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Abstract

A wide diversity of plant-associated symbionts, including microbes, produce proteins that can enter host cells, or are

injected into host cells in order to modify the physiology of the host to promote colonization. These molecules, termed

effectors, commonly target the host defense signaling pathways in order to suppress the defense response. Others target

the gene expression machinery or trigger specific modifications to host morphology or physiology that promote the

nutrition and proliferation of the symbiont. When recognized by the host's surveillance machinery, which includes

cognate resistance (R) gene products, defense responses are engaged to restrict pathogen proliferation. Effectors from

diverse symbionts may be delivered into plant cells via varied mechanisms, including whole organism cellular entry

(viruses, some bacteria and fungi), type Il and IV secretion (in bacteria), physical injection (nematodes and insects) and

protein translocation signal sequences (oomycetes and fungi). This mini-review will summarize both similarities and

differences in effectors and effector delivery systems found in diverse plant-associated symbionts as well as how these
are described with Plant-Associated Microbe Gene Ontology (PAMGO) terms.

Effectors from diverse plant-associated
symbionts

Diverse organisms live in intimate association with
plants, with the outcome of these associations dependent
upon a complex interplay of gene products. Among the
most significant of these are the effector proteins, defined
as molecules deployed by symbiotic organisms that
manipulate host cell structure and function, and thereby
facilitate symbiont success [1]. In some cases, through the
action of the host surveillance machinery, effectors trigger
defense responses; in that context, effectors have histori-
cally been called avirulence factors or elicitors. In fact, the

detection of effectors by the products of host resistance
(R) genes has been central to the identification of effectors
in diverse symbionts (reviewed in [2,3]). This particular
review will focus on properties of effector proteins that
enter the host cytoplasm and the role that Gene Ontology
(GO) can play in highlighting similarities and differences
exhibited by effectors deployed by plant pathogens from
diverse biological kingdoms.

It is important to note that while this review focuses on
organisms living in a pathogenic relationship with the
host plant, there are many associations that cannot readily
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be identified as beneficial or antagonistic to the host
because the outcome depends on the context in which it
occurs. For example, while some rhizobacteria are patho-
genic, their colonization of plant roots can also play a
beneficial role by priming plant defense responses, thus
making the plant more resistant to infection by unrelated
pathogens. As a result, the term "symbiont" is used by the
GO and in this review to describe organisms living in inti-
mate association with a larger host organism, irrespective
of whether the association may be beneficial or antagonis-
tic. The Gene Ontology Consortium (GOC) strongly dis-
courages the use of the word symbiosis as a synonym for
mutualism. Symbionts may be microbes (for example
bacteria, fungi or oomycetes) or they may be more com-
plex multicellular organisms such as nematodes, insects
or parasitic plants.

Many gram-negative bacterial symbionts, including mutu-
alists of the genus Rhizobium and pseudomonad and xan-
thomonad pathogens, utilize a molecular needle created
by the type III or type IV secretion systems to deliver effec-
tors into the host cell (reviewed in [4-6]). Most progress in
effector characterization has been made with the gram-
negative bacterial pathogens. The sequencing of gram-
negative bacterial genomes has further advanced the dis-
covery of effectors by enabling bioinformatic identifica-
tion of new candidate effectors [7,8]. Bioinformatic
analysis of genome sequences has also greatly advanced
the identification of the effectors produced by obligate
symbionts such as gram-positive phytoplasmas [9].

Oomycete and fungal pathogens represent different king-
doms of life but share similar strategies in colonizing their
hosts, presumably as a result of convergent evolution
[10]. Biochemical and genetic approaches have identified
effectors from both taxa (reviewed in [1,11-15]). Given
the predicted role of the haustorium, a differentiated feed-
ing structure produced by both fungi and oomycetes
[16,17], as a site of effector release, identification of haus-
torially expressed secreted proteins (HESPs) has proven to
be a valuable source of candidate effectors [18,19].
Genome sequences of fungal and oomycete pathogens
have dramatically accelerated the discovery of effectors via
bioinformatic analyses of predicted secretomes [20-25].
In particular, the discovery of the protein transduction
motif RXLR-dEER [25-27] enabled the identification of
hundreds of effector candidates in oomycete genomes
[21,24,28].

