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Abstract
Background: Through the whole life of eukaryotes, autophagy plays an important role in various
biological events including development, differentiation and determination of lifespan. A full set of
genes and their encoded proteins of this evolutionarily conserved pathway have been identified in
many eukaryotic organisms from yeast to mammals. However, this pathway in the insect model
organism, the silkworm Bombyx mori, remains poorly investigated.

Results: Based on the autophagy pathway in several model organisms and a series of bioinformatic
analyses, we have found more than 20 autophagy-related genes from the current database of the
silkworm Bombyx mori. These genes could be further classified into the signal transduction pathway
and two ubiquitin-like pathways. Using the mRNA extracted from the silkgland, we cloned the full
length cDNA fragments of some key genes via reverse transcription PCR and 3' rapid amplification
of cDNA ends (RACE). In addition, we found that the transcription levels of two indicator genes
BmATG8 and BmATG12 in the silkgland tend to be increased from 1st to 8th day of the fifth instar
larvae.

Conclusion: Bioinformatics in combination with RT-PCR enable us to remodel a preliminary
pathway of autophagy in the silkworm. Amplification and cloning of most autophagy-related genes
from the silkgland indicated autophagy is indeed an activated process. Furthermore, the time-
course transcriptional profiles of BmATG8 and BmATG12 revealed that both genes are up-regulated
along the maturation of the silkgland during the fifth instar. These findings suggest that the
autophagy should play an important role in Bombyx mori silkgland.

Background
The programmed cell death (PCD) is a genetically regu-
lated program of cell elimination, which is evolutionarily
conserved in eukaryotes and plays a very important role in

several physiological processes. PCD consists of two
major types, apoptosis (type I) and autophagic cell death
(type II) [1]. For a long time, autophagy has been
described as a form of type II programmed cell death char-
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acterized by lysosomal activation and formation of
autophagosomes. It is ubiquitous among eukaryotes func-
tioning as a lysosome degradation pathway for recycling
cytoplasmic materials especially long-lived proteins [2-4].

The formation of autophagosomes depends on the two
ubiquitin-like conjugation systems, Atg8-PE (phosphati-
dylethanolamine) and Atg12-Atg5-Atg16 systems [5]. To
trigger the former system, the C-terminal glycine residue
of newly synthesized Atg8 has to be exposed by a cysteine-
type endopeptidase Atg4. Subsequently, after being acti-
vated by an E1-like protein Atg7, Atg8 is conjugated to PE
by a specific E2-like protein Atg3 [6]. In the latter system,
Atg12 is activated by Atg7 and then transferred to an E2-
like enzyme Atg10, via which conjugated to Atg5. Finally,
the Atg12-Atg5 conjugate interacts with Atg16 to form a
complex, which is localized to a membrane system to
facilitate the maturation of autophagosomes [7-12].

There are several major signal transduction pathways and
complexes involved in the induction of autophagy. One
of these pathways is mediated by a serine/threonine
kinase TOR (target of rapamycin), which takes part in
most regulatory pathways in response to the changes in
nutrient conditions and energy metabolism. TOR exerts
an inhibitory effect on autophagy through various down-
stream effectors including Tap42 and P70s6 kinase
(P70s6K) to regulate the transcription and/or translation
of other related genes [13-18]. In addition to TOR, mem-
bers in PtdIns 3-kinase class I (PI3K-I) and III (PI3K-III)
also participate the regulation of autophagy. PI3K-I mem-
bers phosphorylate PtdIns(4,5)P2 to produce
PtdIns(3,4,5)P3, which binds to protein kinase B (Akt/
Pkb) and its activator Pdk1 (phosphoinositide dependent
kinase 1) [19-21]. The activation of PI3K-I/Akt pathway
inhibits the GTPase-activating activity of Tsc2, leading to
the relief of the inhibitory effect of Rheb-GDP on TOR/
P70s6K signalling [22-26]. Mammalian hormones gluca-
gon and insulin inhibit TOR by down-regulating PI3K-I,
and so does ecdysone in D. melanogaster. The PI3K-I/Akt
pathway is thought to down regulate the autophagy level,
while PI3K-III, together with its membrane adaptor and
autophagy protein Atg6 (Beclin1 in mammals), functions
as an activator of autophagy and plays a crucial role in the
early steps of autophagosome formation [27-32].

