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Abstract

Background: Microbial biofilms are known to cause an increasing number of chronic
inflammatory and infectious conditions. A classical example is chronic periodontal disease, a
condition initiated by the subgingival dental plaque biofilm on gingival epithelial tissues. We describe
here a new model that permits the examination of interactions between the bacterial biofilm and
host cells in general. We use primary human gingival epithelial cells (HGEC) and an in vitro grown
biofilm, comprising nine frequently studied and representative subgingival plaque bacteria.

Results: We describe the growth of a mature 'subgingival' in vitro biofilm, its composition during
development, its ability to adapt to aerobic conditions and how we expose in vitro a HGEC
monolayer to this biofilm. Challenging the host derived HGEC with the biofilm invoked apoptosis
in the epithelial cells, triggered release of pro-inflammatory cytokines and in parallel induced rapid

degradation of the cytokines by biofilm-generated enzymes.

Conclusion: We developed an experimental in vitro model to study processes taking place in the
gingival crevice during the initiation of inflammation. The new model takes into account that the
microbial challenge derives from a biofilm community and not from planktonically cultured bacterial
strains. It will facilitate easily the introduction of additional host cells such as neutrophils for future
biofilm:host cell challenge studies. Our methodology may generate particular interest, as it should

be widely applicable to other biofilm-related chronic inflammatory diseases.

Background biofilms [1,2]. This applies also to bacteria colonizing the
In most natural environments bacteria exist as highly = skin and human mucosa. Under certain conditions, bio-
structured dense surface attached aggregates designated as  films may cause disease. Classical examples are gingivitis
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and chronic inflammatory periodontal disease. Dental
plaque colonizing teeth initiates inflammation in the
adjacent host gingival epithelium. The epithelial cells lin-
ing the crevice between the gum and the tooth are the first
line of defense to the plaque bacteria [3]. Dental plaque
has long been recognized as a complex polymicrobial bio-
film [1,4-6]. The maturation of this biofilm involves a
change in the microbiota from predominantly Gram-pos-
itive facultative anaerobes to Gram-negative anaerobic
bacteria [7]. As the plaque accumulates, it induces inflam-
mation in the adjacent host tissues and the biofilm over
time extends under the gum, down the root surface, creat-
ing a niche favoring the growth of fastidious anaerobes,
such as Spirochaetes and Bacteriodetes [5].

Until very recently, in vitro experiments to elucidate this
host-parasite relationship, utilized human cell line cul-
tures challenged with putative pathogenic periodontal
bacteria that were invariably used in the planktonic state,
that is as cell suspensions in growth media or buffered
solutions. Evidence from such experiments is far discon-
nected from in vivo conditions and although useful as a
first approach, they poorly reflect the challenge to host
cells by multi-species biofilms. Biofilms are comprised of
either mono-species or multi-species biocenoses [8], and
their eradication is more difficult than for planktonic bac-
teria as they are highly resistant to antimicrobial agents
and the host's immune response [9]. Pathogenic biofilms
are often associated with chronic inflammatory diseases
such as periodontitis, or chronic conditions that are diffi-
cult to treat such as the colonization of urinary catheters
and endotracheal tubings [2,10-14]. Biofilm or co-culture
studies composed of one to three bacteria have been
reported in the past [15-17]; however, with hundreds of
different bacteria present in the human mouth, a more
extensive biofilm study model will better elucidate the cel-
lular responses triggered by bacteria that usually colonize
with other bacteria in vivo.

We developed an in vitro biofilm model mimicking sub-
gingival plaque to challenge cultured primary gingival
epithelial cells (HGEC) in order to assess interactions that
may reflect more accurately the in vivo processes occurring
in the gingival epithelium during the initiation of perio-
dontal inflammation. In comparison to epithelial cell
lines, HGECs are optimal, since the former have character-
istics and receptors similar to fibroblasts and other cell
types [18]. The bacterial species incorporated in the in
vitro 'subgingival' biofilm were chosen carefully based on
the following criteria: 1) published reports that the species
were frequently found and numerous in periodontal dis-
ease sites; and 2) that the species were cultivatable to per-
mit enumeration and also measurable by fluorescent in
situ hybridization (FISH) and if possible immunofluores-
cence (IF), in additional species-specific single-cell detec-
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tion assays to ensure quality control. We thus compiled a
list of nine microorganisms that, when incorporated in a
biofilm, included widely accepted pathogenic microbiota
[19-21]. Besides members of the gingival crevice plaque
(e.g. Actinomyces naeslundii, Streptococcus oralis, Veillonella
dispar) it comprises taxa detected most commonly in deep
periodontal pockets and widely utilized in virulence
experiments (e.g. Porphyromonas gingivalis, Prevotella inter-
media, Tannerella forsythia) with planktonic cells.

