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Abstract
Background: Mutations associated with resistance to rifampin or streptomycin have been
reported for W/Beijing and Latin American Mediterranean (LAM) strain families of Mycobacterium
tuberculosis. A few studies with limited sample sizes have separately evaluated mutations in katG,
ahpC and inhA genes that are associated with isoniazid (INH) resistance. Increasing prevalence of
INH resistance, especially in high tuberculosis (TB) prevalent countries is worsening the burden of
TB control programs, since similar transmission rates are noted for INH susceptible and resistant
M. tuberculosis strains.

Results: We, therefore, conducted a comprehensive evaluation of INH resistant M. tuberculosis
strains (n = 224) from three South American countries with high burden of drug resistant TB to
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characterize mutations in katG, ahpC and inhA gene loci and correlate with minimal inhibitory
concentrations (MIC) levels and spoligotype strain family. Mutations in katG were observed in 181
(80.8%) of the isolates of which 178 (98.3%) was contributed by the katG S315T mutation.
Additional mutations seen included oxyR-ahpC; inhA regulatory region and inhA structural gene.
The S315T katG mutation was significantly more likely to be associated with MIC for INH 2 g/
mL. The S315T katG mutation was also more frequent in Haarlem family strains than LAM (n = 81)
and T strain families.

Conclusion: Our data suggests that genetic screening for the S315T katG mutation may provide
rapid information for anti-TB regimen selection, epidemiological monitoring of INH resistance and,
possibly, to track transmission of INH resistant strains.

Background
Tuberculosis (TB), a curable disease caused by M. tubercu-
losis, has never been adequately controlled in high preva-
lence countries because of inadequate funding of public
health programs and limited access to health care caused
by poverty. In the last several decades, the concurrent HIV
epidemic has further accentuated the magnitude of the
global TB burden. Further complicating the TB resurgence
is the recent increase in the occurrence of simultaneous
resistance to first line drugs, isoniazid (INH) and rifampin
(RIF), that defines multidrug resistance (MDR), as well as,
to second line drugs, resulting in extensive drug resistance
(XDR) [1,2]. Although current control measures and
short-term treatment schemes address the problem of
drug resistance, knowledge on individual drug resistance
profiles is needed for targeted intervention [3]. Global
surveillance of M. tuberculosis drug resistance has been
proposed to guide appropriate treatment policies [4]. Bra-
zil and Peru are responsible for approximately 50% of the
new TB cases in the Americas [5,2]. Moreover, 2,443 and
2,760 MDR-TB cases were reported respectively for Brazil
from 2000 to 2006 [6] and Peru in just 2005 [7].

In the last years, molecular epidemiological approaches
have shown that certain emerging M. tuberculosis strains,
that induce more severe forms of TB, manifest higher fail-
ure/relapse than others. These features of certain isolates
of M. tuberculosis strains, therefore, accentuate TB burden
even in countries with good TB control programs, such as
Vietnam [8-10]. Strains of the Beijing/W and Haarlem
strain families of M. tuberculosis are emerging in certain
global regions and are associated with drug resistance
[11,12]. Importantly, specific mutations have been
described in M. tuberculosis genes that are associated with
resistance to rifampin or streptomycin and noted particu-
larly in W/Beijing and Latin-American & Mediterranean
(LAM) strain families [13].

The current view, since Middlebrook's original descrip-
tion, is that INH resistant strains of M. tuberculosis are less
virulent; whether INH resistant and catalase-negative
strains are indeed attenuated has been recently ques-

