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Abstract
Background: The POU family genes containing the POU domain are common in vertebrates and
invertebrates and play critical roles in cell-type-specific gene expression and cell fate determination.

Results: Har-POU, a new member of the POU gene family, was cloned from the suboesophageal
ganglion of Helicoverpa armigera (Har), and its potential functions in the development of the central
nervous system (CNS) were analyzed. Southern blot analysis suggests that a single copy of this gene
is present in the H. armigera haploid genome. Har-POU mRNA is distributed widely in various
tissues and expressed highly in the CNS, salivary gland, and trachea. In vitro-translated Har-POU
specifically bound canonical octamer motifs on the promoter of diapause hormone and pheromone
biosynthesis activating neuropeptide (DH-PBAN) gene in H. armigera. Expression of the Har-POU
gene is markedly higher in the CNS of nondiapause-destined pupae than in diapause-destined
pupae. Expression of the Har-POU gene in diapausing pupae was upregulated quickly by injection
of ecdysone.

Conclusion: Har-POU may respond to ecdysone and bind to the promoter of DH-PBAN gene to
regulate pupal development in H. armigera.

Background
The development of many insects is regulated by environ-
mental signals such as photoperiod, temperature, humid-
ity, and nutrients. The central nervous system (CNS) of
insects accepts these environmental stimuli and trans-
duces them into endogenous chemical messengers (neu-
ropeptides or hormones) in the neuroendocrine organs
[1]. The neuropeptides and hormones induce insect
developmental arrest at a certain stage: embryonic, larval,
pupal, or adult. The programmed arrest of development is
called diapause. In Bombyx mori (Bom), embryonic dia-
pause is caused by a neuropeptide diapause hormone
(DH), which is secreted from the suboesophageal gan-

glion (SG) and acts on the developing ovaries of the pha-
rate adult to induce the laying of diapause eggs in the next
generation [2]. Interestingly, neuropeptide pheromone
biosynthesis activating peptide (PBAN), which can stimu-
late the pheromone gland of female adults to secrete sex
pheromone to attract male adults for mating in Lepidop-
tera, is also encoded by DH cDNA [3]. Thus, the DH
cDNA and gene also are referred as the DH-PBAN cDNA
and DH-PBAN gene, respectively [4]. DH-PBAN cDNAs
have been cloned from a number of Lepidoptera species.

The DH-PBAN gene was first cloned in B. mori [4]. The
transcription factor POU-M2, a member of the POU fam-
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ily of genes, interacts specifically with the promoter of the
Bom-DH-PBAN gene and regulates its transcription [5].
Initially, the transcription factors Pit, Oct, and Unc (POU)
were found to possess a conserved DNA binding region of
approximate 160 amino acids, and the conserved DNA
binding region was then designated as the POU domain
[6]. The POU domain consists of two subdomains, the
POU-specific domain and a homeobox domain. The POU
family genes containing the POU domain are common in
vertebrates and invertebrates and play critical roles in cell-
type-specific gene expression and cell fate determination
[7]. Based on the variations of POU-homeobox domains,
they are divided into six classes (POU-I~-VI), with POU-
III the largest class [8,9].

One of the main functions of POU-III members in mam-
mals is to regulate the development of the CNS and neu-
roendocrine system and the expression of some
neurohormones [10]. In insects, POU-III members have
been cloned from Drosophila melanogaster (drifter) and
Bombyx mori (POU-M1/M2). drifter from D. melanogaster
was first identified as a neuron-specific regulator binding
the C element of the dopa decarboxylase gene [11]. Later,
drifter was found to be involved in multiple important
developmental events: differentiation and migration of
tracheal cells and neurons [12-14], cell fate determination
of Drosophila imaginal discs [15], and neuronal lineage
and wiring [16-19]. POU-M1 from B. mori was cloned
from the silk gland and was found to bind the SC element
of the sericin-1 gene and regulate its transcription [20].
POU-M2 is an isoform of POU-M1 and regulates expres-
sion of the B. mori DH-PBAN gene, an important neu-
ropeptide related to development [5].

