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Abstract

Background: Genotyping of epidemic Clostridium difficile strains is necessary to track their
emergence and spread. Portability of genotyping data is desirable to facilitate inter-laboratory
comparisons and epidemiological studies.

Results: This report presents results from a systematic screen for variation in repetitive DNA in
the genome of C. difficile. We describe two tandem repeat loci, designated 'TR6' and "TR10', which
display extensive sequence variation that may be useful for sequence-based strain typing. Based on
an investigation of 154 C. difficile isolates comprising 75 ribotypes, tandem repeat sequencing
demonstrated excellent concordance with widely used PCR ribotyping and equal discriminatory
power. Moreover, tandem repeat sequences enabled the reconstruction of the isolates' largely
clonal population structure and evolutionary history.

Conclusion: We conclude that sequence analysis of the two repetitive loci introduced here may
be highly useful for routine typing of C. difficile. Tandem repeat sequence typing resolves
phylogenetic diversity to a level equivalent to PCR ribotypes. DNA sequences may be stored in
databases accessible over the internet, obviating the need for the exchange of reference strains.

Background

Clostridium difficile is a Gram-positive, spore-forming,
obligately anaerobic bacterium. It is the leading cause of
nosocomial diarrhoea among patients undergoing antibi-
otic treatment [1,2]. The severity of C. difficile-associated
disease (CDAD) ranges from mild diarrhoea to pseu-
domembranous colitis, toxic megacolon, and intestinal
perforation [3-6]. Mortality rates of CDAD reportedly

range from 6 to 30% [5,7,8]. During the last decade, the
incidence of CDAD has increased significantly in North
America [9-12] and Europe [4,8,13,14]. In the USA and
Canada, this increase has been associated with the emer-
gence of a novel, hypervirulent strain designated NAP1/
027 [11,15]. Strains with the same genotype and associ-
ated outbreaks have also been reported from several Euro-
pean countries [14,16-18].
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For infection control investigations and epidemiological
studies, it is mandatory to track the emergence and spread
of epidemic strains. For this purpose, appropriate geno-
typing methods are needed. The utility of a typing method
will depend on its inter-laboratory reproducibility and
data portability, its discriminatory power and concord-
ance of identified groupings with epidemiology, the tem-
poral stability of the genetic markers investigated, and the
universal typeability of isolates [19]. Multilocus variable
number of tandem repeats analysis (MLVA) is the most
discriminatory method presently available for typing C.
difficile [20,21]. Recently reported results suggested that
the level of resolution achieved through MLVA may be
highly useful for detecting epidemiological clusters of
CDAD within and between hospitals [21,22]. The genetic
loci currently exploited for MLVA-typing of C. difficile
accumulate variation so rapidly, however, that longer-
term relationships between isolates get obscured [23]. It is
therefore advisable — and has been a common practice -
to combine MLVA with the analysis of more conserved
genetic markers [20-23]. Most commonly applied
approaches to genotyping C. difficile at present are DNA
macrorestriction analysis (based on pulsed-field gel elec-
trophoresis, mostly used in Canada and the USA
[12,15,24]) and PCR ribotyping (in Europe [25-27]).
These two methods yield largely concordant results
[23,27]. While DNA macrorestriction has slightly higher
discriminatory power than PCR ribotyping, it is also more
labour-intensive and time consuming [23,27-29].

A major disadvantage of PCR ribotyping, DNA macror-
estriction, and other band-based typing techniques
(including restriction endonuclease analysis (REA) [30])
is the poor portability and interlaboratory comparability
of the generated data. Bacterial strains to be compared
usually need to be run on the same electrophoresis gels,
which requires the exchange of reference strains between
institutions. This requirement seriously hampers epidemi-
ological investigations, particularly at international scales
[21,23].

Typing procedures based on DNA sequences overcome
these limitations, since sequence data may easily be
exchanged and stored in databases that are accessible via
the internet. Accordingly, a scheme for multilocus
sequence typing (MLST) of C. difficile was developed
recently that is based on sequences from seven house-
keeping gene fragments [31]. While MLST to date has
been applied to a limited number of isolates, available
data allowed a first glimpse at the largely clonal genetic
population structure of C. difficile [23,31,32]. In clonal
bacteria, novel genotypes in the course of evolution are
generated primarily through mutations, which in slowly
evolving housekeeping genes are rare. Hence, it is this very
clonality of C. difficile and the associated linkage disequi-

http://www.biomedcentral.com/1471-2180/9/6

librium that causes MLST to provide poor discriminatory
power, which is exemplified by the fact that relevant epi-
demic strains are not resolved [31]. In addition, MLST
remains too expensive to be applied for routine typing
aside from dedicated research projects.