tioned [14]. The mechanism for INH resistance is only
partly elucidated. Resistance to INH is associated with
mutations in several genes that include at least katG, inhA
and ahpC. The katG gene encodes the enzyme catalase-per-
oxidase that functions to convert INH, which lacks anti-
mycobactericidal activity, into an active compound [15].
The inhA (ORF) gene encodes an enoyl acyl carrier protein
reductase involved in fatty acid synthesis. These fatty acids
are the target of the active derivative of INH [4]. The inhA
promoter gene region regulates the expression of an enoyl
acyl carrier protein reductase. Mutations of this region
may decrease the level of protein expression. The ahpC
gene encodes alkyl-hydroperoxide reducatse involved in
cellular regulation of oxidative stress [16]; mutations in
the intergenic region oxyR-ahpC may also reduce the level
of expression. The substitution of a single nucleotide of
the amino acid at position 315 of katG (S T), vary from
53% to 96% of INH resistant isolates [17,18]. Impor-
tantly, it was shown that the katG S315T mutation is asso-
ciated with INH resistance without diminishing the
virulence or transmissibility of M. tuberculosis strains
[3,19]. The lack of attenuation associated with the katG
S315T substitution and its high frequency among INH
resistant clinical isolates suggests that the majority of
these isolates will be virulent, and this premise was sup-
ported by a recent population-based molecular epidemio-
logical study carried out in The Netherlands [20]. In this
study, DNA fingerprinting demonstrated that, although
INH resistant strains in general were less often transmitted
between humans, the transmission of katG S315T
mutants was similar to drug susceptible strains [20,18].

There is a paucity of information regarding the frequency
and types of gene mutations associated with INH resist-
ance among M. tuberculosis strains from South America.
Moreover, studies of mutations associated with INH
resistance have been limited in the scope of the genes
assessed, the number of isolates evaluated, and lacked cor-
relation with in vitro INH levels determined by minimal
inhibitory concentration. Thus, we conducted a compre-
hensive characterization of mutations in the katG, oxyR-
ahpC, and inhA genes in over 200 INH resistant M. tuber-
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culosis isolates from three MDR high prevalence countries
from South America, namely, Argentina, Peru and Brazil
and correlated the mutational data with minimal inhibi-
tory concentration (MIC) level for INH and strain families
as determined by spoligotyping.

Results
Drug susceptibility testing
All isolates previously shown to be INH resistant by the
proportion method were retested to determine the MIC
levels. All isolates retested by MIC were INH resistant
defined as  0.2 g/mL. The majority of the isolates were
resistant to  0.5 g/mL INH.

Mutation frequency
We next characterized mutations in katG, ahpC and inhA
(ORF or regulatory regions) gene loci. Among the 224
INH resistant M. tuberculosis isolates, the katG gene was
the most frequently mutated gene (80.8%; 181/224). A
mutation in codon 315 of the katG gene was present in
178 isolates. At this codon, the substitution from AGC to
ACC leading to the amino acid change serine to threonine
(S to T), seen in 166 (74.1%) isolates. In addition, a single
nucleotide polymorphism (SNP) from AGC (S) to AAC
(N) was seen in 9 isolates; and from AGC (S) to ACG (L)
was noted for 3 isolates. In other regions of the katG gene,
substitution SNPs were identified at codons 258, 299 and
300 (Table 1). We also screened for mutations in oxyR-
ahpC and inhA (ORF and regulatory) gene loci previously
reported to be associated with INH resistance. Mutations
were also identified including in oxyR-ahpC (8.9%, n = 20
isolates), inhA regulatory gene region (9.8%, n = 22 iso-
lates), and inhA ORF gene region (1.3%, n = 3 isolates)

(see Table 1). Figure 1 depicts correlation of MIC level
with frequencies of individual mutations and cumulative
mutations. As shown, 99.8% of isolates with MIC  8 g/
mL present at least one mutation. The data suggest that
with increasing MIC levels, the assessed mutations could
account for or is associated with an increasingly greater
proportion of isolates having the quantified resistance
MIC level.

Country specific mutation frequency
The proportion of M. tuberculosis isolates with any katG
mutation in the different countries was; Brazil (81.3%, n
= 143), Peru (82.4%, n = 28), and Argentina (71.4%, n =
10) (p > 0.05); and the S315T katG mutation was: Brazil
(74.4%, n = 131), Peru (73.5%, n = 25), and Argentina
(71.4%, n = 10).