Recently, an explosion of studies on autophagy and cell
survival indicates that autophagy may play an important
role in the life cycle of eukaryotic organism. Autophagy
may help cells to survive in death mutants, to crosstalk
with the regulation of cell proliferation, to remove toxic
cytoplasmic constituents, to reduce neurotoxicity of poly-
glutamine expansion proteins in some neurodegenerative
diseases and also to be required for necrotic cell death.
[33-38]. The metamorphic development from larvae to

pupa is accompanying with the degeneration of specific
larval tissues, such as the salivary glands of Drosophila mel-
anogaster [39-41], intersegmental muscles [42], protho-
racic glands [43] and silkglands of B. mori [44].

The silkgland is the largest tissue in the fifth and last instar
of the silkworm B. mori. It consists of three parts: anterior
(ASG), middle (MSG) and posterior silkgland (PSG)[45].
During the prepupal period, silkglands are degenerated
via PCD pathway triggered by the steroid hormone ecdys-
one [44,46]. Both apoptotic and autophagic morpholo-
gies have been observed in the ASG during the larval-
pupal metamorphosis, but the connections between them
are still unclear [47-49]. The pupal differentiation of silk-
gland starts on the first day of the fifth instar and cell
death in ASG is initiated on the third day [44]. Besides the
PCD phenomenon found in ASG, we have also observed
autophagic vacuolar formation in MSG during the prepu-
pal period (unpublished data, Cao et al.). These findings
indicate that autophagy may play a very important part in
the differentiation and degeneration of silkgland, but the
molecular mechanism remains unclear. Thus we per-
formed a genome-wide search of autophagy-related genes
in B. mori, aiming at remodelling the preliminary
autophagy pathway for further systematic investigations.

Results
Identification of autophagy-related genes in B. mori
The autophagy-related genes from databases of S. cerevi-
siae, D. melanogaster, A. mellifera and H. sapiens genome
were collected as queries. Using the blast website Silk-
wormBLAST to search against the Silkworm Genome
Database (SilkDB), more than 20 autophagy-related
genes could be identified as the top hits. However, even
after a series of more sensitive profile-based searches,
other members remain absent probably due to the low
level of sequence homology. All hits of an E-value <1e-10
and alignment of >25% were collected and listed in Table
1. Most of these genes are involved in the two ubiquitin-
like conjugation systems and the upstream signal trans-
duction pathway. Besides, we also collected some impor-
tant proteins taking part in the regulation of autophagy,
including the protein serine/threonine kinase Atg1 [50],
integral membrane protein Atg9 [51], phosphoinositide
binding protein Atg18 [52] and the heat shock cognate
protein HSC73 [53] (Table 1).

Remodelling the autophagy pathway
Autophagy-related genes were first identified in yeast, and
their homologs have recently been found and function-
ally characterized in higher eukaryotes. Evolutionary anal-
yses indicated that autophagy is a highly conserved
process among eukaryotes, such as yeast, plant, insect and
mammal [54]. Based on the current knowledge, we
remodel a preliminary autophagy pathway in B. mori (Fig-
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ure 1). In the upstream signal transduction pathway,
autophagic responses are developed by a series of kinases
and phosphatases. TOR and PI3K are the major regulators
in this signal transduction process (Figure 1A). In the
Atg8-PE ubiquitin-like conjugation system, the last resi-
due Asn117 of BmAtg8 is proposed to be cleaved by
BmAtg4 for exposure of a C-terminal glycine residue.
Then the modified BmAtg8 is activated by the E1-like
enzyme BmAtg7 and finally transferred to PE by E2-like
enzyme BmAtg3. In the Atg12-Atg5-Atg16 system,
BmAtg12 should be activated by BmAtg7 to form a com-
plex with BmAtg5. Subsequently, the BmAtg12-BmAtg5
conjugate interacts with BmAtg16, a protein containing a
coiled-coil domain that mediates self-multimerization
and the formation of an assembly of ~350-kDa (Figure
1B). All members in Atg12-Atg5-Atg16 conjugation path-
way have been identified from the SilkDB except for Atg10
(colored in grey) (see the Discussion for more details).