We describe here the procedures to generate the complex
'subgingival' in vitro biofilms and the techniques used to
challenge HGEC with such biofilms. We report on the
kinetics and reproducibility of biofilm formation and on
the effects of the biofilm on epithelial cells in terms of
generating apoptosis, inducing pro-inflammatory pri-
mary and secondary cytokines, and triggering direct bio-
film-mediated cytokine degradation.

Results

Characterization of biofilm composition

We generated in vitro 'subgingival' biofilms containing
nine different bacterial species representative of marginal
and subgingival plaque. We determined the kinetics of
biofilm formation using three independent bacteria
detection and enumeration assays to quantitate all bio-
film members (Fig. 1A). Scraped from the surface of the
hydoxyapatite discs after only 20 min of anaerobic incu-
bation to evaluate initial adherence, the bacteria showed
large quantitative inter-species differences. Campylobacter
rectus accounted for nearly 90% of the cells at this time
point. V. dispar, A. naeslundii, and S. oralis were in 1-10%
range, whereas the other five organisms were all below
0.1% of the total CFU. FISH and IF, as optical single cell
identification techniques, were not sufficiently sensitive
to reliably enumerate all nine species at 20 min.

Cell accumulation in the biofilm was fastest during the
initial presence of the inoculum suspension (up to 16.5
h). Thereafter, the total cell number (TCC) as well as the
cell numbers of the individual species continued to
increase by approximately two log steps until the experi-
ments were stopped at 64.5 h of biofilm formation. Cul-
ture and FISH analyses yielded very similar data for A.
naeslundii, S. oralis, and V. dispar. The other more fastidi-
ous taxa were detected in somewhat higher numbers by
FISH and IF (only four species studied by IF). Cell viability
in 64.5 h biofilms was estimated microscopically by the
in-/exclusion of fluorescent dyes and reached consistently
85%.

The reproducibility of biofilm formation was studied by
performing four completely independent experiments,
each in triplicate and at least one week apart from each
other. When examined by optical single cell analysis(Fig.
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Characterization of 9-species 'subgingival' in vitro biofilm model. (A) Time flow of biofilm formation. Data are means
from triplicate biofilms and gained comparatively by culture analysis (left panel), FISH with taxa-specific 16S rRNA probes (cen-
tral panel), or indirect IF with species-specific mAb (right panel, only four taxa). (B) Total bacteria and all individual taxa of 64.5

h biofilms enumerated by culture (upper panel) and FISH/IF(lower panel), assessing four completely independent experiments,

each performed with triplicate biofilms. Culture data are expressed as CFU per biofilm, FISH/IF data as number of bacteria per
biofilm. Box colors indicate Gram-negative (red) or Gram-positive (blue) bacteria. Abbreviations: TCC, total cell count; Crec,

Campylobacter rectus; Fnuc, F. nucleatum subsp. vincentii; Pgin, Porphyromonas gingivalis; Pint, Prevotella intermedia; Tfor, Tannerella

forsythia; Vdis, Veillonella dispar; Anae, Actinomyces naeslundii; Sint, Streptococcus intermedius; Sora, Streptococcus oralis.

