5 (see legend on next page)
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Figure 5 (see previous page)

Intergenic sequence and 5'UTRs. The double strand sequence of the intergenic and the 5'UTR regions of 2cpb and puf are
shown in A. The cis-elements found in the analyzed region are indicated at the bottom of the figure. More details of the 28 bp
region (enclosed) are shown in B. The plus (+) strand is upstream of At5g06290 and the minus strand is upstream of
At5g06280. The 5'UTRs are shown in light green. Asterisks indicate the TSS. No TATA boxes have been found. ATHBI is the
binding site of the transcription factor ATHBI, which is involved in differentiation of the palisade mesophyll cells and leaf devel-
opment. ATHB2 is the binding site of the transcription factor ATHB2, which is an element of response to far-red light. ATHB5
is the binding site of the transcription factor ATHB5, which is involved in the regulation of light-dependent developmental phe-
nomena. Hox2a_Hox2a is the binding site of proteins with the homeodomains ZmHOX2a(l) and ZmHOX2a(2). CCAAT box
is found in the promoter of Hsp genes. Y Patch is a direction-sensitive plant core promoter element that appears around TSS.
REG is a direction-insensitive element that is preferentially found around -20 to -400 bp relative to TSS. AACA is a negative
regulatory element in vascular promoters that repress activity in other cell types. The yeast heat shock factor | binding
sequence nTTCn is underlined in the minus strand and overlined in the plus strand.

—
o
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Figure 6

Distribution of distances between genes and their
nearest neighbours in Arabidopsis. (A) The distribution
of distances between 5'ends of genes on opposite strands is
deconvoluted in two peaks showing a peak centred at 323 bp
and another at 2,518 bp, the 38.4% of the genes pairs are
closer than 1,000 bp. (B) Distances between 5'ends of genes
on the same strand showing that 4.3% of gene pairs are
closer than 1,000 bp. (C) Analysis of the distribution of dis-
tances between 3'ends of genes on opposite strands showing
that 75% of the gene pairs are closer than 1,000 bp. Inset:
indicate the distribution of the overlapping genes.

related. Thus, it is known that 2CPB is located in the chlo-
roplasts and prevents oxidative damage of chloroplast
proteins [17]. The transcript increase of 2¢cpb was corre-
lated with chlorophyll distribution and also accumulated
in plants with decreased catalase activity and upon heat
stress [39]. Down-regulation of 2¢pb was observed upon
pathogen infection, ozone and cold [40,41]. Instead, the
role of PUF remains unknown until today, and presuma-
bly it would be a chloroplast-located protein as predicted
by ChloroP analysis [21].

When searching for At5806280 and At5806290 potential
orthologues, it has been found that this head-to-head
gene organization was not conserved among other
genomes (data not shown); pointing out that most prob-
ably their gene products are not functionally related. In
humans, analysis of genome-wide expression data dem-
onstrated that a minority of bidirectional gene pairs are
expressed through a mutually exclusive mechanism [5]. In
this study, the tissue-specific expression of both genes
directed by the divergent promoter has shown unidirec-
tional activity for puf in petiole and vascular bundles and
unidirectional activity in the opposite direction in differ-
ent tissues for 2¢cpb. The higher expression of 2¢pb in the
leaf mesophyll, but not in vascular bundles, is coincident
with its function in the redox processes of chloroplasts
[40]. Taken together, these results suggest that the direc-
tionality of the promoter activity may be regulated to
some degree in a tissue-specific manner. In fact, a cis-motif
associated to vascular bundle expression (AACA) [33] was
found several times in the puf direction of transcription.

Furthermore, it has been demonstrated that the divergent
promoter shared by puf and 2¢pb responded to tempera-
ture stress. In relation to this, the higher 2CPB levels in the
leaf and root caused by heat treatment of Arabidopsis
seedlings would indicate a role of this protein in temper-
ature stress. In yeast, peroxiredoxins could alternatively
function as peroxidases and molecular chaperons,
increasing resistance to heat stress [19]. It is well known
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that exposure of plants to high temperature leads to the
production of Hsps. The yeast heat shock factor 1 binding
sequence nTTCn (or nGAAn) [35] was found highly rep-
resented in the intergenic region of this study. Therefore,
it is tempting to speculate that high temperature could
stimulate 2¢pb similarly to Hsp genes. Remarkably, the puf
expression was repressed similarly to 2¢pb by several stress
conditions.