Recently, a second DH-PBAN gene from the pupal dia-
pause species Helicoverpa armigera (Har) (Lepidoptera:
Noctuidae) was cloned and showed a potential binding
site for the POU in the promoter sequences [21].
Although the DH-PBAN gene is involved in controlling
egg diapause in B. mori and pupal diapause in H. armigera,
the respective mechanisms might be different, and the
two temporal patterns are significantly different. The DH-
PBAN mRNA content in B. mori pupae destined to lay dia-
pause eggs is 2.7 times higher than that of pupae destined
to lay nondiapause eggs [22]. The DH-PBAN mRNA con-
tent in diapause-type pupae of H. armigera is significantly
lower than that of nondiapause-type pupae [23]. There-
fore, we want to clarify whether the transcription factor
POU is involved in regulating DH-PBAN expression to
control pupal diapause in H. armigera.

Here we report the cloning and characterization of a
cDNA encoding POU in H. armigera (Har-POU) as well as
analysis of its genome copy, tissue distribution, and DNA
binding activity. Furthermore, we show that developmen-

tal expression of the Har-POU gene is much higher in the
CNS of nondiapause pupae than that of diapause-type
pupae. Thus, expression of the Har-DH-PBAN gene is
closely correlated with the response to the Har-POU tran-
scription factor.

Results
Isolation and sequence analysis of Har-POU
By using degenerate primers POUF and POUR based on
the nucleotide sequences conserved between B. mori and
D. melanogaster, PCR amplification yielded a product of
approximately 900 bp. The amino acid sequence encoded
by this cDNA fragment shows 96.7% and 54.5% similar-
ity with the corresponding regions of POU from B. mori
and D. melanogaster, respectively. To obtain the full-length
POU cDNA, 5'- and 3'-RACE were performed with specific
primers based on the sequence of the 900-bp cDNA frag-
ment. Approximately 370 bp at 5'-end and 1500 bp at 3'-
end were amplified by PCR, and the two fragments were
subcloned into vectors and sequenced. The full-length
cDNA is 2455 bp, including a 204-bp 5' untranslated
region, 1056-bp open-reading frame, and a 1195-bp 3'
untranslated region (Fig. 1). This sequence has been sub-
mitted to GenBank (accession number: AY513764).

The Har-POU cDNA encodes 351 amino acids containing
a conserved class POU-III-specific and homeobox domain
located on amino acids 153–296. Alignment shows that
the POU domain of Har-POU is the same as drifter in Dro-
sophila and POU-M1/M2 in B. mori (Fig. 2A), and only
two amino acids differ from that of APH-1, another
arthropod POU-III gene of Artemia franciscana [24]. The
POU domain also has high similarity with other POU-III
genes in C. elegans and mammals (data not shown). The
similarity at the N-terminal of Har-POU is 78.1%, 93.5%,
and 29.0%; and at C-terminal is 92.5%, 92.5%, and
61.5% to POU-M1, POU-M2, and drifter, respectively (Fig.
2B).

Har-POU copy number in H. armigera haploid genome
The copy number of the POU gene in the H. armigera
genome was determined by Southern blotting. The cDNA
fragment corresponding to the N-terminal and POU
domain of Har-POU was used as a probe. As shown in Fig.
3A, only a single band of 5–6 kb was detected in the
genomic DNA digested with Hind III or EcoR I. Thus, Har-
POU is probably encoded by a single gene in the H. armig-
era genome.