1B, lower graph), little variation was observed between
independent experiments for all but the two putative sub-
gingival pathogens P. gingivalis, and T. forsythia, suggesting
that these fastidious organisms had the most difficulties
to establish in the biofilms. This interpretation is sup-
ported by the corresponding culture data (Fig. 1B, upper
graph), where, together with Fusobacterium nucleatum and
P. intermedia, these species showed the lowest level of col-
onization and the largest variation. F. nucleatum and P.
intermedia colonized the biofilms consistently at high
densities (Fig. 1B, lower graph) but were markedly under-
scored by culture due to their fastidious growth require-
ments. Changes of the nutritional conditions resulted in

the formation of biofilms of quantitatively different com-
position (Table 1). In general, an increase of the serum
concentration at the cost of the saliva concentration led to
higher total CFU per biofilm and to equal or higher CFU
of the individual species. P. intermedia was a notable
exception by colonizing best in the medium with 30%
mFUM, 60% saliva and only 10% serum which are the
conditions used in the following for our co-culture exper-
iments with HGEC.

Biofilm structure
Bacteria were stained by multiplex FISH and assessed by
confocal laser scanning microscopy (CLSM). Representa-
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Table I: Composition of biofilms generated under different nutritional conditions.

Culture Conditions

Number of bacteria (* SD) present in biofilm per disc (cfu, x10¢)

0-16.5 h 16.5-64.5h N Total Crec Fnuc Pgin Pint Tfor Vdis Anae Sint Sora
a b 15 3450 365 50 60 1.4 I 614 155 405 982
(1780) (151 (38) (48) (1.2) (14) (601) (133) @31 (488)

c d 12 1770 171 36 23 30 6.8 541 220 122 520
719) (140) (61) 4.4) (63) (7.0) (458) (165) (117) (268)

a e 12 2710 256 26 105 1.7 3.0 931 103 219 686
(1100) 1 (43) (151) (3.1 (2.7) (702) (122) (190) (309)

a f 3 710 1.4 0.0l 73 0.08 47 142 23 6l 293
(529) (1.3) (0.004) (7.6) (0.003) (30) (103) (3) (22) (55)

Culture conditions: a, 35% saliva + 35% human serum + 30% FUM with 3% glucose, anaerob (10% H,, 5% CO,, 85% N,); b, 35% saliva + 35% human
serum + 30% FUM with 3% glucose, aerob (5% O,, 5% CO,, 90% N,); c, 60% saliva + 10% human serum + 30% FUM with 3% glucose, anaerob (10%
H,, 5% CO,, 85% N,); d, 60% saliva + 10% human serum + 30% FUM with 3% glucose, aerob (5% O,, 5% CO,, 90% N,); e, 70% human serum +
30% FUM with 3% glucose, aerob (5% O,, 5% CO,, 90% N,); f, 70% human serum + 30% 0.9% NaCl, aerob (5% O,, 5% CO,, 90% N,). Species

abbreviations are as defined in the legend to Figure .

tive images are shown in Fig. 2. 64.5 h biofilms had a
thickness of 40 to 60 m with broad distribution of S.
intermedius, P. intermedia and F. nucleatum. In contrast, T.
forsythia, and P. gingivalis were restricted to microcolonies.
C. rectus occurred dispersed, but here and there also in
microcolonies. Images from transmission electron micro-
scopy (TEM) show the predominance of various cocci and
short rods (streptococci, P. intermedia, V. dispar) inter-
spersed by prominent elongated fusiform cells (F. nuclea-
tum subsp. vincentii) (Fig. 2D).

The in vitro 'subgingival’ biofilm induces apoptosis in
HGEC

HGEC in 6-well plates were challenged with biofilms
attached to a hydroxyapatite (HA) disc for 4 and 24 h
using the experimental setup described in Fig. 3A. Apop-
tosis was detected by the TUNEL assay. Biofilm-chal-
lenged HGEC exhibited signs of apoptosis early during
challenge (Fig. 3B). After only 4 h approximately 75% of
the cells showed blebbing and pyknotic nuclei and
stained positive for TUNEL. At 24 h more than 85% of the
HGEC were apoptotic (Fig. 3C).