More variable genomic regions may provide improved
discrimination ability. In contrast to MLST, it may even
suffice to sequence a single locus or very few genetic loci
that are sufficiently variable, since - analysing a clonal
population - phylogenetic inferences will rarely be con-
founded through homologous genetic recombination.
Sequence-based typing schemes relying on one or several
highly discriminatory markers have previously been
established for a number of pathogens, including Staphy-
lococcus aureus (spa gene) [33], Campylobacter jejuni (flaA)
[34,35], Streptococcus pyogenes (emm) [36] and Neisseria
meningitidis (porA, fetA) [37-39].

The surface layer protein gene slpA has recently been pro-
posed as a promising target for sequence-based typing of
C. difficile [40]. The limited data available suggests
extremely high sequence variation among isolates and,
correspondingly, excellent discriminatory power [23,40].
To date, however, slpA sequencing reportedly has been
applied to a total of only 11 different ribotypes, and it is
not clear if the method is universally applicable [23,40]. It
is anticipated that the requirement for degenerate oligo-
nucleotide primers may restrict the general utility of the
current protocol [39]. The method has as yet not been suc-
cessfully transferred to any other laboratory [23,40].

This present report describes the development and appli-
cation of a new assay for genotyping C. difficile that is
based on sequence analysis of two stretches of repetitive
DNA. Investigating a panel of 154 diverse C. difficile iso-
lates, we demonstrate extensive sequence variation in
these genomic regions, resulting in high discriminatory
power, and excellent concordance with PCR ribotyping.

Results and discussion

Identification of tandem repeat regions suitable for
sequence-based typing

A total of 49 tandem repeat regions that met the selection
criteria (repeat size, 15-40 bp; repeat copy number, > 5;
consensus sequence match, < 90%) were detected in the
genome sequence from strain 630 by using the program
Tandem Repeats Finder version 4.00 [41,42]. For 36 of
these repeat regions, it was possible to design PCR primers
targeting flanking sequences, and from 28, PCR amplifica-
tion products could reliably be generated from a panel of
reference isolates. However, at 25 of these loci, sequence
variation was insufficient to discriminate widely distrib-
uted strains, including ribotypes 027, 017, and 001 (not
shown). The remaining three repeat regions could dis-
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criminate most of the ribotypes examined. The two most
variable loci were designated TR6 and TR10 (Table 1).
They are located at positions 0.7 Mb and 3.7 Mb of the C.
difficile 630 chromosome, respectively, and exhibited
both, sequence and length polymorphisms. Locus TR6 is
composed of 21-basepair repeat units and resides within
an open reading frame encoding a hypothetical protein
(orf CD0603 in the 630 genome sequence). A homology
search in public databases did not identify any significant
similarities with known proteins. In contrast, TR10 is
located within a predicted non-coding region. It consists
of 22-basepair repeats.

We developed a DNA based typing scheme for C. difficile
based on the sequence variation of TR6 and TR10. To
facilitate the application of the tandem repeat sequence
typing (TRST) scheme, a duplex PCR was designed which
allowed simultaneous amplification of both loci (Figure
1). Sequence data were generated from duplex PCR prod-
ucts using the same primers as for amplification. Nucle-
otide sequences from TR6 and TR10 were concatenated
and unique repeat successions were assigned distinct TRST
types (tagged with consecutive numbers, prefixed with
"tr"; Figure 2, Additional files 1, 2). A detailed comparison
of TRST with PCR ribotyping is described in the following,.