Tissue distribution of Har-POU mRNA
Tissue distribution of Har-POU mRNA was detected by
northern blot analysis. A band of about 2.5 kb was
detected from the brain, SG, trachea, and salivary gland,
indicating that the characterized cDNA cloned by RACE
represents the full-length mRNA (Fig. 3B). The tissue dis-
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Nucleotide and amino acid sequences of a cDNA encoding Har-POUFigure 1
Nucleotide and amino acid sequences of a cDNA encoding Har-POU. The potential nuclear localization signal 
sequence is shown in the rectangle, and the POU-specific and homeobox domains are shown in bold italics. Arrows below the 
nucleotide sequences represent the position of the different synthetic primers used in PCR. Degenerate primers are POUF (5'-
CCATGGCGGCGAC(C/G)AC(C/G)TA(C/T)ATG-3') and POUR (5'-CAGCGTGTTGGG(C/T)GG(C/T)GTCAT-3'). This 
sequence has been submitted to GenBank (accession number: AY513764).
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tribution of Har-POU is consistent with that of drifter,
which is mainly expressed in migrating neurons and tra-
cheal cells in Drosophila [12].

Nuclear localization of Har-POU
A basic sequence (GRKRKKRT) preceding helix 1 of the
homeodomain was demonstrated to be a nuclear localiza-
tion sequence in Oct-6, a member of the mammalian
POU-III class [25]. This sequence is also conserved in
invertebrate POU-III proteins including the Har-POU
(Fig. 2A). To confirm whether Har-POU localizes to the
nuclei efficiently, the eGFP-fused Har-POU was trans-
fected into Hela cells. The eGFP-Har-POU exclusively
localized to nuclei that were marked by DAPI (Fig. 4).

DNA binding activities of Har-POU
Most of the POU proteins bind specifically to an octamer
motif (ATGNAAAT). Three probes containing an octamer
motif from insect genes were used in the EMSA assays: SA
from the Bom-sericin promoter [26], S1 from the Bom-
DH-PBAN promoter [5], and H1 from the Har-DH-PBAN
promoter [21]. The in vitro translated Har-POU protein
bound all three probes efficiently, and the binding could
be competed by 40-fold unlabeled H1 (Fig. 5).

Har-POU expression is related to pupal diapause
Previous studies have demonstrated that expression of the
Har-DH-PBAN gene is high in nondiapause-destined
pupal individuals, but low in diapause-destined ones.

Sequence alignment of Har-POU with POU-M1/-M2 from B. mori and Drifter from D. melanogasterFigure 2
Sequence alignment of Har-POU with POU-M1/-M2 from B. mori and Drifter from D. melanogaster. (A) The 
POU-specific and homeobox domains are underlined. Identical residues are shaded in black. The numbers on the right indicate 
the amino acids of each protein. (B) Amino acid sequence similarities of 28 amino acids from residue 106 to residue 133 of 
POUs. The highly conserved residues (≥67%) are shaded in black.
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Southern and northern blot analysesFigure 3
Southern and northern blot analyses. (A) Southern analysis. 10 μg of H. armigera genomic DNA was digested with Hind III 
(lane H) and EcoR I (lane E), and hybridized with 32P-labeled Har-POU cDNA fragment. The sizes of the hybridizing fragments 
are indicated on the left. (B) Northern analysis. Total RNA (25 μg) was loaded on each lane, and the bottom panel shows the 
amount of ribosomal RNA loaded per lane (ethidium staining) as a control for loading variation. Br, brain; Sg, suboesophageal 
ganglion; Slg, salivary gland; Tr, trachea.

Nuclear localization of Har-POUFigure 4
Nuclear localization of Har-POU. The eGFP-fused Har-POU was transfected into Hela cells. (A) The expression of Har-
POU-eGFP; (B) DAPI staining to show the nuclei of the cells. (C) Overlapping of (A) and (B) to show that Har-POU-eGFP is 
located exclusively in the nuclei.
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Since we showed that Har-POU bound to the Har-DH-
PBAN promoter, we investigated the developmental pat-
terns of Har-POU mRNA in the two types of pupal indi-
viduals using RT-PCR combined with Southern blot. Har-
POU mRNA content in nondiapause-destined individuals
was robust from day 0 to day 10, whereas the Har-POU
mRNA level of diapause-destined individuals at the corre-
sponding time points was constantly low (Fig. 6A). The
results show a close relationship between the gene expres-
sion of Har-POU and Har-DH-PBAN. Further, we investi-
gated the developmental changes in Har-POU mRNA
when pupal diapause was broken by injection of ecdys-
one. Har-POU mRNA in diapausing pupae increased to a
high level 6 hours after injection and remained at consist-
ently high levels from pupal development to the adult
stage (Fig. 6B).