Most autophagy-related genes are actively transcribed in 
the silkgland
From the 6th day through the fifth instar, both apoptotic
and autophagic morphologies in the ASG [44] and MSG
(unpublished data, Cao et al.) have been observed. We

extracted total RNA from the silkglands of fifth instar lar-
vae on the 3rd day to validate these in silico identified genes
by reverse-transcription PCR. Some representative PCR
products were shown in Figure 2. BmATG3, BmATG4,
BmATG8 and BmATG12 are genes involved in ubiquitin-
like conjugation systems; BmATG6, BmATG1 and
BmAtg18 are required for formation of autophagosomes;
Homologs of P70S6K, PKB and Rheb are members of the
upstream signal transduction pathways;HSC73 mediates
the chaperone-mediated autophagy.

Furthermore, full-length cDNAs of BmATG3, BmATG4,
BmATG6, BmATG8 and BmATG12 have been sequenced
and deposited in GenBank under the accession numbers
of FJ416327, FJ416326, FJ416328, FJ416330 and
FJ416329, respectively. All proteins encoded by these
genes are homogeneous to their orthologs in other
eukaryotes (for the multialignments of Atg4, Atg6 and
Atg5, see Additional file 1), indicating high conservation
of the ubiquitin-like pathways in B. mori.

In the SilkDB, we found only a 5' fragment of putative
BmATG5. To obtain its full-length cDNA, we used 3' RACE
PCR method to amplify the unknown 3' flanking

Table 1: Autophagy-related proteins identified from the SilkDB.

Autophagy proteins Bombyx mori genes Biochemical properties

Ubiquitin-like conjugation pathway
Atg3 BGIBMGA003767-TA E2-like enzyme conjugates Atg8 to phosphatidylethanolamine (PE)
Atg4 BGIBMGA004926-TA Cysteine protease, cleaves C-terminal extension or PE from Atg8
Atg5 BGIBMGA007878-TA Conjugates to Atg12 through internal lysine
Atg7 BGIBMGA001467-TA E1-like enzyme activates Atg8 and Atg12
Atg8 BGIVMGA011783-PA Conjugates with Atg7, Atg3
Atg12 BGIBMGA003954-TA Conjugates to Atg5 by E1 enzyme Atg7
Atg16 BGIBMGA006504-TA Protein interacts with Atg12-Atg5
Signal transduction pathway
PI3K-I BGIBMGA010561-TA Relieves the inhibitory effects on TOR through PI3K/Akt pathway
Pdk1 BGIBMGA011755-TA The activator of Akt/Pkb
Akt/Pkb BGIBMGA014132-TA Protein kinase B, be activated by Pdk1
Tsc1 BGIBMGA005845-TA Forms a complex with Tsc2
Tsc2 BGIBMGA005686-TA Tuberous sclerosis complex 2, induce autophagy by inhibiting TOR
Rheb BGIBMGA006257-TA Be negatively regulated by TSC2 and positively regulates TOR
AMPK BGIBMGA013139-TA AMP activated protein kinase, stimulates autophagy by inhibiting TOR signal pathway
TOR BGIBMGA008952-TA Rapamycin target and a kinase involved in repression of autophagy
Tap42 BGIBMGA013517-TA A target of the TOR kinases
Pp2A BGIBMGA010831-TA Protein phosphatase 2A, functions downstream of TOR
P70s6K BGIBMGA011088-TA A downstream effector of TOR, positively regulates autophagy
PI3K- III BGIBMGA007158-TA Contributes to the formation of autophagic vacuoles
Atg6 BGIBMGA000092-TA Component of class III PI3K complexes
others
Hsc73 BGIBMGA002381-TA Involved in chaperone-mediated autophagy
Atg1 BGIBMGA011986-TA Ser/Thr kinase, required for autophagy
Atg18 BGIBMGA007298-TA Required for recycling of Atg9
Atg9 BGIBMGA012307-PA Transmembrane protein, formation of CVT and autophagic vesicles