Clonal evolution of tandem repeat regions

Genomic regions with short tandem repeat regions may
evolve fast due to intra-molecular recombination and fre-
quent polymerase slippage during DNA replication [43-
45]. Accordingly, loci TR6 and TR10 displayed both,
sequence polymorphisms, generated through exchange of
individual nucleobases (Additional files 3, 4), and length
polymorphisms, as a consequence of repeat copy number
variation (Additional file 2). Sequences of individual
repeats were highly variable, with a nucleotide diversity ©
of 0.28 + 0.01 for TR6 and 0.23 + 0.01 for TR10. The
majority of nucleotide substitutions at locus TR6 were
synonymous, i. e., they left the encoded amino acid
sequence unaffected, and hence may be considered selec-
tively neutral. This was reflected by a Ka/Ks value of 0.39,
suggesting TR6 sequences evolve under purifying selec-
tion. Locus TR10 does not encode any protein and, hence,
sequence variation likely is neutral, too.

Table I: Characteristics of tandem repeat loci TR6 and TRI10.
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Furthermore, there is evidence of rare recombination
between chromosomes from different strains, affecting
tandem repeat sequences. One homologous recombina-
tion event apparently generated TRST type tr-021. While
tr-021 shares an identical TR6 sequence with tr-011 (Addi-
tional file 2), its TR10 allele differs profoundly from that
of tr-011 in both, length and sequence (Additional files 4
and 2), even though isolates displaying tr-011 (isolate
N551) and tr-021 (SMI037) are affiliated to the same
MLST type (ST-39) and ribotype (011; Figure 3). Interest-
ingly, the TR10 allele of tr-021 is identical to the one of tr-
005 (Additional file 2). Hence, the drastic difference
between central parts of TR10 in tr-011 and tr-021 may be
explained through a single event of horizontal gene trans-
fer from an unrelated strain. Very similarly, tr-066 and tr-
045 share identical alleles with closely related TRST types
at either TR6 or TR10, respectively, yet differ drastically
along a contiguous stretch of central repeats at the other
tandem repeat locus. Again, identical alleles may be found
elsewhere in the database (Additional file 2), suggesting
they were horizontally transferred. In our dataset, these
three TRST types displayed the only such discrepancies.
We conclude that genetic recombination between unre-
lated chromosomes was involved in the evolution of max-
imally three TRST types out of 72 that were included in
our set of isolates. Hence, the evolution of tandem repeats
TR6 and TR10 is driven largely through clonal diversifica-
tion, whereas the impact of recombination is extremely
small. These results fully corroborate a previous estimate
of a very low recombination rate in C. difficile, which had
been based on MLST data [31].

While TR6 and TR10 displayed remarkable sequence vari-
ation, both loci seemed sufficiently stable to identify
genetically related isolates collected over time. For one,
the stability of TR6 and TR10 was demonstrated by two
VPI 10463 and three 630 strains (including the published
genome sequence), that prior to our analysis each had
been handled in different laboratories (Additional file 1)
and, hence, had independently been subcultured multiple
times, but yet shared the same respective TRST sequence
types (Additional file 1). Furthermore, stability of both
tandem repeat regions was circumstantially suggested
through identical sequences found in multiple isolates

tandem repeat locus Location? Size (bp) Copy no. Rangeb No. of different Repeat consensus

repeatsb
TR6 725321 : 725600 21 7-37 80 CTTGCATACCACTAATAGTGC
TRIO 3753166 : 3753574 22-23 4-26 51 AAATTAATTATTATATTTCTTT

2 Genome location based on C. difficile 630 sequence http://www.sanger.ac.uk.

bBased on analysis of 154 isolates typed in this study.
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Figure |

Results from duplex PCR amplification of loci TRé
and TRI10, performed on isolates representing vari-
ous ribotypes as indicated. S, 100 bp DNA ladder; N,
negative control; isolates (ribotypes): VPI10463 (087); 630
(012); NCTC 13366 (027); TR13 (005); N485 (042); SMI055
(066); NCTC 11204 (001); FR535 (150); FR505 (032).

sharing the same ribotype but originating from different
geographical regions (Additional file 1).

Typeability, discriminatory power, and concordance with
PCR ribotyping

Results were compared to PCR ribotyping on the basis of
154 isolates including international reference strains and
clinical isolates collected at various German laboratories
(Additional file 1). These isolates had been preselected
from the material available to represent maximal diversity
as judged on the basis of PCR ribotyping and geographic
origin. They represented 75 different ribotypes (Addi-
tional file 1). Figure 2 shows a neighbor joining dendro-
gram based on the repeat successions in concatenated TR6
and TR10 sequences.