Nematodes comprise a large phylum of animals that
include free-living species as well as plant and animal par-
asites. Most plant pathogenic nematodes are obligate par-
asites and obtain nutrients from the cytoplasm of living
root cells. The sedentary endoparasites of the family Het-
eroderidae, which include members of the genera Heterod-
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era (cyst nematode) and Meloidogyne (root knot
nematode) cause the most economic damage worldwide.
Infection by these pathogens is characterized by the
release of esophageal gland secretions via a hollow pro-
trusible stylet [29]. During nematode migration, cell wall
degrading enzymes [30,31] are released into the apoplast
in amounts sufficiently copious to be visible under the
light microscope [32]. Upon becoming sedentary, other
proteins, including plant peptide hormone mimics [33],
are delivered to those cells destined to become the feeding
sites. This occurs via fusion of neighboring cells (for cyst
nematodes) or via repeated nuclear division (in the case
of root knot nematodes). It is presumed that nematode
proteins, sometimes called parasitism proteins, are intro-
duced both onto the membrane surface of the targeted
plant cells, and also directly into the cytoplasm.

Effectors from diverse microbes have little in common at
the sequence level, but as a result of convergent evolution,
may implement common strategies in defeating host
defenses. Therefore, in order to carry out functional com-
parisons of diverse effectors, an approach is required that
does not depend on sequence similarities. The GO pro-
vides such an approach. Established in 1998, the GO pro-
vides a uniform language to describe attributes of gene
products from all organisms in the context of their molec-
ular function, biological process, and cellular location
[34,35]. The Plant-Associated Microbe Gene Ontology
(PAMGO) consortium [36] was established in 2004 to
develop GO terms to describe common biological proc-
esses utilized by symbionts (particularly microbes) in
their interactions with hosts. The current count of terms
created via the PAMGO effort is over 700. To create well-
annotated reference genomes that provide high quality
examples of the usage of the new terms, the consortium
has been using the terms to annotate the genomes of the
bacteria Pseudomonas syringae pv tomato DC3000, Dickeya
dadantii (Erwinia chrysanthemii) 3937, and Agrobacterium
tumefaciens; the fungus Magnaporthe oryzae (M. grisea);
and the oomycete Phytophthora sojae.

This review focuses on the effectors and effector delivery
systems of diverse plant-associated microbes and nema-
todes with an emphasis on pathogens. Similarities and
differences in pathogen-host associations with respect to
the role of effectors are described in the context of GO
terms that best describe them. This is by no means a com-
prehensive coverage of the subject due to space limita-
tions, but rather is intended to illustrate the value of using
the GO for comparative genome analyses of diverse sym-
bionts.

How are effectors introduced into host cells?
Critical to effector function is their successful delivery to
their site of action in the host cell. For the pathogens dis-
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Effector delivery structures of Gram-negative bacterium, oomycete, fungus, and nematode in plant cell. (A)
Type Il secretion system in Gram-negative bacterium injects effectors into the host cell. (B) The haustorium in biotrophic and
hemibiotrophic filamentous pathogens is believed to be the site of effector release into the host cell. (C) Gland secretions,
which include effectors, are injected into the plant cell via the stylet of the nematode. Effectors (E) thus delivered, can either
suppress host defenses and/or trigger host cell defenses, which include programmed cell death (PCD) upon recognition by
resistance (R) proteins. Recognition of effectors by R proteins may occur directly (observed with some fungal effectors) or
indirectly as a result of interaction of the effectors with other host protein(s) (observed with a number of bacterial effectors).
Potential subcellular locations of effectors such as the nucleus and chloroplasts are also shown.

cussed here, this process involves passage across the plant
cell wall and the plasma membrane. The injectisomes of
bacterial type III and type IV secretion systems (T3SS and
T4SS) respectively; (reviewed in [6,37-39]) are analogous
to the stylets of plant parasitic nematodes. Also known as
the Hrp pilus, the T3SS injectisome spans both the bacte-
rial envelope and the plant cell wall, forming a channel
between the bacterial cytoplasm and the host plasma cell
membrane. Secreted proteins delivered by the injectisome
then form a pore through the membrane that enables
translocation of effector proteins into the host cell (Figure
1a) [5]. The stylet in nematodes executes an analogous
function, in that it mechanically pierces the host cell wall
but not the membrane and injects gland secretions,
including effectors, into the host cell cytoplasm via an ori-
fice at the tip of the stylet (Figure 1c) [31,40].