Spoligopatterns
The INH resistant M. tuberculosis isolates (n = 224) were
spoligotyped and segregated in strain families in which 86
different spoligotype patterns were identified. We next
evaluated for shared spoligotype patterns in which 158
isolates clustering by spoligotyping matched with 27
international types (SITs, which had two or more isolates
in an updated SpolDB4 [21] – Table 2). Other 30 isolates
matched 30 individual SITs, reported as orphans by
SpolDB4, Table 2. A third group of isolates (n = 36 [16.0%
of the tested isolates] segregated into 29 newly identified
spoligotype patterns (not reported by SpolDB4). The
strain families that could be grouped by SpolDB4
included: LAM (46.4%, n = 104), Haarlem (16.0%, n =
36), T (14.3%, n = 32), X (6.2%, n = 14), S (4.5%, n = 10),
U (4.9%, 11), W/Beijing (1.8%, n = 4), MANU2 (0.4%, n

Table 1: Mutations identified in 224 INH resistant M. tuberculosis isolates from South America

Specific mutation in each loci (number of isolates with mutation)

katG only OxyR-ahpC only inhA (reg) only inhA (ORF) only KatG and inhA (reg) KatG and ahpC No mutation*

Brazil
(176)

S315T (121)
S315N (5)
S315I (3)
G258D*** (1)

C(-15)T (1)
I20I (1)**/***
C(-39)T (3)
C(-30)T (1)
G(-6)A (2)
G(-32)A (1)

C(-15)T (7) G(82)R*** (1) W300R***/C(-15)T 
(1)
S315T/C(-15)T (8)

S315N/I20I**/*** (1)
G299S/G(-9)A (1)
S315T/G(-48)A (1)

17

Peru
(34)

S315T (19)
S315N (2)

C(-10)T (1) C(-15)T (3) S(94) R*** (1) S315T/C(-15)T (1) S315N/C(-10)A*** (1)
S315T/C(-10)A*** (3)
S315T/C(-15)T (1)

2

Argentina
(14)

S315T (9) C(-15)T (1)
C(-10)T (1)

--- S(93)A*** (1) S315T/C(-15)T (1) --- 1

Total 224 N = 160 N = 12 N = 10 N = 3 N = 11 N = 8 N = 20

*No mutation in studied loci.
**Silent mutation in the codon 20 of the ahpC gene.
***Not reported in the literature.
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= 1). Twelve (4.8%) isolates had an unclassified spoli-
gopattern. Five isolates were included as Haarlem because
of their spoligotype signature but did not match any of the
patterns in SpolDB4 [21].

Association between MIC levels, characterized mutations 
and spoligotype strain families
Higher level INH resistance ( 2 g/mL) was significantly
associated with the S315T katG mutation, as shown by a
greater odds ratio of 1.97 (Table 3). Of note, in isolates
with MIC 16 g/mL (83.0%, n = 38) a mutation was
found one or more of the studied genes. We next evalu-
ated for potential the relationship between MIC levels and
mutations and strain families. The S315T katG mutation
was found in LAM isolates (77.9%, n = 81), Haarlem iso-
lates (94.4%, n = 34), and in T isolates (68.7%, n = 22).
Of the Beijing strains (n = 4), 3 presented with the S315T
katG mutation. We noted a statistical association between
Haarlem strain family with the S315T katG mutation (p =
0.01) (Table 3). When the specific S315T katG mutation
was considered, the Haarlem genotype occurred more fre-
quently among those M. tuberculosis strains with MIC 2

g/mL (p = 0.02). The most frequent Haarlem spoligotype
pattern was the shared international type (SIT) 50, which
was found in 19 (52.7%) isolates and only one of these
did not possess the S315T katG mutation. LAM strain fam-
ily showed the highest frequency (46.2%, n = 104) among

the 224 isolates which were distributed among 20 differ-
ent SITs according to spolDB4 (Table 4). The LAM9 line-
age was the most frequent LAM lineage (29.8%) identified
in all three countries studied. In contrast to Haarlem, the
LAM strain family was not associated with the S315T katG
mutation (p = 0.58) nor with higher MIC values (p = 0.79)
(Table 3). Among T family strains, 6 (18.8%) isolates were
related to sub-clades T2, T3, T4 and T5; 22 (68.7%) iso-
lates had the S315T mutation.