In silico analysis of this promoter using ppdb revealed that
it is a TATA-less promoter in both orientations. In plant
genomes putative bidirectional promoters have TATA
boxes underrepresented [11]. A recent study [42] sug-
gested that TATA box-containing genes have longer inter-
genic upstream regions and increased variation across
species because their upstream regulatory potential is
greater and, therefore, more amenable to change and
modulation. The TATA box appears to be responsible for
promoter unidirectionality in most cases, whereas having
no TATA boxes appears to be a novel mechanism of regu-
lation by bidirectional promoters compared to unidirec-
tional promoters. This analysis also revealed that in a
short region of this promoter (28 bp) (Figure 5B), four
different cis-elements are overlapped. They are: one heat
shock element (CCAAT box), a Y Patch found in the
majority of Arabidopsis promoters but with unknown
function [25], and three binding sites of homeodomains-
leucine zipper transcription factors, some of them being
able to bind in both directions [27,28]. These cis-elements
would be leading the transcription of 2¢pb, specially
ATHBI1, which is involved in differentiation of the pali-
sade mesophyll cells, and ATHB5, which in turn is
involved in the control of leaf morphology development
[26]. Upstream of this region there are three AACA ele-
ments in the +/- 25 bp region of puf TSS (Figure 5A). This
is a negative regulatory element in vascular promoters,
which represses activity in other cell types [33] suggesting
that, in the intergenic region under analysis, this cis-ele-
ment would be preventing puf transcription in mesophilic
cells. The expression of puf in vascular bundle of midribs
could be activated by ATHB2, which has a homeodomain
too, and by the Y Patch that is located in the 28 bp region
above mentioned. The 2¢pb and puf putative promoter
regions mentioned have an element of response to heat
near them, which could explain the heat stress experi-
ments. It was not possible to find any abiotic stress ele-
ment overrepresented in the 530 bp region analyzed,
suggesting that the expression pattern observed in Figure
4 could be the result of the complex interaction of the
transcription factors that bind the 28 bp region. Overall,
results obtained from this study indicate that the multiple
stress responsiveness of the intergenic region would reside
within the 351 bp.

http://www.biomedcentral.com/1471-2199/10/95

When length is considered, the short promoter shared by
2¢pb and puf belongs to a minority group of putative bidi-
rectional promoters present in the Arabidopsis genomes.
In fact, Arabidopsis genome has a bimodal distribution of
distances between the 5'ends of genes on opposite
strands, peaking the smaller group of gene pairs at 323 bp.
This is the first intergenic region functionally studied of
this small group of Arabidopsis promoters. Plants are ses-
sile organisms and, during their growth, they occasionally
are affected by adverse environmental conditions; there-
fore, they may rely more strongly on elaborate transcrip-
tional response programs to survive. Then, it is highly
possible that other intergenic regions of similar lengths
and regulatory features could be found in plants.

Conclusion

In this report, it has been shown that a 351 bp intergenic
region between head-to-head oriented At5806290 and
At5806280 directs genes expression in different Arabidop-
sis tissues in a mutually exclusive manner. Gene products
of these loci are a chloroplast-located 2-Cys peroxiredoxin
B involved in the antioxidant defence, and a protein of
unknown function. This is the first report of an intergenic
region that drives expression of a gene involved in the
chloroplast antioxidant defence. These results also show
that 2CPB is induced by heat stress in the leaves and roots,
suggesting a function for this protein in the heat stress
defensive system of Arabidopsis thaliana.

Methods

Plant material and growth conditions

Arabidopsis thaliana ecotype Columbia (Col-7) was syn-
chronously germinated at 4°C for 48 h and grown in soil-
vermiculite mixture (2:1 v/v) in growth chambers at 20-
22°C, under long day conditions (16 h light/8 h dark-
ness). The light intensity was set at 130 umol m2s-1.

When assaying stress treatments, Arabidopsis plants
grown photoautotrophically on agar medium containing
0.5 X Murashige and Skoog (MS) salts (Sigma-Aldrich).

Stress treatments

Arabidopsis plants were cultivated on agar supplemented
with the stress agent: osmotic stress (100 mM mannitol),
salt stress (50 mM NaCl), oxidative stress (0.1 uM methyl
viologen) or fungal elicitor (1.3 mg/mL autoclaved cellu-
lase, Onozuka R-10, Yakult Honsha, Tokio, Japan). For
cold (4°C) and high (37°C) temperature stresses, the
plants were grown for 10 days on MS agar without supple-
ments under control conditions and then the temperature
treatment was applied for 2 days. For higher light intensity
(800 pmol m2s-1), the plants were grown for 10 days and
the treatment was applied for 6 h.
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DNA constructs

The intergenic region with the 5'UTR regions of the genes
At5806280 and At5806290 was isolated by PCR from an A.
thaliana DNA CTAB preparation [43] using the primers 5'-
CGCGGATCCAGTCITTCITCITCTITITITITG-3" and 5'-
CGCGGATCCTGACTCTGITCTCTCTCTCTATC-3' (added
BamHI restriction site in bold). The PCR product was sub-
cloned into pGEM-T Easy Vector (Promega, Madison,
USA). DNA sequencing was used to confirm that no spu-
rious mutations were introduced during amplification.
The fragment was excised with BamHI, and the 530 bp
fragments were cloned into the BamHI site of pBI101.1 to
create the plasmids pBI280 and pBI290. The orientation
of the fragment was analyzed by PCR with primers that
hybridize in the pBI101.1 plasmid (5-ACAGTTT-
TCGCGATCCAGAC-3' and 5'-TTATGCTTCCGGCTCG-
TATG-3') and the primers previously described.
Escherichia coli strain DH5a was used for plasmid con-
struction. Agrobacterium tumefaciens strain GV3101
pMP90 was transformed with plasmids by electropora-
tion, and Arabidopsis (Col-7) plants were transformed by
floral dip infiltration [44] with the plasmids pBI101.1,
pBI280, or pBI290.