In the case of many biotrophic and hemibiotrophic fungi
and oomycetes, penetration of the host cell wall is accom-
plished via a hypha that differentiates into a specialized
feeding structure called a haustorium (in the case of path-
ogenic fungi and oomycetes) or an arbuscle (in the case of
mutualistic arbuscular mycorrhizal fungi). The hausto-

rium becomes surrounded by a specialized interface con-
sisting of the plasma membranes of the pathogen and
host separated by a modified pathogen cell wall (Figure
1b) [41,42]. The haustorial interface is speculated to be
the site of nutrient acquisition as well as the site of effector
release from the pathogen into the plant tissue [16],
though the mechanism of subsequent effector transfer
across the plasma membrane remains uncharacterized.

The GO provides terms to describe gene products
involved in the formation of these effector delivery struc-
tures, the gene products aiding in the delivery of effectors,
and the gene products (effectors) that are delivered
through these structures. The PAMGO Consortium has
contributed many of these terms. [10,43,44]. We use the
T3SS as an illustration. Gene products encoding the struc-
tural components of the T3SS injectisome may be anno-
tated with the cellular component term "GO:0030257
type III protein secretion system complex". Furthermore,
gene products that are involved in the secretion of effec-
tors into the host cell, including helper proteins such as
chaperones and harpins may be annotated with the proc-
ess term, "GO:0030254 protein secretion by the type III
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secretion system". The term "GO:0052049 interaction
with host via protein secreted by type III secretion system"
may be used to annotate all gene products that are
secreted via the T3SS and that interact with the host. These
will include harpins and effectors delivered via the T3SS.
Additionally the effectors may be annotated with the GO
cellular component term "GO:0043657 host cell" to indi-
cate the site of interaction with the host. A direct parent
term of "G0:0052049 interaction with host via protein
secreted by type III secretion system" is "G0O:0052048
interaction with host via secreted substance" which is in
turn a child term of "GO:0051701 interaction with host".
As basis for comparison, a new sibling term to
G0:0052049, "interaction with host via protein secreted
by the stylet" has been created for annotation of nema-
tode effector proteins.

The exact mechanism by which oomycete and fungal
effectors enter plant cells is not clear, though the hausto-
rial interface is speculated to be the site of entry. Recent
studies of two oomycete effectors, Avr1lb from P. sojae and
Avr3a from P. infestans have identified the motif RXLR-
dEER, present in the N-terminus of both proteins, as being
necessary and sufficient to deliver proteins into the plant
cell [25,26]. Although RXLR-dEER-bearing proteins could
cross the plasma cell membrane autonomously, some evi-
dence suggests that entry may be more efficient at the
haustorium, where the plant cell wall was penetrated [26],
emphasizing the analogy of the haustorial hypha with the
T3SS injectisome and the nematode stylet.

Subsequent to characterization of Avrlb and Avr3a, a
super-family of 385 RXLR dEER proteins in the P. sojae
genome and 370 in the P. ramorum genome was identified
using bioinformatic approaches such as recursive BLAST
and HMM searches [21]. The existence of this predictive
motif among oomycete effectors with varying levels of
experimental characterization can be used to highlight the
importance of evidence codes in GO annotation. Given
the experimental evidence, the Phytophthora Avrlb and
Avr3a gene products can be annotated with "G0O:0052048
interaction with host via secreted substance" with an
experimental evidence code. Once a specific structure or
mechanism is identified through which the effectors are
delivered, a more specific child term will be created and
applied. Given the presence of the RXLR-dEER motif in
the bioinformatically characterized proteins, it is appro-
priate to infer that like Avr1b, these proteins are also tar-
geted to the host cell and can be annotated to
"G0:0052048 interaction with host via secreted sub-
stance". However, in these cases the annotation would be
accompanied by the evidence code "Inferred from
Sequence Model" (ISM) with the Avr1b protein accession
documented as the experimentally characterized effector.