All 154 isolates were typeable by TRST. Considering both,
differences in length and nucleotide sequence, 43 distinct
alleles were identified at locus TR6, and 53 alleles at locus
TR10 (Table 2, Additional file 2). Sequencing either one
of the two loci had less discriminatory power than PCR
ribotyping, as reflected by slightly lower discriminatory
indices (0.93 and 0.95, respectively, versus 0.97 for
ribotyping; Table 2). When considered in combination,
however, sequence analysis of TR6 and TR10 resulted in
the identification of 72 different TRST sequence types
among the 154 isolates investigated (Additional file 2,
Figure 2). This way, TRST and PCR ribotyping had equal
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discriminatory power, reflected by identical discrimina-
tory indices (Table 2) based on the set of isolates
included. It has to be considered, however, that this esti-
mate will be skewed to some extent in favour of ribotyp-
ing, since ribotype diversity was the basis of initial isolate
selection. Many ribotypes were represented by single iso-
lates, and the potential ability of TRST to further discrim-
inate within these ribotypes was thus not tested.

TRST demonstrated high overall concordance with PCR
ribotyping for the set of strains typed in this study, result-
ing in a calculated Adjusted Rand's index of 89.8% (Table
2). The probability that a pair of isolates with the same
ribotype also shared identical TRST sequence types was
89.6% (Wallace index 0.896). Accordingly, ribotypes usu-
ally corresponded to specific TRST sequence types (Figure
2). For example, 18 isolates with ribotype 027, originating
from six different European countries, displayed identical
sequences at TR6 and TR10 that discriminated them from
all other isolates, and jointly were assigned TRST sequence
type tr-027 (Additional file 1, Figure 2). Similarly, four
isolates with ribotype 017 from three different countries,
including the reference strain for toxinotype VIII, were
assigned sequence type tr-017 (Additional file 1, Figure
2). Future work on larger numbers of isolates may reveal
that sequencing a single locus (TR6 or TR10) will suffice
to identify epidemiologically relevant strains. For the sake
of concordance with PCR ribotyping, however, we pres-
ently suggest to sequence both loci. As outlined above,
this strategy will also detect the impact of recombination.

Tandem repeat sequences are phylogenetically
informative

Discrepancies between TRST and ribotyping were appar-
ent where either method split a particular group of iso-
lates into two or three classes, whereas the other lumped
them into one (Figure 2). In virtually all of these cases,
however, the respective isolates were affiliated to identical
MLST sequence types or to single locus variants with
respect to MLST (i. e., identical sequences at six out of
seven MLST loci), indicating their close phylogenetic relat-
edness. Phylogenetic coherence of these additional (sub-
)classes will remain unclear as long as there are no phylo-
genetic markers available to investigate the detailed evolu-
tionary history of C. difficile within MLST sequence types.

MLVA typically resolves dozens of distinct genotypes
within individual ribotypes [20,21]. However, MLVA pro-
vided little insight to the genetic relatedness within our
collection, since almost all isolates differed from each
other at four or more loci [20], even when they were affil-
iated to identical TRST sequence types or ribotypes (Figure
3). The sole useful exception was represented by isolates
JW611148 and CL39, which shared identical alleles at five
MLVA loci (Figure 3). The summed tandem-repeat differ-

Page 4 of 11

(page number not for citation purposes)



BMC Microbiology 2009, 9:6

Figure 2
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tr-042
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tr-054
tr-003
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tr-012
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tr-045
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tr-071
tr-015
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tr-009
tr-048
tr-048
tr-048
tr-055
tr-057
tr-053
tr-043
tr-059
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tr-058
tr-021
tr-025
tr-024
tr-044
tr-002
tr-002
tr-028
tr-031
tr-006
tr-026
tr-047
tr-022
tr-068
tr-010
tr-046
tr-039
tr-005
tr-005
tr-062
tr-014
tr-014
tr-065
tr-001
tr-072
tr-020
tr-018
tr-064
tr-032
tr-036
tr-037
tr-038
tr-040
tr-030
tr-041
tr-035
tr-027
tr-019
tr-034
tr-017
tr-060
tr-007
tr-004
tr-033
tr-066
tr-063
tr-008
tr-067
tr-070
tr-070
tr-069
tr-016
tr-023