Discussion and Conclusion
The studies presented here show: 1) cloning and charac-
terization of Har-POU, a POU-III class gene in H. armig-
era; 2) that only a single copy of Har-POU exists in the H.
armigera haploid genome; 3) Har-POU is expressed in var-
ious tissues and highly expressed in nervous, tracheal, and

secretory tissues; 4) Har-POU localizes to the nuclei and
binds three different probes containing octamer motifs; 5)
Har-POU mRNA is highly expressed in developing indi-
viduals (nondiapause-destined pupae) and expressed at
low levels in the programmed development-arrest indi-
viduals (diapause-destined pupae); 6) when pupal dia-
pause is broken by injection of ecdysone, Har-POU gene
expression immediately responds to restart development.
These data imply that Har-POU's structure and function
are conserved with POU-M1/-M2 in B. mori and drifter in
D. melanogaster.

Usually, there is only one POU-III class gene in each inver-
tebrate species, including D. melanogaster [11], C. elegans
[8], crustacean A. franciscana [24], and the urochordate O.
dioica at the invertebrate-vertebrate transition [9]. From
the complete genome of several species, it has been shown
that there are four POU-III genes in Human and mouse,
but only one gene in invertebrates, including Drosophila
and C. elegans [8]. Our results also show that there is only
one copy of Har-POU in H. armigera. Interestingly, there
are two isoforms of POU-III class genes in B. mori: POU-
M1 and -M2, which were cloned in Japanese and Chinese

Detection of Har-POU binding activity by electrophoresis mobility shift assayFigure 5
Detection of Har-POU binding activity by electrophoresis mobility shift assay. (A) Har-POU binds with probes SA, 
S1, and H1. (B) 40-fold of cold H1 specifically competes the biding of Har-POU and H1. The sequences of the probes SA, S1, 
and H1 are described in materials and methods. P, probe; POU, Har-POU protein expressed in vitro; com, cold H1 as a com-
petitor.
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B. mori, respectively [5,20]. These two proteins differ by a
28-amino acid sequence at their N-terminal (from residue
106 to residue 133) (Fig. 2B). This difference is produced
by the insertion and loss of nucleotide acids, possible evi-
dence of a polymorphism in B. mori strains. Since both B.
mori and H. armigera belong to Lepidoptera, the similarity
of the protein sequences can tell us which one is the main
isoform in B. mori. As shown in Fig. 2B, 25 of the 28
amino acids of Har-POU are the same as that of POU-M2,
and only 4 amino acids are conserved between Har-POU
and POU-M1. Thus, we propose that POU-M2 may be the
main isoform in Lepidoptera.

Diapause insects provide a good model for studying
development and metabolism. H. armigera is a pupal dia-
pause species, and its nervous system development stops
after pupation. drifter in Drosophila has multiple functions
in neuronal migration, lineage, and wiring [12,16-19].
Our results show that Har-POU expression is robust in the
CNS of nondiapause pupae but very low in diapause-des-
tined ones, suggesting that Har-POU has important func-
tions in the development and remodeling of the H.

armigera nervous system. The expression pattern of Har-
POU is almost identical to that of Har-DH-PBAN. It is
known that DH terminates diapause and promotes con-
tinuous development in Heliothis virescens, H. armigera,
and Helicoverpa assulta [23,27,28]. Therefore, we propose
that Har-POU might play a key role in regulating develop-
ment by changing the Har-DH-PBAN transcript. In addi-
tion, Har-POU responds to the injection of ecdysone,
well-known to regulate genes related to insect develop-
ment [29-31]; thus it will be interesting to know whether
Har-POU is its direct target.