Frequency of INH resistance associated mutation in 
spoligotype strain families
To evaluate for genetic correlation of strains with the same
spoligopatterns, DRE-PCR was performed on isolates pre-
senting the same INH conferring mutation and the same
spoligotype. DRE-PCR has previously been used to genet-
ically classify strains with the same spoligotyped as being
genetically related (or clustered isolates). The most fre-
quently observed spoligotype patterns among isolates
with the S315T katG mutation were SIT 42 (LAM9, 22 iso-
lates) and SIT 50 (Haarlem3, 19 isolates). Among the iso-
lates that had a SIT 42 spoligotype pattern and a S315T
katG mutation, 12 different DRE-patterns were identified,
presenting 14 (63.6%) isolates in four different clusters
and 8 unique isolates. The isolates with a SIT 50 spoligo-
type showed 16 different DRE-patterns, presenting 6

Correlation or MIC levels and percentage of strains bearing the studied mutations in KatG, ahpC and inhA gene lociFigure 1
Correlation or MIC levels and percentage of strains bearing the studied mutations in KatG, ahpC and inhA 
gene loci. Cumulative percent at each MIC level is derived by the number of isolates with any of the assessed mutations 
divided by all isolates × 100.
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(31.5%) isolates in three different clusters and 13 unique
isolates (Table 4).

In total, 62 (27.6%) of S315T katG mutated isolates
appeared distributed in 29 clusters, most of them with just
two isolates per cluster. Of the INH resistant strains that
did not have the S315T katG mutation, 19 (27.9%) were

in clusters. The proportion of clustering was higher
among LAM lineage M. tuberculosis isolates (40.7%; 33/
81) carrying the S315T katG mutation than in LAM iso-
lates without the S315T katG mutation (26%; 7/23). A
higher proportion of clustering in which the S315T katG
mutation was also noted for the few W/Beijing strains
(50% (2/4). In contrast, the proportion of clustering in
S315T katG mutated was lower for Haarlem isolates
(23.5%, 8 of 34), T (18%, 4 of 22).

Discussion
Identification of markers for rapid determination of TB
drug resistance is needed to combat the increasing preva-
lence of MDR TB. Mutations in select genes of M. tubercu-
losis have been used as correlates for anti-TB drug
resistance. Prior reports have evaluated in a limited setting
one or more of the gene loci evaluated by this report
including, katG, ahpC, regulatory region of inhA, and the
ORF region of inhA. However, none of these studies have
comprehensively catalogued mutations in all of these loci
in a single study and testing large numbers of clinical sam-
ples from TB prevalent regions such as, South America,
nor have they correlated the identified mutations with
INH MIC levels.

In this study, each clinical isolate was characterized for
mutations not only in katG gene, but also in ahpC, regula-
tory region of inhA, and ORF region of inhA. Frequencies
of katG mutation among INH resistant M. tuberculosis iso-
lates in three South American countries was: Brazil
(81.3%), Peru (82.4%) and, Argentina (71.4%). Our
study does not aim to provide a profile of the involved
sites, but to characterize mutations from the available
strains during the period. The frequency for the katG
S315T mutation in INH resistant M. tuberculosis isolates
was comparable to the previously reported rate for
patients diagnosed in Kuwait, Brazil and The Netherlands
(65% and 55%, respectively) but was lower than
described in Russia (95%) [13,20,22,23].