17
17
149
011
150
042
054
157
003
050
029
013
061
012
053
015
144
071
015
056
009
070
152
057
RKI8
RKI17
RKI24
043
087
087
090
011
163
163
083
002
159
081
031
006
RKI14
047
103
137
010
046
039
005
049
106
035
014
014
001
001
RKI22
RKI25
064
032
036
135
RKI23

RKI26
080
M
027
019
156
017
060
RKI15
155
033
066
063
RKI16

RKI35
078
069
016
023

ST-9
ST-9
ST-9
ST-39
ST-40

ST-48
ST-38
ST-37

ST-5
ST-6
ST-4

ST-4

ST-13
ST-13
ST-13
ST-35

ST-47
ST-47
ST-47
ST-39

ST-9
ST-9

ST-3
ST-3

Phylogenetic analysis (neighbor joining) based on the repeat successions in concatenated TR6 and TRI0
sequences from 154 C. difficile isolates. The repeat-distance matrix was calculated based on the DSI model, which consid-
ers repeat substitutions, insertions, deletions, and duplications (see Methods; [47]). Corresponding ribotypes, TRST types, and

MLST sequence types are indicated.
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MLST N N L N SRS s R S
. s g g 8 Isolate MLSTtype 2 2 2 2 2 2 2 Ribotype TRSTtype 2 2 2 2 2 2 2
SMI055 ST-41 7 04 6 7 9 5 066 tr-067 01625 6 5 14 2

SE881V ST-41 7 04 6 7 9 5 066 tr-066 02025 6 513 2

R114 ST-41 7 04 6 7 9 5 066 tr-067 01934 5 520 6

CL39 ST-41 7 04 6 7 9 5 RKI35 070 01931 8 5 12 2

JW611148  ST-41 7 04 6 7 9 5 078 tr-070 017 29 8 5 12 2

| L 57287V ST42 12 0 4 8 7 8 2 063 tr-063 02127 10 5 15 6
CL43 ST2 4 03 3 3 4 3 017 tr-017 3 923 8 637 2
—__ ATCC43593  ST-43 4 0 3 3 3 5 8 060 tr-060 31 21 39 8 6 23 2
SMI003 ST-9 5 42 2 1 1 1 002 t-002 18 17 24 6 6 7 2

CL46 ST-9 5 42 2 1 1 1 117 t-051 32 18 42 11 5 11 2

FR236 ST-9 5 4 2 2 1 1 1 149 -051 26 19 27 9 5 13 2

FR650 ST9 5 4 2 2 1 1 1 159 -002 28 12 26 7 6 10 2

L sMmI025 ST-37 3 42 2 2 1 1 003 r-003 35 11 18 1 5 3 2
CL45 ST-13 312 2 1 3 1 070 t-048 22 1532 6 6 7 2

FR342 ST-13 312 2 1 3 1 152 t-048 33 927 5 6 8 2

FR615 ST-13 312 2 1 3 1 057 048 17 829 6 6 9 2

FR182 ST-48 5 211119 054 t-054 32 926 4 6 8 2

FR548 ST-38 5 2 1 1 1 1 1 157 -054 48 14 39 8 6 4 2

SMI037 ST-39 341 1 1 1 1 011 t-021 30 20 27 9 6 7 2

N551 ST-39 34111 11 011 t-011 26 4 34 10 6 6 2

FR535 ST-40 311 1 1 11 150 -011 33 24 29 8 6 10 2

NCTC 13366 ST44 13 4 5 1 1 2 1 027 t-027 35 17 44 10 5 16 2

T-378 ST44 13 4 5 1 1 2 1 027 t-027 30 15 31 8 5 13 2

JW608204 ST44 13 4 5 1 1 2 1 027 t-027 25 8 33 10 5 16 2

- FR529 ST44 13 4 5 1 1 2 1 156 034 24 18 36 6 5 10 2
51680 IX ST45 13 0 5 1 1 2 1 019 t-019 33 14 32 4 6 11 2

L CH6230lllc ST46 11 0 2 1 1 2 1 111 -035 29 26 19 6 5 25 2
VPI 10463  ST-47 14 4 2 1 1 10 1 087 058 27 836 5 6 11 2