Biofilm-challenged HGEC elicit a cytokine response that is
reduced over time

HGEC were challenged with 'subgingival' biofilms for 4
and 24 h. At 4 h, the primary (IL-18) and secondary
cytokine (IL-6) and chemokine (IL-8) responses were sig-
nificantly elevated (Fig. 4A &4B). At 24 h, however, the
level of all cytokines had subsided significantly. To test
our hypothesis that this decline of cytokine levels is due to
biofilm-mediated degradation, supernatant from HGEC,
pre-challenged with heat-killed planktonic P. gingivalis
ATCC 33277 for establishing cytokine production, was

incubated either with biofilms on HA discs, filtered super-
natant from 64.5 h biofilm cultures, or with KSFM
medium in which biofilms had been incubated for 24 h
(filtered or unfiltered). Assays performed after 1 min, 30
min, 1, 2, and 4 h of exposure to the biofilm showed that
IL-1B, IL-6 and IL-8 degradation began immediately and
progressively increased to reach approximately 25% after
4 h (Table 2). When filtered biofilm culture supernatant
or KSFM were tested, IL-6 and IL-8 degradation was not
observed, while the rate of IL-1p degradation was signifi-
cantly reduced up to 2 h but eventually reached levels sim-
ilar to that induced by the biofilm at 4 h. This suggests that
the presence of biofilm bacteria is necessary for IL-6 and
IL-8 degradation, while IL-1f is more susceptible to deg-
radation by a soluble component of the biofilm culture.

Discussion

We demonstrated that biofilms mimicking subgingival
plaque can be established reproducibly in vitro. When
exposed in co-culture to primary human epithelial cells,
they induce cell apopotosis and production of pro-inflam-
matory primary and secondary cytokines. We further
showed that the cytokines produced are immediately
attacked by the biofilm. Thus, this co-culture model
opposing a multi-species 'subgingival' biofilm to human
oral epithelial cells mirrors two key aspects of the interac-
tions taking place at the dental plaque:periodontal tissue
interphase, namely the triggering of a strong pro-inflam-
matory host cell response and the simultaneous microbial
subversion of host defense mechanisms. Our strategy to
construct in vitro 'subgingival' biofilms makes use of the
well-characterized 'supragingival' Ziirich biofilm model
[22,23] made up of six species, which in vivo colonize
preferentially at the tooth surface and at the gingival mar-
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Figure 2

Biofilm structure visualized by CLSM and TEM. CLSM images of a 64.5 h 9-species biofilm stained by multiplex FISH for
(A) V. dispar (purple; VEI217-ROX, 40% formamide), C. rectus (blue; Camp655-Cy5, 30% formamide), F. nucleatum (red;
Fnucl33c-Cy3, 30% formamide), and P. intermedia (green; L-Pint649-2-FAM, 30% formamide), (B) V. dispar (purple; VEI217-
ROX, 40% formamide), A. naeslundii (red; L-Act476-2-Cy3, 25% formamide), S. intermedius (green; L-Sco/int|172-2-FAM, 25%
formamide), and S. ordlis (blue; MIT447-Cy5, 25% formamide), and (C) V. dispar (purple; VEI217-ROX, 40% formamide), T. for-
sythia (green; Tfor582-FAM, 40% formamide), P. gingivalis (red; L-Pgin1006-Cy3, 30% formamide), and C. rectus (blue; Camp655-
CyS5, 30% formamide). Images are |- m-thick transverse (large images), sagittal (right) and coronal (bottom) slices at the posi-
tions indicated by the fine lines. The length of the bars indicates 20 m. (D) TEM image of a 64.5 h multi-species biofilm demon-
strating the predominance of varius cocci or very short rods (S. oralis, S. intermedius, V. dispar, P. intermedia) and of the fusiform
F. nucleatum cells. Bar =5 m.
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Figure 3