http://www.biomedcentral.com/1471-2180/9/S1/S3

Where do they lay camp when in the host?
Prokaryote and eukaryotic pathogens alike secrete effector
proteins into the host apoplast as well as into host cells
where they may localize to the cytoplasm and subcellular
compartments, including the mitochondrion, nucleus
and the chloroplast. Specific terms were developed by the
PAMGO consortium under the cellular component ontol-
ogy to describe gene products from one organism (symbi-
ont) that act in the extracellular and cellular regions of
another organism (host) cell. These terms are different
from terms developed to describe gene products from an
organism acting in cellular locations within the same
organism. Gene products from one organism acting in
regions of another organism are described with
"G0:0043657 host cell" and its child terms. The term host
cell has a "part-of' relationship with the parent term
"GO:0018995 host" which in turn is a child term of
"GO:0043245 extraorganismal space". In contrast, gene
products from one organism acting in regions of that
same organism are captured under "GO:0044464 cell
part" and its child terms. "Cell part" has a part of relation-
ship with "GO:0005623 cell" which is a direct child of the
root "GO:0005575 cellular component". We illustrate the
use of these terms with gene products from diverse organ-
isms. For example, "GO:0043655 extracellular space of
host" can be used to describe microbial gene products
secreted into the apoplast of plant cells while
"GO:0005615 extracellular space" is used to describe
microbial gene products shown to be located outside of
the microbe's plasma membrane. Apoplastic effectors are
secreted into the plant extracellular space where they
interact with extracellular targets and surface proteins. For
example, plant cell wall-degrading enzymes secreted by
bacterial, fungal, oomycete and nematode pathogens
could be annotated with "GO:0043245 extraorganismal
space”.

Many effectors from bacterial, fungal, oomycete and nem-
atode pathogens can enter the cytoplasm of host cells, and
could be annotated with the term "G0O:0030430 host cell
cytoplasm" unless a more specific location was identified.
In some cases, the evidence for host cytoplasmic location
is indirect, for example, some effector proteins are recog-
nized by intracellular plant disease resistance gene prod-
ucts [45]. In other cases the evidence for cytoplasmic
localization is directly supported by experimental evi-
dence showing physical interactions between effectors
and resistance gene products or other proteins in the plant
cytoplasm. Examples include the Magnaporthe oryzae effec-
tor AvrPita which interacts with the rice resistance gene
product Pita [46]. In other cases, effector proteins have
been identified in the plant cell cytoplasm cytologically:
by antibody staining or via a fluorescent tag. These
include, for example, the bacteria effectors, HopAB2 [47]
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and HopU1 [48]; and the oomycete effectors Avrlb [26]
and Avr3a [49].

Some intracellular effectors have also been located in spe-
cific host organelles, including the nucleus and chloro-
plast, and thus can be annotated with "GO:0042025 host
cell nucleus" or "GO:0033652 host cell chloroplast”
respectively. Examples of nucleus-located effectors
include AvrBs3 and other members of the AvrBs3 family
from Xanthomonas bacteria [50], the rust transferred pro-
tein 1 (Uf-RTP1p) from the fungus Uromyces fabae [51],
four putative effectors from the oomycete Phytophthora
infestans (Nuk6, Nuk?7, Nuk10, Nuk12) [52], and two
nematode parasitism proteins [53]. An example of a chlo-
roplast-located effector is Hopl1 [54].

What effectors do in the host

Plants have evolved mechanisms to passively withstand or
actively resist invading microbes by deploying defense
responses. Defense responses may be triggered by plant
recognition of commonly occurring pathogen molecules
called pathogen-associated molecular patterns (PAMPS)
such as bacterial flagellin (PAMP triggered immunity; PTI)
or by direct or indirect recognition of pathogen effectors
(effector triggered immunity; ETI) (reviewed in [55,56]).