P5732 ST47 14 4 2 1 1 10 1 087 059 35 10 21 6 6 11 2

FRA434 ST47 14 4 2 1 1 10 1 090 t-058 24 14 45 7 6 8 2

- JW609048  ST-1 2 2 2 1 2 2 1 014 t-014 29 10 42 5 5 8 2
FR413 ST-1 2 2 21 2 2 1 035 t-014 312227 6 5 7 2

AB454 ST-4 5 2 2 1 1 2 1 015 tr-045 47 21 32 3 6 10 2

H R5 ST-4 5 22 11 2 1 015 t-015 39 16 37 3 6 12 2
i NCTC 11204 ST-3 2 2211 5 1 001 001 26 21 21 6 6 11 2
AB403 ST-3 2 2211 5 1 001 t-001 18 1535 6 6 7 2

R276 ST-3 2 2 2 11 5 1 001 t-072 30 729 5 6 8 2

DSMZ 1296  ST-3 2 221 1 5 1 001 001 34 921 4 6 11 2

FR549 ST-3 2 22 1 1 5 1 001 t-001 33 14 30 5 6 5 2

T — DSMZ 12056 ST-35 5 22 11 5 2 RKI8 t-055 46 16 34 9 3 10 2
TY4366 ST-6 2 2 2 21 2 2 053 t-012 34 19 38 6 6 15 2

_[ 630 ST-5 2 22 11 2 2 012 tr-012 38 17 17 7 7 6 4
SMI007 ST-36 2 42 1 2 1 2 014 tr-065 27 20 15 4 5 9 2

Figure 3
Comparison of MLST, PCR ribotyping, TRST and MLVA for 43 C. difficile isolates. Dendrogram is based on
UPGMA analysis of MLST allelic profiles.

ence between these two isolates was four repeats, which is  identity confirmed the relatedness of these isolates (Figure
below the threshold (= 10) previously suggested to indi-  3), and their close phylogenetic relationship also was cor-
cate close genetic relationship based on MLVA [21]. MLST  rectly reflected by identical sequences at TR6 and TR10 (tr-
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Table 2: Discriminatory power and concordance of tandem repeat sequence typing and PCR ribotyping.

Method No. of strains included No. of different types Discriminatory index 95% ClI Concordance with
ribotyping? (%)

PCR ribotyping 154 75 0.967 0.953 - 0.982 n.a.

TRST® 154 72 0.967 0.954 - 0.981 89.8

TR6 sequencing 154 43 0.931 0911 -0.951 60.4

TR0 sequencing 154 53 0.949 0.934 - 0.964 71.6

2 Adjusted Rand's coefficient
b Combination of sequences from TR6 and TR10.

070, Figure 3). However, these isolates displayed a distinct
one-band difference between their ribotyping patterns,
corresponding to ribotypes 078 and RKI35, respectively
(Figure 4). This result illustrates the fact that ribotypes
may differ widely with respect to the phylogenetic diver-
gence they encompass. It may be noted that two other
pairs of isolates shared highly similar MLVA patterns
(AB403/CL45, NCTIC11204/P5732; Figure 3). The
summed tandem-repeat difference for the former pair is
seven repeats, and hence these two isolates would be sug-
gested to be extremely closely related based on MLVA
alone [21]. These similarities, however, clearly reflect
homoplasies, since MLST indicated these isolates were
entirely unrelated (Figure 3). Thus, the application of
MLVA as currently used is inappropriate when attempting
to resolve distant phylogenetic relationships of C. difficile

027 019

Figure 4

PCR ribotyping band patterns of ribotypes 027 (iso-
late, NCTC 13366), 019 (51680), 156 (FR529), 066
(SE881), RKI35 (CL39) and 078 (JWé11148).

isolates. Again, in these cases, phylogeny was correctly
indicated by TRST. We therefore conclude that it may be
useful to combine TRST and MLVA in a nested hierarchi-
cal fashion, where TRST may resolve phylogenetic diver-
sity to a level equivalent to PCR ribotypes, and MLVA may
add additional resolution where desired.