In this study, we also correlated MIC levels with the katG
S315T mutation in INH resistant M. tuberculosis isolates.
We demonstrated that 83.0% (n = 127) of the INH resist-
ant strains with the katG S315T mutation possessed a MIC
for INH 2 g/mL (p = 0.05). These data are in accordance
with The Netherlands report, where 95% of the INH
strains with this mutation had a MIC for INH of > 2 g/L
(20). The mutation AGC to ACC at codon 315 tended also
to be associated with MIC 2 g/mL (p = 0.06; OR = 1.79
[confidence interval (CI): 0.92–3.49]). Part of the success
of the katG S315T mutated isolates in the community is
probably because the catalase-peroxidase enzyme is still
active in these mutants; indeed, 30% to 40% of the initial
catalase activity remains when this mutation is introduced
into the katG gene by site-directed mutagenesis [19,24].

Table 2: Frequency of 27 shared spoligotypes (SITs) according to 
Brudey et al. [21] identified in 158 INH resistant M. tuberculosis 
strains isolated from South America.

SIT Octal Strains in this n Strains in n Lineag

1 0000000000037 3 1.3 5610 13.2 Beijing
47 7777777740207 6 2.6 1021 2.4 Haarlem
602 7777777700007 2 0.9 48 0.1 U
50 7777777777207 19 8.5 2128 5.0 Haarlem
49 7777777777207 3 1.3 115 0.3 Haarlem3
20 6777776077607 9 4.0 588 1.4 LAM
17 6777376077607 6 2.4 473 1.1 LAM
33 7761776077607 8 3.6 770 1.8 LAM
4 0000000077607 3 1.3 220 0.5 LAM3/S
211 5761776077607 2 0.9 63 0.1 LAM
828 3777776077607 3 1.3 20 0.0 LAM
93 7777376077607 10 4.5 267 0.6 LAM
64 7777776075607 9 4.0 157 0.4 LAM
435 7637776077607 3 1.3 4 0.0 LAM
177 3777776077607 3 1.3 50 0.1 LAM
388 7377776077607 2 0.9 15 0.0 LAM
42 7777776077607 22 9.9 1926 4.5 LAM
1938 7763777777607 7 3.1 3 0.0 S
53 7777777777607 17 7.6 3738 8.8 T1
397 7777776000007 2 0.9 13 0.0 U
402 7777776000000 3 1.3 14 0.0 U
1241 7777776077007 3 1.3 28 0.0 U
119 7777767777607 2 0.9 659 1.8 X1
137 7777767777606 3 1.3 720 2.0 X2
92 7000767777607 3 1.3 328 0.8 X3
91 7000367777607 2 0.9 143 0.4 X3
60 7777776077607 3 1.3 83 0.2 LAM

Table 3: 315 mutation and its correlation with MIC and 
spoligotype families distribution in INH resistant M. tuberculosis 
isolates

315 m 315 w P value OR (CI 95%)

MIC 2.0 g/ml
Yes 127 26 0.05 1.92 (0.93–3.93)
No 51 20

Haarlem
Yes 34 2 0.01 5.19 (1.15–3.25)
No 144 44

LAM
Yes 81 23 0.58 0.84 (0.42–1.68)
No 97 23

T
Yes 22 10 0.45 0.73 (0.30–1.80)
No 144 48

315 m: mutated; 315 w: wild type
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Table 4: Frequency of 57 shared spoligotypes (SITs) according to Brudey et al. [21], identified in 188 M. tuberculosis strains isolated 
with S315T mutation, from South America.

Lineage SIT Number of isolates Number of DRE-PCR patterns Number of isolates in cluster (%)

Beijing 1 3 2 2 (66.7)

Haarlem1 47 6 6 0

Haarlem3 50 19 16 6 (31.5)

Haarlem3 49 3 2 2 (66.7)

LAM1 20 9 4 7 (77.8)

LAM2 17 6 3 3 (50.0)

LAM3 33 8 4 4 (50.0)

LAM3/S convergent 4 3 2 2 (66.7)

LAM3 211 2 1 2 (100)

LAM4 828 3 3 0

LAM5 93 10 6 4 (40.0)

LAM6 64 9 6 2 (22.2)

LAM9 435 3 1 3 (100)