aHomologues were identified by a BLAST search against the Silkworm Genome Database (SilkDB).
bThe alignment parameters were set as E-value of < 1e-10 and alignment of >25%.
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sequences. First-strand cDNA reverse-transcribed with an
oligo(dT)-adaptor primer from total RNA was used as the
template for 3' RACE PCR with gene specific primer GSP1
and out primer. The 3' RACE PCR product of BmATG5 was
inserted into pGM-T vector for sequencing, and then this
3' segment was spliced with sequence of
BGIBMGA007878-TA (SilkDB) to obtain the full-length
cDNA sequence of BmATG5. The complete coding
sequence of BmATG5 (amplified with full-length primers)

has been deposited in GenBank under the accession
number of FJ418152. Compared with the orthologs in
other eukaryotes, BmAtg5 has the two highly conserved
Atg16 binding domains (ubiquitin-like folds) and one
Atg12 conjugation site (residue Lys149) (see Additional
file 1).

Successful amplification of the coding sequences of some
key autophagy-related genes listed in Table 1 indicated

Autophagy pathway in Bombyx moriFigure 1
Autophagy pathway in Bombyx mori. A) Signal transduction pathway. B) Two ubiquitin-like protein conjugation systems. 
The absent Atg10 is colored in grey.

Some autophagy-related genes in Bombyx mori amplified by PCR with specific primersFigure 2
Some autophagy-related genes in Bombyx mori amplified by PCR with specific primers.
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Multiple alignments of A) Atg8 and B) Atg12 homologsFigure 3
Multiple alignments of A) Atg8 and B) Atg12 homologs. The ubiquitin-like fold and the C-terminal glycine are marked 
in blue. All sequences were obtained from NCBI, SGD and SilkDB database, alignments were performed using the programs 
MultAlin [56] and ESPript [57]. Species abbreviations are Bm for B. mori, Dm for D. melanogaster, Sc for S. cerevisiae, Rn for R. 
norvegicus, Mm for M. musculus, Hs for H. sapiens, At for A. thaliana, Am for A. mellifera and Dr for D. rerio.

Semi-quantitative PCR analyses of BmATG8 and BmATG12Figure 4
Semi-quantitative PCR analyses of BmATG8 and BmATG12. A) Lane 1, Total RNA from newly hatched larva (N-H); 
Lane 2–8, Total RNA from silkgland of 1st day to 7th day fifth instar larvae (1–7); Lane 9–11, Total RNA from ASG(anterior silk-
gland), MSG(middle silkgland) and PSG(posterior silkgland) of the 8th day fifth instar larvae. B) Quantification of the bands was 
performed by GIS 1D Software (Tanon, Shanghai, China) and the ratio of amplified target (At) to standard (As) was calculated 
for all samples.
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that they are indeed actively transcribed in the silkgland.
Comparison to the orthologs further validated the high
level of conservation of the two ubiquitin-like conjuga-
tion systems in the silkworm B. mori.

Both BmATG8 and BmATG12 are up-regulated along the 
maturation of silkgland as revealed by semi-quantitative 
PCR
In attempt to monitor the expression pattern of some
indicator genes in the silkgland at different stages of the
fifth instar, we performed a time-course transcriptional
profiling of BmATG8 and BmATG12. In mammalian cells,
the protein levels of Atg5-Atg12 and/or LC3-II (Atg8
homologue) have been used as indicators for the
autophagic activity [55]. Multiple alignments [56,57]
indicated that both Atg8 and Atg12 homologs have an
ubiquitin-like fold and a highly conserved glycine residue
at the C-terminal region (Figure 3), which is essential for
their conjugation to Atg3 and Atg5, respectively. There-
fore, we used the transcription levels of BmATG12 and
BmATG8 to indicate the autophagic activity in the silkg-
land of B. mori.