Evolutionary relationships between isolates may be
revealed through tandem repeat sequence alignment and
phylogenetic analysis. This is also feasible for those iso-
lates that were assigned different TRST types. For example,
ribotypes 027, 156, and 019 by MLST are indicated to be
closely related, since corresponding isolates are assigned
two MLST sequence types that differ at one locus only
(Figure 3). Close relationship of ribotypes 027 and 019
previously has also been found on the basis of DNA mac-
rorestriction analysis, when isolates with both ribotypes
were assigned to the 'North American Pulsotype NAP1'
[23]. Concordantly with MLST and macrorestriction,
TRST also indicated the relatedness of these types through
similar tandem repeat sequences that clustered tightly in
the phylogenetic tree (Figure 2), yet it maintained the dis-
criminatory power of PCR ribotyping by assigning three
different sequence types (tr-034, tr-027, tr-019) (Figure
2). Similarly, ribotypes 078 and RKI35 were indicated to
be closely related to ribotype 066 by both, MLST and TRST
(Figures 2 and 3). In contrast, these relationships were not
at all apparent on the basis of ribotyping band patterns

(Figure 4).

Phylogenetic relatedness was also indicated in cases where
TRST was more discriminatory than PCR ribotyping. For
example, ribotypes 001, 163, 087, 014, and 117 each were
subdivided into several TRST types (Figure 2). Clusters of
related tandem repeat sequences in the phylogenetic tree
still corresponded to PCR ribotypes (Figure 2), which war-
rants the comparability of results from both methods.
This feature may be highly desirable, since it will facilitate,
for example, cross-referencing to ribotyping-based exami-
nations and maintaining the continuity of ongoing sur-
veillance programs.

Ribotyping does not enable phylogenetic analyses based

on dissimilar banding patterns, and the relatedness of dif-
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ferent ribotypes has not commonly been assessed. In the
long run, large-scale mutation discovery and genomic (re-
)sequencing will reveal the phylogenetic validity of typing
procedures [46].

Future prospects

We anticipate that PCR ribotyping will eventually be
replaced by typing procedure(s) based on DNA
sequences. The inherent portability of sequence data will
obviate the need for the exchange of reference strains and
enable decentralised genotyping efforts, which may boost
large scale investigations on the molecular diversity of C.
difficile. At present, however, our knowledge about the
diversity and population biology of this important patho-
gen is very limited [23,31,32]. As a consequence, it is gen-
erally not clear if isolate groupings provided by various
typing methods, including PCR ribotyping, are concord-
ant with the epidemiology of associated disease [21,23].
Related to these considerations, one limitation of this
present study is the lack of epidemiologically linked iso-
lates in our data set. Investigations in the near future
should evaluate the utility of tandem repeat sequencing
for infection chain tracking and short-term epidemiologi-
cal investigations.

Conclusion

Sequence analysis of tandem repeats TR6 and TR10 pro-
vided full typeability across a wide range of C. difficile iso-
late diversity, excellent concordance with PCR ribotyping,
and equal discriminatory ability. Sequence clades corre-
sponded to phylogenetically coherent groupings. This
sequencing-based typing approach may prove particularly
useful because DNA sequences can easily be exchanged
via the internet.

Methods

Bacterial isolates

A total of 154 C. difficile isolates comprising 75 different
ribotypes were used in this study. The strain collection
included both, international reference strains and selected
clinical isolates from various German hospitals, collected
in 2007 and 2008. More detailed information about indi-
vidual isolates is given in Additional file 1.

DNA extraction

Genomic DNA was isolated from cultures grown for 48 h
on cycloserine-cefoxitin fructose agar (OXOID, Basing-
stoke, UK), by using the DNeasy Blood & Tissue Kit (QIA-
GEN, Hilden, Germany) according to the manufacturer's
recommendations.

PCR ribotyping

PCR ribotyping initially was performed at the Reference
Laboratory for Clostridium difficile at the Leiden University
Medical Center in the Netherlands and later was trans-

http://www.biomedcentral.com/1471-2180/9/6

ferred to the Robert Koch Institute. We followed the pro-
tocol of Bidet et al. [26], except that PCR Products were
run on 1.5% agarose gels in 1x TBE at 85 volts for 4 hours.
Isolates were assigned novel PCR ribotypes if their pat-
terns differed from previously named patterns by at least
one band.