LAM9 177 3 3 0

LAM9 388 2 1 2 (100)

LAM9 42 22 12 14 (63.6)

S 1938 7 5 4 (57.0)

T1 53 17 11 4 (23.5)

U 397 3 2 2 (66.7)

U 402 2 2 0

U 1241 3 3 0

X1 119 3 3 0

X2 137 2 2 0

X3 92 3 2 2 (66.7)

X3 91 3 3 0

LAM4 60 2 2 0

U 602 2 2 0

T5-MAD2 58 1 Not done Unique
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LAM6 95 1 Not done Unique

U (LAM3?) 106 1 Not done Unique

T5 68 1 Not done Unique

T3 157 1 Not done Unique

T1 159 1 Not done Unique

Haarlem3 207 1 Not done Unique

T1 253 1 Not done Unique

Beijing-Like 269 1 Not done Unique

T1 353 1 Not done Unique

T1 453 1 Not done Unique

Haarlem3 631 1 Not done Unique

S 707 1 Not done Unique

S 827 1 Not done Unique

LAM5-LAM6 867 1 Not done Unique

X2 1341 1 Not done Unique

T2 1355 1 Not done Unique

LAM9 1535 1 Not done Unique

LAM2 1691 1 Not done Unique

LAM1 389 1 Not done Unique

T1 276 1 Not done Unique

Haarlem3 294 1 Not done Unique

MANU2 1094 1 Not done Unique

LAM5 176 1 Not done Unique

T3 1655 1 Not done Unique

LAM3 130 1 Not done Unique

T4-CE1 ancestor? 65 1 Not done Unique

Haarlem3-LAM9 335 1 Not done Unique

T1 222 1 Not done Unique

LAM3 1354 1 Not done Unique

Table 4: Frequency of 57 shared spoligotypes (SITs) according to Brudey et al. [21], identified in 188 M. tuberculosis strains isolated 
with S315T mutation, from South America. (Continued)
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Mutations in coding or regulatory regions of other genes
such as the oxyR-ahpC region have also been associated
with INH resistance, but occur less frequently [1]. Muta-
tions of the oxyR-ahpC region have been described in 4.8%
to 24.2% of INH resistant M. tuberculosis isolates [25-
27,15]. Usually, higher levels of INH resistance and/or
loss of catalase activity are associated with mutations in
inhA and ahpC genes [28,29]. In the present study, few iso-
lates had mutations in more than one gene. Eight isolates
(3.6%) had mutations in both katG and oxyR-ahpC; 5
from Peru and 3 from Brazil (Table 1). Of note, M. tuber-
culosis isolates with the katG S315T mutation and inhA or
ahpC, or inhA and ahpC genes tended to occur more fre-
quently in isolates with a MIC for INH of 2 g/mL,
appearing in 22 isolates (p = 0.06; OR 0.95–4.8). After the
katG gene, the inhA promoter gene was the second most
frequently mutated gene, with mutation in 10% of the M.
tuberculosis isolates. This frequency is in accordance to oth-
ers, varying from 10% to 34.2%, described elsewhere
[30,31]. All mutations occurred in the regulatory region of
the mabA-inhA operon with a C to T change at position -
15, reported to be associated with INH resistance [32,28].
Similarly as has been previously described by others, few
mutations were identified in the inhA ORF [4,23].