Total RNA from the silkgland on each day in the fifth
instar larvae was prepared for reverse-transcription. Dou-
ble-stranded cDNA samples of the same quantity were
used as templates for semi-quantitative PCR with primers
for BmATG8 and BmATG12, respectively. The quantifica-
tion of the bands was performed by GIS 1D Software
(Tanon, Shanghai, China) and ratio of amplified target
BmATG8/BmATG12 to standard Actin3 was calculated. As
shown in Figure 4, the transcriptional levels of both
BmATG8 and BmATG12 exhibit an overall tendency of
increase from 1st to 8th day, and reach a plateau on the 4th

day (BmATG8) and the 5th day (BmATG12) of fifth instar
larvae, respectively. These results suggested a significant
up-regulation of autophagic level in the silkgland of fifth
instar larvae, which is in agreement with the previous his-
tochemical investigations [47]. Thus we suggested that
autophagy should take a crucial part in the differentiation
and degeneration of the silkgland in prepupal of B. mori.

Discussion
Along the metamorphic development from larvae to
pupa, some larval organs of B. mori such as the larval mid-
gut, intersegmental muscles and silkglands are degener-
ated and new imaginal structures are developed. The
histolysis of these tissues was proposed to be achieved via
programmed cell death and the degradation process in the
ASG cells display both autophagic and apoptotic charac-
teristics [44,46,58]. However, the B. mori genes or proteins
required for autophagy have not been well characterized
as those identified from the yeast or human [59].

In the present work, we performed a comprehensive bio-
informatic analysis and found 24 autophagy-related pro-
teins as the top hits from the SilkDB (Table 1). All
homologs involved in the two ubiquitin-like pathways
have been found in B. mori except for Atg10 which has not
been identified from other two model insects, neither
fruitfly nor honeybee. As well known, the E2-like enzyme
Atg10 plays a very important part in transferring Atg12 to
Atg5. It remains a puzzle that how the Atg12-Atg5-Atg16
conjugation system works without a functional Atg10.
After performing a multiple alignment of the primary
sequences of Atg10 against those of E2-like enzyme Atg3
from different species, we found that Atg3 proteins of
some insects have low homology to mammalian Atg10.

Table 2: Databases used for bioinformatic analysis and primers for PCR

Databases 

SGD http://www.yeastgenome.org/
SilkBase http://papilio.ab.a.u-tokyo.ac.jp/silkbase
SilkDB http://silkworm.genomics.org.cn/
GenBank http://www.ncbi.nlm.nih.gov/Genbank/index.html
FlyBase http://flybase.bio.indiana.edu/
SilkwormBLAST http://silkworm.swu.edu.cn/silksoft/blast2-simple.html

Primers

BmATG8-FOR CATGCCATGGATGAAATTCCAATACAA
BmATG8-REV GCGTCGACTTAATTTCCATAGACAT
BmATG12-FOR, CATGCCATGGATGAGTGATGAGAAA
BmATG12-REV GTGAATTCTCAGCCCCAAGCTTG
Actin3-FOR AGAGGTTCCGTTGTCCCG,
Actin3-REV GGCGGTGATCTCCTTCTGCA

aSGD, SilkBase, SilkDB, FlyBase and SilkwormBLAST were used for bioinformatic analysis, cDNA sequences were submitted to GenBank.
bThe primers were used for semi-quantitative PCR analysis of BmATG8 and BmATG12.
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As shown in Additional file 2, both Atg3 and Atg10 have
a highly conserved C-terminal catalytic cysteine (marked
in blue) which is essential for the conjugation [60].
BmAtg3 might be able to recognize both BmAtg8 and
BmAtg12 which share an ubiquitin-like fold and a highly
conserved glycine residue at the C-terminal region (Figure
3). Thus we hypothesize that the function of Atg10 could
be compensated by Atg3 in B. mori and other lepidoptera
insects. Further in vivo experiments, especially identifica-
tion of the E2-like enzyme of Atg12, are necessary to verify
this hypothesis.

Based on these 24 genes and their high degree of conser-
vation to the orthologs identified and functionally charac-
terized in higher eukaryotes [4,61-63], a preliminary
autophagy pathway in B. mori was remodelled (Figure 1).
In addition to these in silico analyses, RT-PCR results
strongly indicated that autophagy-related genes in ubiqui-
tin-like conjugation systems are indeed actively tran-
scribed in the silkgland. This is in agreement with the
previous report that B. mori silkglands are committed to
undergo PCD from the 3rd day of the fifth instar and are
degenerated completely soon after pupation [44]. To ver-
ify the temporal control of this process, we performed a
time-course transcriptional profiling of two indicator
genes BmATG8 and BmATG12 via semi-quantitative RT-
PCR analysis. As expected, the transcriptional levels of
both BmATG8 and BmATG12 exhibit a general tendency
of increase from 1st to 8th day.