Tandem repeat sequence typing (TRST)

To facilitate the application of tandem repeat sequence
typing, a duplex PCR was designed using the following
primers: TR6-F (5'-TTTCAACTTGTCCAGTITITAAGTC-3")
and TR6-R (5'-ATGACATAGCGTTTGTGGAAT-3'); TR10-F
(5'-TGCATCAAATTGGTCAAGACTC-3') and TR10-R (5'-
TGAAATCATTGACTATAAAGCAAAA-3'). DNA amplifica-
tion was performed on 1 pl of purified genomic DNA in a
final volume of 50 pl containing 0.1 uM of TR6 and 1 uM
of TR10 primers, 200 uM of each deoxynucleoside tri-
phosphate, 1x PeqLab PCR buffer Y (20 mM Tris-HCL, 16
mM (NH,),SO,, 0.01% Tween 20, 2 mM MgCl,) and 1.25
units Hot Tag-DNA-Polymerase (PeqLab, Erlangen, Ger-
many). After an initial denaturation of 96°C for 3 min,
the protocol consisted of 35 cycles at 96°C for 45 s, 52°C
for 45 s, and 72°C for 45 s following a final extension at
72°C for 7 min. PCR products were prepared for sequenc-
ing using the QIAquick® PCR Purification Kit (QIAGEN,
Hilden, Germany) and 0.35 pl of the purified products
were applied for sequencing using the BigDye Terminator
v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster
City, USA) with identical primers employed in the PCR.
Automated sequence detection was performed on an ABI
capillary sequencing system and sequences were analysed
using the BioNumerics 5.10 software (Applied Maths, Bel-
gium).

Classification of TRST types, repeat alignment, and cluster
analysis

Data processing was performed with BioNumerics 5.10 by
using a novel, dedicated "Repeat Typing" plugin that
allowed automated batch assembly of trace files. The
assignment of TRST sequence types was based on the suc-
cessive occurrence of user-defined repeats in concatenated
sequences from both tandem repeat loci. A repeat distance
matrix for matching and clustering were calculated based
on the DSI model [47], a mutation model comprising
substitutions, indels (insertions or deletions), and dupli-
cations. Subsequent cluster analysis was performed based
on the neighbor joining algorithm.

Multilocus sequence typing

Clostridium difficile isolates were typed by MLST as
described previously [31]. Sequence data were submitted
to the C. difficile MLST database http://www.pasteur.fr/
recherche/genopole/PF8/mlst/Cdifficile.html to assign
allele profiles and the resulting sequence types. Sequence
types were analysed by constructing a dendrogram based
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on the UPGMA (Unweighted Pair Group Method with
Arithmetic mean) clustering algorithm using the multi-
state categorical similarity coefficient (tolerance 0%)
available in the BioNumerics software.

MLVA

Seven-locus MLVA was conducted as described previously
[20,22], except that the different loci were PCR-amplified
individually and PCR products were sequenced for repeat
copy number determination. To facilitate sequence analy-
sis of MLVA locus C6 [20], two novel oligonucleotide
primers were used: C6-F 5'-CCAAGTCCCAGGATTATTGC-
3' and C6-R 5'-AACATGGGGATTGGAATTGA-3'. Repeat
copy numbers were determined manually using BioNu-
merics 5.10 software. The summed tandem-repeat differ-
ence was calculated where appropriate; it is the sum of
repeat differences between two isolates at all seven MLVA
loci [21].

Discriminatory power, system concordance and molecular
evolutionary analyses

An index of discrimination was calculated to compare the
discriminating capacity of ribotyping, and TRST. The dis-
criminatory index was defined as the average probability
of two consecutively sampled strains being characterized
as the same type. This probability depends on the number
of strain types and their frequency distribution in the pop-
ulation. Discriminatory indices were calculated based on
Simpson's index of diversity [48]. Confidence intervals for
discriminatory indices were determined as described pre-
viously [49]. The Concordance of two typing schemes was
calculated based on the adjusted Rand's and Wallace's
coefficients [50]. While the Rand's coefficient allows a
quantitative evaluation of the global congruence between
two typing systems, the Wallace's coefficient compares the
congruence of schemes depending on the directionality of
typing by estimating the probability that a pair of isolates
sharing the same type in system 1 also share the same type
in system 2, and vice versa. Calculation of all parameters
was performed with EpiCompare software, version 1.0
(Ridom GmbH, Wiirzburg, Germany).

The nucleotide diversity () and the ratio (Ka/Ks) of the
average number of non-synonymous substitutions per
non-synonymous site (Ka) to the number to synonymous
substitutions per synonymous site (Ks) was calculated by
using DnaSP, version 4.5 [51].
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