Frequencies of M. tuberculosis lineage found in our study
were in range with frequencies described in recently pub-
lished population-based studies performed in other South
American countries [33,34]. LAM family was the most fre-
quent lineage found by this study, occurring among
46.4% of the INH resistant M. tuberculosis isolates in our
South American study population. This proportion is vir-
tually identical to that found among INH resistant M.
tuberculosis isolates from Russia [13]. The Haarlem family
was the second most frequent family, with a similar pro-
portion of isolates belonging to the Haarlem family as
reported in in Russia (10%) [12]. A high frequency of the
katG S315T mutation in INH resistant M. tuberculosis iso-
lates of the Haarlem strain family was also described in
South Africa [12] and Tunisia [35]. As with the W/Beijing
family, the Haarlem family is widespread [36], and has
mutations within putative mutator genes [37,38]. Muta-
tion in such genes may afford these strains a higher adapt-
ability to hostile environments, following challenge by
anti-TB drugs or engulfment within macrophages [38].
The Haarlem family appears to favor the emergence of
MDR-TB strains, and was associated with outbreaks in
Argentina [39], the Czech Republic [40] and Tunisia [35].
W/Beijing family strains, which are often associated with
drug resistance, although prevalent in many regions of the
world, are mostly localized in Asia and Eastern European
countries [11,8,41,42], and, at present, uncommon in
Latin American countries [33,34,43,44], which was con-
firmed by this study (only five W/Beijing isolates were
identified). The T family occurred in 14.3% of our INH

resistant M. tuberculosis isolates, which is similar to the
proportion reported in Paraguay (8.6%) and in Venezuela
(13%) [22,34]. As a descriptive study on selected M. tuber-
culosis isolates that were provided by the reference TB lab-
oratories from different regions in Latin America, its
limitation rely on the lack of generazibility. The available
M. tuberculosis isolates included in the project have no
aiming to be a representative from each country on the
mutations profiles of INH resistant M. tuberculosis isolates.
The second phase of this study is underway: the evalua-
tion of same techniques using randomly INH sensitive
and INH resistant M. tuberculosis isolates isolated at
National Drug Resistant Surveillance carried out in those
countries in the last years.

Even though the application of DOTS has stabilized the
prevalence of TB or has led to decline in some countries,
drug-resistant TB is rapidly emerging in a significant
number of areas in the world [2]. Under standard treat-
ment regimens it is often not possible to identify primary
drug-resistant cases and these regimens are therefore
unsuitable for the control of drug-resistant strains. TB con-
trol thus relies on improving current TB diagnosis and
early detection of drug-resistant TB, preferably using rapid
and accurate screening tools other than the sole reliance
on AFB smear and culture identification and susceptibility
testing.

Conclusion
The present data indicate that screening for the katG
S315T mutation may be useful in South America for an
early detection of INH resistance and, hence, provide
rapid information for selection of appropriate anti-TB
therapy. This information may also be used as a marker to
evaluate the transmissibility of INH resistant TB in the
community. Our study also demonstrated an association
between a high MIC and katG S315T mutation, as well as
an association between the katG S315T mutation, and
Haarlem strain family that may in part explain the suc-
cessful spread of Haarlem strains in South America.

Methods
The present experimental research that is reported in the
manuscript has been performed with the approval of an
appropriate ethics committee and carried out within an
ethical framework.

Mycobacterial strains
The M. tuberculosis isolates and respective data of INH sus-
ceptibility tests were kindly provided by the National
Health Institute in Peru (n = 34), the Malbran Institute (n
= 14) in Argentina and from seven Brazilian Institutes:
Ceará State (CE) Central Laboratory (n = 25), Central Lab-
oratory of Rio Grande do Sul State (RS, n = 24); Federal
University of Rio de Janeiro (RJ, n = 32); Federal Univer-
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sity of Espírito Santo (ES, n = 31); Adolfo Lutz Institute of
Paulo State (SP, n = 23); Federal University of Minas
Gerais (MG, n = 27); Evandro Chagas Institute, Pará (PA)
(n = 14). These were the total number of strains provided
by each site included in this study. All strains were col-
lected from September 2003 to December 2004 and were
identified to the species level by analysis of morphologic
and biochemical characteristics [45]. Reference strain M.
tuberculosis H37Rv ATCC 27294 was used as a control INH
susceptible strain. The strains and the reference strain
were tested for susceptibility by each site using the propor-
tion method on Lowenstein-Jensen (LJ) medium [46] in
the absence and presence of 0.2 g/ml for INH or no INH.