An important process associated with defense against bio-
trophic and hemibiotrophic pathogens is programmed
cell death (PCD). Many pathogen effectors have been
demonstrated to suppress PCD. Among these are HopAB2
(AvrPtoB) from P. syringae [57] and oomycete effectors
such as Phytophthora sojae Avrlb [58], which have been
shown to inhibit defense-like PCD triggered in plants by
other effectors or by the pro-apoptotic mammalian BAX
protein. Similarly, the P. infestans effector AVR3aX! can
suppress PCD triggered by the PAMP, INF1 in Nicotiana
benthamiana [59]. These effectors can be annotated with
"G0:0034054 negative regulation by symbiont of host
defense-related programmed cell death". In contrast to
biotrophs and hemibiotrophs, necrotrophs induce PCD
in order to colonize their host [60]. For example, the
Nep1-like protein NPP, (previously called PsojNIP) from
the hemibiotrophic oomycete pathogen P. sojae causes
necrosis in soybean. Its expression during the transition
from biotrophy to necrotrophy [61] suggests its effector
role is to manipulate PCD to the advantage of the patho-
gen. This role can be described jointly with the two GO
terms "GO:0052042 positive regulation by symbiont of
host programmed cell death" and "G0O:0009405 patho-
genesis".

The specific processes that contribute to ETI and PTI are
complex and many of their details remain a mystery.
However, ongoing characterization of individual effectors
has revealed new insights into the various defense mecha-
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nisms deployed by the host and subject to interference by
the symbiont. One method of defense suppression
involves inactivation, modification, or suppression of
host defense proteins. For example, XopD and AvrXv4
from Xanthomonas campestris are cysteine proteases that
have been predicted to remove SUMO (small ubiquitin-
like modifier) modifications from components of the
defense pathways (reviewed in [62]). The P. syringae effec-
tors AvrRpt2 and HopAR1 (AvrPphB) also function as
cysteine proteases [63,64] while the fungal effector
AvrPita from Magnaporthe oryzae is a zinc metalloprotease
[65]. These effectors can be annotated with the term
"G0:0052014 catabolism by symbiont of host protein".

Inhibition of host hydrolytic enzymes is another mecha-
nism by which effectors interfere with the functions of
host defense proteins. For example, the extracellular fun-
gal effectors Avr2 and Avr4 from Cladosporium fulvum can
inhibit the tomato extracellular protease, Rcr3 [66], and
host chitinases [67] respectively. In oomycetes, the gluca-
nase inhibitor protein (GIP1) secreted by P. sojae inhibits
endoglucanse ability of the plant host [68] and apoplastic
effectors EPI1 and EPI10 from P. infestans inhibit the P69B
subtilase of tomato [69,70]. These host hydrolase inhibi-
tors can be described with "G0O:0052053 negative regula-
tion by symbiont of host enzyme activity".

Hallmarks of PTI include not only deployment of defense
proteins but also deposition of callose in the host cell
wall. Several bacterial and oomycete effectors have been
shown to suppress callose deposition in planta, including
AvrE [71], AviPto [72], HopM1 [71] from Pseudomonas
syringae, DspA/E [73] from Erwinia amylovora and ATR1
from the oomycete Hyaloperonospora arabidopsidis [74].
The appropriate GO term to describe this virulence func-
tion is "GO:0052087 negative regulation by symbiont of
defense-related host callose deposition".

The various defense responses involved in a successful
immune response are dependent on an array of signaling
pathways that link pathogen detection to host response.
These defense signals include the hormone ethylene, jas-
monic acid, and salicylic acid with each representing a tar-
get for interference by symbiont effectors. For example,
bacterial effectors AvrB and AvRpt2 [75] have been shown
to trigger the expression of the ethylene-responsive tran-
scription factor (RAP2.6) in Arabidopsis via jasmonic acid
signaling thereby repressing salicylic acid (SA) mediated
PAMP-triggered defense responses against biotrophic
pathogens. The phytotoxin, coronatine from P. syringae
mimics jasmonic acid also leading to repression of SA sig-
naling [76]. In other cases, hormone signaling is disrupted
for the purpose of modifying host morphology. The Mel-
oidogyne javanica chorismate mutase 1 (MjCM-1) [77], is
secreted into plant cells where it reduces the synthesis of
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auxins, flavanoids, SA and phytoalexins. A general term
for describing effectors that modulate hormone signaling
is "G0O:0052027 modulation by symbiont of host signal
transduction pathway", while a more specific term to
describe interference with the host salicylic pathway is
"G0:0052003 negative regulation by symbiont of
defense-related host salicylic acid-mediated signal trans-
duction pathway ".