Histochemical localization of GUS activity

GUS activity was localized by staining the tissues with 0.5
mg of 5-bromo-4-chloro-3-indolyl-b-D-glucuronic acid
(X-Glug; Gold Biotechnology, St Louis, MO, USA) per mL
in X-Gluc buffer containing 50 mM sodium phosphate
(pH 7.2), 10 mM EDTA, 0.33 mg/mL potassium ferricya-
nide and 0.001% Tween 20. The tissues were vacuum-
infiltrated for three rounds of one min each, and staining
reactions proceeded overnight at 37°C. Chlorophyll was
removed by soaking in ethanol. The photographs were
taken with a binocular microscope Leika MZ16F.

Analysis of GUS activity

Quantitative analysis of GUS activity was performed on
whole aerial part using the GUS activity assay [45], the
experiment was made twice, each treatment had three bio-
logical replicates and each replicate was a pool of 10 Ara-
bidopsis plants, except the high light treatment which had
four biological replicates.

Production of 4-methylumbelliferone [MU] was meas-
ured using a DTX 880 Multimode Detector (Beckman
Coulter, Fullerton, CA). Protein concentrations of the
samples were determined using Bradford reagent [46] and
BSA as a standard. The amount of MU was determined
from a standard curve, and GUS activity was expressed as
nmol MU/min/mg protein. The empty vector transformed
plants shown a basal activity of 0.22 + 0.08 nmoles MU/
min/mg protein.

http://www.biomedcentral.com/1471-2199/10/95

Immunoblot analysis

To measure the protein levels of 2CPB, 100 mg of tissue
were ground to a fine powder in liquid N, and then
homogenized with 0.2 mL of buffer (25 mM Hepes (pH
7.5), 0.6 M mannitol, 0.462 mg/mL dithiothreitol, 2 mM
EDTA, 0.175 mg/mL phenylmethylsulphonyl fluoride
and 1% (w/v) polyvinylpolypyrrolidone). The homoge-
nates were centrifuged at 15,000 g for 20 min, and the
supernatant protein concentration was determined utiliz-
ing BSA as a standard protein as described by [46]. The
supernatant was mixed with sample buffer 10x (250 mM
Tris-HCl (pH 6.8), 10% SDS, 0.5% bromophenol blue
and 20% glycerol), boiled for 5 min, and separated in a
12% SDS-PAGE as described earlier [47]. The gels were
stained with Coomassie Brilliant Blue R-250. For immu-
noblotting, the proteins were transferred to nitrocellulose
membranes using a Mini Trans-Blot cell (Bio-Rad, CA,
USA) at 100 mA for 100 min. The membranes were
treated with polyclonal antibody raised against rapeseed
2-Cys peroxiredoxin [48]. Signals on the membranes were
visualized with alkaline phosphatase-conjugated goat
anti-rabbit IgG (SIGMA, St Louis, MO, USA).

The signal intensities were quantified from the immuno-
blot using the Gel-Pro Analyzer software (Media Cyber-
netics Inc, Silver Spring, MD) and normalized to the
intensities observed in control conditions. A representa-
tive example from three independent experiments is
shown.

Promoter sequence analysis
The promoter sequence was analyzed using publicly avail-
able databases, PlantCARE http://bioinformat

ics.psb.ugent.be/webtools/plantcare/html/[26] and
PLACE http://www.dna.affrc.go.jp/PLACE/signals
can.html[27], which are databases of plant cis-acting reg-
ulatory elements; AthaMap http://www.athamap.de/
index.php[28], which provides a genome-wide map of
potential transcription factor binding sites in Arabidopsis
thaliana; and Plant Promoter Database (ppdb) http://
www.ppdb.gene.nagoya-u.ac.jp[25], which is based on
species-specific sets of promoter elements, rather than on
general motifs for multiple species.

Arabidopsis promoters length analysis

Annotation data for the Arabidopsis thaliana genes was
downloaded from The Arabidopsis Information Resource
(TAIR) FIP server ftp://ftp.arabidopsis.org/Maps/
seqviewer data/sv_gene.data. The analysis was performed
on 27,141 genes after filtering out pseudogenes and trans-
poson-related  genes  ftp://ftp.arabidopsis.org/Maps/
gbrowse_data/TAIR8/

TAIR8 GFF3_genes_transposons.gff from 31,762 anno-
tated genes. Start and stop positions of the transcription
units along with information on the strand that encodes
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an mRNA were extracted. Microsoft Office Excel was used
to calculate the distances between the 3' ends of the near-
est neighbour genes and the distances between 5' ends of
the neighbour genes. The overlapping genes were ana-
lyzed only in the graph corresponding to the 3'ends of the
nearest neighbour genes and the resulting distances
among them were less than zero (shown in Figure 6C,
inset).
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