Conclusion
As an evolutionarily conserved and finely regulated proc-
ess, autophagy plays a very important role in various bio-
logical events during the whole life of eukaryotes,
including the metamorphic development of B. mori. In
the present work, we identified over 20 autophagy-related
genes and remodelled the autophagy pathway in B. mori.
Using the total RNA extracted from the silkgland of the
fifth instar larvae on the 3rd day as the initial template, the
coding sequences of several key genes were further cloned
by reverse transcription PCR and/or 3' RACE PCR experi-
ments, indicating that most autophagy-related genes are
actively transcribed in the silkgland. Furthermore, semi-
quantitative PCR results indicated that both BmATG8 and
BmATG12 are up-regulated in fifth instar larvae of B. mori.
Taken together, our findings, in combination with the
previous histochemical investigations, evidently suggest
that autophagy executes a very important role in the dif-
ferentiation and degeneration of silkgland during the met-
amorphosis from larva to pupa.

Methods
Bioinformatic analyses
All autophagy-related genes in yeast and homologs in D.
melanogaster, A. mellifera, H. sapiens, R. norvegicus, M. mus-

culus, A. thaliana, A. mellifera, and D. rerio were collected
as queries for BLAST search against the silkworm database
SilkDB, and then the top hits were selected for annota-
tion. The databases used for sequence analyses include
SGD, SilkBase, SilkDB, GenBank, FlyBase and Silkworm-
BLAST (Table 2). Full-length sequences of autophagy-
related genes found from the SilkDB were listed in Table
1. The parameters for BLAST were set as E-value of < 1e-10
and alignment of >25%.

RNA extraction, cDNA preparation and PCR validation of 
some key genes
Total RNA extracted (Trizol, Invitrogen) from the silkg-
lands of the fifth instar larvae at the 3rd day was reverse-
transcribed with Super Script III (Invitrogen). Primers
were designed according to the sequences downloaded
from SilkDB Database. The cDNA prepared from total
RNA was used as template for PCR amplification in a vol-
ume of 25 μl with corresponding primers. The PCR prod-
ucts were separated on 1.5% agarose gel stained with
GelRed.

The 3' end cDNA sequence of BmATG5 was obtained by
using 3' RACE PCR with total RNA from mesenteron of B.
mori in fifth instar. First strand cDNA was synthesized
using an Oligo(dT)-Adaptor primer provided by Takara 3'
RACE kit at 42°C for 60 min in a reaction volume of 10
μl. Then the cDNA was amplified using the 3' RACE Outer
Primer (TACCGTCGTTCCACTAGTGATTT) and BmATG5
specific primer GSP1 (GGACTTTGACAGTACACTTC) as
following procedure: 5 min at 94°C, 35 cycles of 30 sec at
94°C 30 sec at 55°C, 66 sec at 72°C, and then 10 min at
72°C. The PCR product was purified and cloned into
pGM-T sequencing vector. According to the sequencing
result, we spliced out the full-length sequence of BmATG5
and obtained it using PCR reaction with full-length prim-
ers.

Semi-quantitative PCR analysis of BmATG8 and 
BmATG12
Total RNA from silkgland of each day in fifth instar larvae
was reverse-transcribed to cDNA. The cDNAs of the same
quantity was used as template for semi-quantitative PCR
amplification in a volume of 20 μl with BmATG8,
BmATG12 and Actin3 primers (Table 2). Each PCR reac-
tion was performed by preheating the samples at 94°C for
5 min followed by 20 cycles of 94°C for 30 sec, 55°C for
30 sec and 72°C for 40 sec followed by an extra extension
at 72°C for 10 min, the PCR products were separated on
1.5% agarose gel. Quantification of the bands was per-
formed by GIS 1D Software (Tanon, Shanghai, China)
and band intensities were expressed as relative absorbance
units Volume (μg). The ratio of amplified BmATG8 and
BmATG12 respectively to Actin3 was calculated for all
samples.
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