Though a direct role in virulence beyond defense suppres-
sion remains elusive for most microbial effectors, esopha-
geal gland secretions translocated into host cells via the
nematode stylet play major roles in modification of host
cells for feeding and pathogenesis [78]. In particular, the
Heterodera glycines effector HG-SYV46 acts as a functional
analog of the plant cellular proliferation regulators that
include CLAVATAS3 [33]. Effectors such as HG-SYV46 with
a demonstrated role in inducing the modification of these
plant cells can be annotated with the term "G0O:0044005
induction by symbiont in host of tumor, nodule, or
growth" which is a child of "GO:0044003 modification
by symbiont of host morphology or physiology". Another
annotation could be made using "G0:0052096 formation
by symbiont of syncytium involving giant cell for nutrient
acquisition from host", a child term of "G0:0052093 for-
mation of specialized structure for nutrient acquisition
from host".

Though effectors have proven highly effective in suppres-
sion of plant defense, the fact remains that in the ongoing
arms race between host and symbiont, hosts have evolved
successful means of detecting many of the known effec-
tors, most notably through deployment of resistance (R)
proteins. Effectors recognized directly or indirectly by R
proteins have been termed avirulence proteins and
include (among many others) the bacterial effectors
AvrPto, AviRpt2, and AvrRpm1 (reviewed in [79]), the
oomycete effectors Avrlb, Avr4, ATR13 and ATRINd
(reviewed in [15]), the fungal effectors Avr-Pita, AvrL567,
AvrM, AvrP123 and AvrP4 (reviewed in [12,13]) and the
nematode effectors map1 [80] and Cg-1 [81]. The induc-
tion of defense responses by these effectors can be anno-
tated with "GO:0052509 positive regulation by symbiont
of host defense response"” or if a resistance gene has been
identified, "G0:0052527 positive regulation by symbiont
of host resistance gene-dependent defense response". If
host defense-related programmed cell death is involved,
annotation can be made to "G0:0034055 positive regula-
tion by symbiont of host defense-related programmed cell
death". Note that these terms differ from "GO:0052042
positive regulation by symbiont of host programmed cell
death" which is used to annotate toxins produced by
some necrotrophs. It could be argued that positive regula-
tion by the symbiont of the host defense response is dele-
terious to the symbiont, and hence is not a natural
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symbiont process. However, what is deleterious to the
symbiont can be highly dependent on the context (just as
"pathogenicity" is highly context-dependent) with regard
to the bio/necro-trophic nature of the interaction. Thus
the GO does not attempt to describe the outcome of sym-
biont processes. An ongoing initiative in the GO in the
context of host-symbiont interactions is to create a mech-
anism to record information about the actual host protein
(e.g., an R gene product) that mediates the response to a
particular effector. Currently there is no way to record
interacting proteins in the GO unless the experiment
involves direct physical interactions where the "Inferred
from Physical Interaction" (IPI) evidence code (see [82]
for more information on GO evidence codes) can be used.
However, at the current time all the annotations described
above where effectors are secreted and act in the host
organism would be accompanied by the taxon ids of both
the microbe and the plant host.

Overall, modifications made to the host, either by trigger-
ing host defenses and/or suppressing host defenses can be
described under the broad term "G0:0044003 modifica-
tion by symbiont of host morphology or physiology". The
child terms under GO:0044003 can be used to describe
specific effector modifications in the host.

Conclusion

The value of GO annotations in efficiently summarizing
information about gene products from the literature in a
standardized way cannot be over-emphasized. Careful
GO annotations enable the systematic synthesis of both
accumulating sequences from genome projects and
advances in studies on effector biology, which provides a
wealth of data that is easily accessible to the scientific
community. The GO terms developed by the PAMGO
consortium greatly improve the resources for annotation
of diverse symbiont genomes, particularly for gene prod-
ucts such as effectors that are directly involved in the inter-
action with the host. Such annotations can be used to aid
interpretation of genome sequence comparisons and of
microarray and proteomics data. Increased community
involvement in GO annotation of more symbiont
genomes, along with the development of additional GO
terms, will provide valuable resources for more compre-
hensive cross-kingdom effector analyses, which ultimately
will lead to a better understanding of mechanisms under-
lying symbiont interactions with hosts.
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