Apoptosis of human cultured gingival epithelial cells exposed to the biofilm. (A) Scheme of the co-culture design as
used in both single cell culture dishes and 6-well plates. Biofilms were placed upside-down on a ring support that was layed
onto the gingival epithelial cell layer. (B) TUNEL labeling of apoptotic HGEC exposed to the biofilm using confocal microscopy
at X600 magnification. Positive control - complete TUNEL assay of DNAse-treated HGEC; negative control - TUNEL label
solution only on HGEC in plain KSFM; unchalleged controls - complete TUNEL assay of HGEC in plain KSFM without biofilm
challenge; biofilm on ring - HGEC challenged for 4 h and 24 h with the biofilm on a ring support (see Fig. 3A). (C) Percentage
of TUNEL positive apoptotic HGEC exposed to the biofilm, estimated using confocal microscopy. Unchalleged controls - com-
plete TUNEL assay of HGEC in plain KSFM without biofilm challenge; negative control - TUNEL label solution only on HGEC
in plain KSFM; positive control - complete TUNEL assay of DNAse-treated HGEC; biofilm on ring - HGEC challenged with the
biofilm on a ring support (see Fig. 3A) for 4 and 24 h. Values represent the mean + SD of at least 4 fields of vision from 2
assays.

gin. By eliminating Streptococcus mutans/sobinus and Cand-  cessful, this would be a major advance towards combin-
ida albicans, and addingthe putative periodontal ing two in vitro model systems that basically seem to
pathogens C. rectus, P. gingivalis, P. intermedia, and T. for-  exclude each other. Our data show that biofilm adapta-
sythia, we assembled a consortium of microorganisms that  tion to 5% O, is feasible. They further show that the colo-
much more mirrors subgingival plaque. Streptococcus inter-  nization reproducibility is not yet completely satisfactory
medius completes the biofilm consortium, being a subgin-  as far as the most fastidious and most oxygen- sensitive
gival species also known for its association with dental  species P. gingivalis, and T. forsythia are concerned (Fig. 1
implant infections, pyogenic infections, endocarditis, and  and Table 1). This indicates that oxygen consumption by
various types of abscesses [24-26]. A second strategic aim  the microbial consortium - creating a low reduction
was to move our in vitro 'subgingival' biofilms from  potential - can be somewhat variable among parallel bio-
strictly anaerobic to aerobic atmospheric conditions that  films. Preliminary evidence suggests that later exposure of
match those used to propagate mammalian cells. If suc-  biofilms to oxygen (e.g. at 44.5 h) does not improve the
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Table 2: Cytokine degradation in biofilm challenged HGEC cultures.
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Control Biofilm

Supernatant

Media Filtered Media Unfiltered

Mean SsD p* Mean SD P

Mean SD p

Mean SD p Mean SD p

ILI | min 223I 045 >005 1731 0.78 ok 19.94 1.05 >0.05 1682 0.66  #¥* 1598  0.55 ek
Sh 20.69 038 >005 1473 037 k= 20.08 035 =005 17.14 0.38 ok 1692 032 k=
I h 1844  0.69 >0.05 15.67 1.47 ek 19.65 051 >0.05 1640 03I ook 1439 0.1 ook
2h 19.40 1.19 >005 1543 0.73  ‘k* 1880 099 >0.05 13.64 122 ek 1480  0.69 ek
4h 1782 243 >0.05 1637 060 ik 17.14  0.73 ok 13.81 0.45 ek 13.50  0.27 e

IL6 | min 354.02 4322 >0.05 30997 277 >005 373.18 512 >0.05 31548 092 >0.05 317.15 425 >0.05
Sh 38302 232 >005 31147 257 >005 37269 033 >0.05 31665 199 >005 28425 08l >0.05
I h 39168 446 >0.05 31080 325 >005 36135 166 >0.05 30146 040 >0.05 28843 1.6 >0.05
2h 39468 357 >0.05 30145 549 >005 35385 1.80 >0.05 28826 264 >0.05 290.77 077 >0.05
4h 32398 31.60 >0.05 25482 0.57 ok 361.02 222 >0.05 29461 075 >0.05 298.12 063 >0.05

IL8 | min 127728 10.12 >0.05 126825 1251 >005 142481 471 >0.05 1281.82 9.28 >0.05 117269 567 >0.05
Sh 149687 1.09 >0.05 1115.00 942 *&  |406.66 2.64 >0.05 114227 3456 >0.05 1[164.16 0.73 sk
I'h 143274 652 >0.05 1063.69 [12.17 **+ 1322.08 12.07 >0.05 132195 734 >005 1159.02 2.6l ook
2h 141932 6.88 >0.05 107263 19.14 ** 1360.15 1.78 >0.05 1325.05 830 >005 111537 9.80  *
4h 135482 9.10 >005 950.8] 284 k36209 1679 >0.05 1237.07 1.60 >0.05 1090.25 20.08 i

p = p value

*p <0.0l

*k H <0.001

+ Control p values are of its triplicates. Test p values are against controls.

growth of the subgingival anaerobes (with the possible
exception of T. forsythia) and does not significantly reduce
their viability either. The duration of the exposure to aer-
obic conditions had remarkably little effect on the ratios
between the bacteria within the community (data not
shown).