Methods
Animals
H. armigera larvae were reared on an artificial diet at 22–
23°C, 60% relative humidity, under a photoperiod of
L14:D10 (light:dark) to produce nondiapause pupae, and
at 20–21°C with a cycle of L10:D14 to induce diapause-
type pupae.

To break diapause, 5 μl of a solution containing 1 μg 20-
hydroxyecdysone (Sigma) or 5 μl distilled water as control

Developmental expression of Har-POU mRNA detected by semi-quantitative RT-PCR and Southern hybridizationFigure 6
Developmental expression of Har-POU mRNA detected by semi-quantitative RT-PCR and Southern hybridi-
zation. (A) Expression of Har-POU mRNA during pupal development of nondiapause-destined and diapause-destined individ-
uals. Abbreviations: P0–P10, 0–10 days after pupation; RG, rabbit globin. (B) Expression of Har-POU mRNA in diapausing 
pupae. Abbreviations h and d represent hours and days after injection of ecdysone to diapausing pupa.
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was injected into H. armigera diapausing pupae through a
fine glass capillary. The trachea, salivary gland from 6th

instar larval stage, and brain, SG or brain-SG complex
from pupal stage, were dissected in insect saline contain-
ing 0.75% NaCl and stored at -70°C for RNA extraction.

Cloning and sequence analysis
Total RNA was prepared from the brain-SG complexes of
day-8 pupae (pharate adult). RNA extraction, RNA quan-
tification, and reverse transcription were the same as
described previously [23]. Two degenerate primers POUF
(5'-CCATGGCGGCGAC(C/G)AC(C/G)TA(C/T)ATG-3')
and POUR (5'-CAGCGTGTTGGG(C/T)GG(C/T)GTCAT-
3') designed based on the highly conserved regions of B.
mori POU-M2 and D. melanogaster drifter were used for
PCR amplification under the following conditions: three
cycles of 94°C, 45 s; 45°C, 1 min; 72°C, 45 s, and then 30
cycles of 94°C, 30 s; 50°C, 1 min; 72°C, 45 s.

To obtain the full-length Har-POU cDNA, rapid amplifi-
cation of cDNA ends (RACE) was used. Specific primers
(POU5-1 and POU5-2 for 5'-RACE, and POU3-1 and
POU3-2 for 3'-RACE) were designed according to the
sequence obtained from the internal amplification above.
RACE reactions were performed with a SMART™ RACE kit
(Clontech) according to standard protocol.

The PCR products were separated on a 1.2% agarose gel
and ligated into a T-vector (TaKaRa). The recombinant
DNA was transformed into E. coli, XL1-Blue competent
cells. Positive clones were selected, and the isolated
recombinant DNA was sequenced by TaKaRa Co. (Dalian,
China).

Semi-quantitative RT-PCR
Total RNA was prepared from the brain-SG of pupae.
Total RNA from one brain-SG (about 1.5 μg) was reverse-
transcribed. To normalize the efficiency of RNA reverse
transcription in each reaction, 0.1 ng of rabbit globin
(RG) mRNA (Promega) was added as external standard
[22]. The primers and programs for PCR were the same as
above, except the number of cycles was decreased from 30
to 20. The PCR products were electrophoresed on a 1.2%
agarose gel and transferred onto a Hybond N+ Nylon
membrane (Amersham). The Har-POU cDNA was labeled
with [α-32P]-dCTP as a probe using a random primed
DNA labeling kit (TaKaRa). Nylon membrane was prehy-
bridized for 4 h followed by addition of the radiolabeled
probe for 18 h at 42°C in 5× SSPE (1× SSPE = 180 mM
NaCl, 10 mM sodium phosphate, pH 7.7, 1 mM EDTA)
containing 50% formamide, 5× Denhardt's solution,
0.1% SDS, and 100 μg/ml salmon sperm DNA. After
hybridization, the membrane was washed with 0.2× SSPE
at 45°C and finally exposed to the X-ray film for 20 h at -
70°C.