Minimum inhibitory concentration (MIC) determination
The test was performed as described by Palomino et al,
2002 [47]. The INH (Sigma, St. Louis, MO, USA) stock
solution was prepared at concentration of 10 mg/mL in
sterile distilled water. Serial two-fold dilutions of INH in
100 L of Middlebrook 7H9 broth medium (Difco,
Detroit, MI, USA) containing glycerol enriched with 10%
oleic acid-albumin-dextrose-catalase (OADC) and Bacto
Casitone (Difco) were prepared directly in 96-well flat-
bottom microplates (Corning Costar, Cambridge, MA,
USA) at final INH concentrations from 16 to 0.2 g/mL
(200 L total volume). The inoculum was prepared from
fresh LJ medium in Middlebrook 7H9 broth medium
adjusted to a McFarland symbol.1 and then further
diluted 1:20. A 100 L aliquot of this dilution was added
into each well. The microplates were covered, sealed in
plastic bags, and incubated at 37°C in the normal atmos-
phere. After 7 days of incubation, 30 L of resazurin solu-
tion was added to each well, incubated overnight at 37°C,
and assessed for color development. Resazurin sodium
salt powder (Acros Organic N.V.) prepared at 0.01% (wt/
vol) in distilled water was used as a general indicator of
cellular growth and viability. A change from blue to pink
indicates reduction of resazurin and therefore bacterial
growth. The MIC was defined as the lowest drug concen-
tration that presented no color change. The cut off value
for resistance was  0.2 g/mL according Palomino et al,
2002 [32]. Growth controls containing no INH and steril-
ity controls without M. tuberculosis were included in each
MIC testing.

Nucleic acid extraction
Chromosomal DNA was extracted from cultures on
Löwenstein-Jensen medium, using the CTAB method as
described by van Embden et al., 1993 [48].

Sequence analysis
The genes were amplified with the following primers
(KatG 1. – 5' CAT GAA CGA CGT CGA AAC AG 3', KatG
2. – 5' CGA GGA AAC TGT TGT CCC AT 3'; ahpC 1. – 5'
GCC TGG GTG TTC GTC ACT GGT 3', ahpC 2. – 5' CGC

AAC GTC GAC TGG CTC ATA 3'; inhA (ORF) 1. – 5' GAA
CTC GAC GTG CAA AAC 3', inhA (ORF) 2. – 5' CAT CGA
AGC ATA CGA ATA 3'; inhA (reg) 1. – CCTCGCTGCCCA-
GAAAGGGA, inhA (reg) 2. – ATCCCCCGGTTTCCTC-
CGGT), yielding fragments of 232 bp, 359 bp, 206 bp and
248 bp, respectively. Amplifications were carried out in a
thermocycler Mini-Cycler-Hot Bonnet PTC-100 (MJ
Research, INC, EUA) as follows: 94°C for 2 min, 55°C for
1 min, and 72°C for 2 min, for 30 cycles. Amplification
products were analyzed by electrophoresis in 1.5% agar-
ose gels, purified with MicroSpin S-300 HR Columns
(Amersham Biosciences, Piscataway, NJ, USA) and
sequenced by using the Big Dye Terminator Cycle
Sequencing Kit with AmpliTaq DNA polymerase (Applied
Biosystems, Foster City, CA, USA) in the ABI Prism 3100
DNA Sequencer (Applied Biosystems).

Spoligotyping
Spoligotyping was performed as described by Kamerbeek
et al [49,21]. To determine the spoligotype family, pat-
terns were compared to those in the international data-
base of spoligo patterns (SpolDB4). The double repetitive
element (DRE) PCR was performed in accordance to
Friedman, 1995 [50]. The term 'cluster' was used for two
or more M. tuberculosis isolates with identical spoligotype
and DRE-PCR patterns.

Statistical analysis
Data were analyzed using Epi Info (version 6.03, CDC,
Atlanta, GA, US; public domain). Categorical variables
were compared by the Fisher exact or chi-squared test. A
confidence interval (CI) of 95% was used in all odds ratio
(OR) calculations.
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