We used FISH, and in part indirect IF, in addition to quan-
titative culture for monitoring biofilm composition. Our
data demonstrate the importance of using one or two

complementary techniques, as any single technique may
fail under particular circumstances. Examples in this study
are the consistently reliable enumeration of F. nucleatum
subsp. vincentii by FISH but not by culture due to difficul-
ties in optimizing the F. nucleatum culture medium (a
strain-specific phenomenon). CLSM of biofilms stained
simultaneously for multiple bacterial species by multiplex
FISH revealed a remarkable biofilm thickness of approxi-
mately 50 m and provided preliminary evidence for
microcolony formation by several biofilm organisms

IL-1 and IL-6 levels from HGECs challenged with Biofilm IL-8 levels from HGECs challenged with Biofilm
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b 2IL6 _ \
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Figure 4

Cytokine production in biofilm-challenged HGEC cultures. (A) Supernatant IL-1 and IL-6 levels, and (B) IL-8 levels in
challenged HGEC cultures and controls. Unchallenged cells were used as a negative control. Values represent the mean + SD
of triplicate ELISA assays performed after 4 and 24 h of co-culture.
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which is reminiscent of microcolonies found characteris-
tically in subgingival plaques from deep progressed perio-
dontal pockets. Primary HGEC challenged with such
'subgingival' biofilms were able to induce a cytokine
response after 4 h of challenge (Fig. 4A &4B) and although
this is not strictly comparable because we did not perform
comprehensive side by side comparisons, the cytokine
response was higher than the previously reported cytokine
response elicited by single planktonic bacterial species
[27,28]. However, when the exposure time was prolonged
to 24 h, the level of all cytokines had diminished signifi-
cantly. We tested the hypothesis that the cytokine levels
are reduced due to extracellular biofilm-mediated degra-
dation. In fact, IL-6, and IL-8 degradation began immedi-
ately and progressively increased to reach approximately
25% after 4 h of exposure, but only in the presence of
intact biofilm. This suggests that the presence of biofilm
bacteria is necessary for IL-6 and IL-8 degradation, while
IL-1B was found to be more susceptible to degradation by
a soluble component in the biofilm culture medium. Bio-
film-induced cytokine degradation could be, at least in
part, due to the gingipain activity of P. gingivalis or a pro-
tease of T. forsythia with similar trypsin-like activity. Previ-
ous studies have shown that P. gingivalis can induce
cytokine degradation [28-30] that is mainly lysine-gingi-
pain-dependent. The lower rate of the biofilm-induced
cytokine degradation observed in the present study com-
pared to that induced by P. gingivalis monocultures [28] is
possibly dose-related. Plaque mediated cytokine degrada-
tion is a potential mechanism to explain the reduced lev-
els of pro-inflammatory cytokines (IL-6) and chemokines
(IL-8) found in the GCF of patients with periodontitis
[31-35], as well as the GCF from sites with active perio-
dontal disease or unresolved defects following treatment
[33,36]. In addition to cytokine production, primary
HGEC challenged in wvitro with a 'subgingival' biofilm
exhibited apoptosis as evidenced by DNA fragmentation,
the hallmark of apoptosis. This is a potential mechanism
to explain the apoptosis that is observed in the gingiva at
sites of chronic bacteria-induced inflammation [37,38],
particularly among the superficial cells of the junctional
epithelium [38] and the fibroblasts and leucocytes of the
connective tissue [37,38]. The high proportions of HGEC
undergoing apoptosis in the described co-culture system,
as well as the short exposure time that is necessary for the
initiation of the apoptotic process, suggest that the in vitro
'subgingival' biofilm is a highly pathogenic entity, and
possibly more pathogenic than single bacterial strains.