Northern and Southern blot analyses
For northern analysis, 25 μg of total RNA was separated
on a 1.2% agarose gel containing 0.22 M formaldehyde
and ethidium bromide, and subsequently blotted onto
Hybond N+ membrane.

Genomic DNA was isolated from the adult body of H.
armigera using the procedure of Xu et al. [4]. 10 μg of high-
molecular-weight genomic DNA was prepared, digested
with restriction endonucleases, electrophoresed on a
1.0% agarose gel, and transferred to Hybond N+ mem-
brane. The hybridization probe and conditions and signal
detection were the same as above.

Construction of expression system
The open reading frame of Har-POU was amplified by the
primers POU-EF (5'-CGGGATCCCCATGGCGGCGAC-
CACGTACATG-3') and POU-ER (5'-CCCAAGCTTTTAGT-
GCGCGGCCAGCGTGTGC-3'). The underlined
sequences correspond to BamH I and Hind III restriction
sites. The PCR products were purified, digested by BamH I
and Hind III, and cloned into pBluescript KS (+) or
pEGFP-C1 (Clontech) plasmid. The recombinant plas-
mids were named T7-Har-POU and eGFP-Har-POU.

In vitro translation and electrophoresis mobility shift assay 
(EMSA)
T7-POU plasmid DNA (1 μg) was used as a template for
in vitro translation in the TNT Quick Coupled Transcrip-
tion/Translation System (Promega) containing 40 μl of
TNT T7 Quick Master Mix, 1 μl of methionine (1 mM),
and 8 μl of distilled water. The reaction was allowed to
proceed at 30°C for 1.5 h, and 2 μl of translation product
was then used for the EMSA assay.

The probes used in EMSA were SA (5'-CTTGTATACATT-
GTTTGCAC AAATGTTTG-3') at -81 to -109 of Bom-sericin
promoter [25], S1 (5'-CCCCTCATTTACATACATC-
CCCGTCCGAC-3') at -80 to -52 of the Bom-DH-PBAN
promoter [5], and H1 (5'-TCCCTGATTTACATAAGAT
TTCCATTCG-3') at -64 to -37 of the Har-DH-PBAN pro-
moter [21].

In general, 10 fmol of 32P-labeled probe was incubated
with 2 μl of translated product for 30 min at 27°C in a 20
μl reaction mixture containing 10 mM HEPES-K+ (pH
7.9), 10% glycerol, 50 mM KCl, 4 mM MgCl2, 1 mM DTT,
0.5 mg/ml BSA, 0.1 mM PMSF and 1 μg of poly (dI-dC)
(Pharmacia). Reaction mixtures were loaded onto a 5%
native polyacrylamide gel and electrophoresed in 1× TBE
buffer. After electrophoresis, the gel was dried and sub-
jected to autoradiography in the presence of an intensify-
ing screen at -70°C for 16 h. Competition assay was
performed by preincubating the reactions with the speci-
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fied amount of excess unlabeled probes for 10 min before
the addition of labeled probes.

Intracellular localization assay
Human cervical cancer cell line Hela was cultured in Dul-
becco's modified Eagle's medium supplemented with
10% fetal bovine serum (FBS) and penicillin (100 μ/ml)/
streptomycin (0.1 mg/ml) at 37°C in 5% CO2. Transfec-
tions of cells were performed using Lipofectamine 2000
(Invitrogen) according to manufacturer's instructions.
Each co-transfection was performed in duplicate. The cell
nuclei were counter-stained with DAPI and visualized
with an inverse fluorescence microscope (Olympus IX70).
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