Conclusion

Our approach allowed us to directy link primary human
gingival epithelial cells, being an integral part of the oral
innate immune system, to an artificial, in vitro propagated
'subgingival' biofilm, and elicit various cell responses
ranging from cytokine production to apoptosis. Our data
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indicate that, compared to responses triggered by plank-
tonic individual species, the bacteria organized in an in
vitro 'subgingival' biofilm express even more damaging
virulence factors neutralizing the host cells' pro-inflam-
matory defense. As neither the culturing of host defense
cells nor the assembly of artificial biofilms is restricted to
oral tissues and bacteria, the same strategy of challenging
cultured host cells with in vitro propagated bacterial bio-
films may be of general interest and could be applied to
study other elusive chronic inflammatory diseases.

Methods

In vitro biofilm generation

Technically, the 10-species biofilms used in this study are
an advancement of the six-species model described previ-
ously [23,39]. The following 10 strains were used: C. rectus
OMZ 697, F. nucleatum subsp. vincentii KP-F2 (OMZ 596),
P. gingivalis ATCC 332777 (OMZ 925), P. intermedia ATCC
25611T(OMZ 278), T. forsythia OMZ 1047, T. lecithinolyti-
cum ATCC 700332T (OMZ 684), V. dispar ATCC 177487
(OMZ 493), A. naeslundii OMZ 745, S. intermedius ATCC
27335 (OMZ 512), and S. oralis SK 248 (OMZ 607). Bio-
films were grown in 24-well polystyrene cell culture plates
on sintered pellicle-coated HA discs (10.6 mm @) [40]. To
initiate biofilm formation discs were covered for the first
16.5 h with 1.6 ml of growth medium consisting of 60%
saliva, 10% human serum (pool from three donors), 30%
mFUM (modified fluid universal medium) [41,42] and
200 1 of a bacterial cell suspension prepared from equal
volumes and densities of each strain. After 16.5 h of anaer-
obic incubation at 37°C, the inoculum suspension was
removed by "dip-washing" [39] the discs, which then
were transferred into wells with fresh medium (60%
saliva, 10% human serum, 30% mFUM) and incubated in
an oxygen-containing atmosphere (90% N,, 5% CO,, 5%
0,) for further 48 h. During this time-period discs were
dip-washed after 20.5, 24.5, 40.5, 44.5 and 48.5 h and
given fresh medium after 40.5 h. After 64.5 h of incuba-
tion, the discs were vigorously vortexed for 1 min in 0.9%
NaCl to harvest the biofilms or intact biofilm-discs were
frozen at -80°C for further use. This cultivation procedure
(which corresponds to the culture conditions ¢/d in Table
1) was selected for use with all biofilm:HGEC co-culture
experiments described herein after broad evaluation of
other nutritional conditions. Options tested included
richer conditions during the first 16.5 h (35% saliva and
35% human serum along with 30% mFUM) and several
variations of the saliva, serum and mFUM concentration
during the period from 16.5 to 64.5 h (Table 1). Further
pre-testing to evaluate the effect of biofilm exposure to an
oxygen-containing atmosphere and to the co-incubation
with HGECusing KSFM were also investigated; although
variations were observed, the number of anaerobic bacte-
ria that survived after exposure to an aerobic environment
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was comparable to the pre-exposure levels (data not
shown).

Analysis of biofilm composition

Suspensions of harvested bacteria were evaluated for cell
viability using the LIVE/DEAD BacLight Bacterial Viability
assay (Molecular Probes) as described [42].

Culture

Serial dilutions of suspended biofilm bacteria were pre-
pared in 0.9% NaCl and 50 1 aliquots were plated on
Columbia blood agar supplemented with 5% whole
human blood (to estimate total CFU, A. naeslundii, C. rec-
tus, S. intermedius, V. dispar) and phosphomycin (P. gingi-
valis, P. intermedia), on mitis salivarius agar (S. oralis), on
fastidious anaerobe agar with erythromycin, vancomycin,
and norfloxacin (F. nucleatum) [42], and on modified
OMIZ-W68 agar [43] supplemented with lactose,
caseinoglycomacropeptide, N-acetylmuramic acid, and N-
acetylglucosamine to detect T. forsythia. With the excep-
tion of mitis-salivarius-agar plates (10% CO,) plates were
incubated anaerobically at 37°C for 72 h. Species identi-
fication was achieved by observation of colony morphol-
ogy in conjunction with microscopic and FISH
examination of cells from selected colonies. Data were
scored for each species as CFU per biofilm. T. lecithiolyti-
cum was estimated by dark field microscopy and FISH.

FISH and IF

Suspensions of biofilm bacteria were spotted and fixed
directly on 24-well slides and processed for FISH exactly
as described [44]. The sequences of the employed custom-
synthesized probes(Microsynth) are listed in Table 3. C.

http://www.biomedcentral.com/1471-2180/9/280

rectus, P. gingivalis, P. intermedia, and T. forsythia were
stained by IF with monoclonal antibodies (mAb)
212WR2 [45], 61BG1.3 [46], 37BI6.1 [41], and 103BF1.1
[45], respectively, using a sandwich assay [44]. FISH and
IF stained fluorescent bacteria were scored in multiple
randomly selected viewing fields using the previously
described equipment and counting procedure [44] result-
ing in a lower detection limit of approximately 3 x 103
bacteria ml-!.

CLSM and TEM analysis of biofilm structure

For CLSM intact biofilms were prepared first for multiplex
FISH [45]. Lysozyme treatment (1 min) was done only if
the ensuing FISH included staining Gram-positive biofilm
species. Following pre-hybridization (15 min, 46°C), the
FISH procedure was executed two to three times per bio-
film, always starting with the probe(s) requiring the high-
est formamide concentration [47]. After the last FISH
cycle excess saline was gently aspirated from the discs
without touching the biofilms. They were embedded
upside-down in 20 1 of Mowiol [48] and stored at room
temperature in the dark for at least 6 h prior to micro-
scopic examination. Stained biofilms were examined by
CLSM at randomly selected positions [39] using a 100 x
(numeric aperture 1.4) oil immersion objective, and fil-
ters set to 500-540 nm for detection of 6-carboxyfluores-
cein (FAM), 540-580 nm for Cy3, 590-630 nm for 5-
carboxy-X-rhodamine (ROX) and 640-700 nm for Cy5.
Image acquisition was done in 8-line average mode and
the data were processed as described [39]. To perform
TEM biofilms were harvested at 64.5 h, fixed for 1 h in
2.5% glutaraldehyde, washed, and treated for 2 h with 1%
osmium tetraoxide, all in cacodylate buffer, pH 7.4. Dehy-

Table 3: 16S rRNA targeted DNA probe sequences, target sites and target taxa

DNA Probe Sequence (5' to 3')b Site % Forma-mide Target Reference
EUB338 GCTGCCTCCCGTAGGAGT 338-55 30-50 All biofilm members [52]
L-Act476-2 ATCCAGCTACCGTCAACC 476-93 25-40 A. naeslundii This study
CAMP655 CATCTGCCTCTCCCTYAC 655-72 30 C. rectus This study
Fnucl33c GTTGTCCCTANCTGTGAGGC 133-52 30-40 F. nucleatum This study
L-Pgin1006-2 GTTTTCACCATCMGTCATC 1006-24 30 P. gingivalis This study
L-Pint649-2 CGTTGCGTGCACTCAAGTC 649-67 30-50 P. intermedia This study
L-MIT446-2 ACACYCGTTCTTCTCTTACAA 446-66 25-50 S. oralis This study
MIT447 CACYCGTTCTTCTCTTACA 447-65 25 S. oralis [47]
L-Scoint172-2 CAGTAAATGTTCTTATGCGGTA 172-91 25-40 S. intermedius This study
Tforl27 CTCTGTTGCGGGCAGGTTAC 127-46 30-40 T. forsythia [44]
Tfor582 GCGGACTTAACAGCCCACCT 582-601 30-40 T. forsythia [44]
L-Tlema738-2 GCGTCAATTATCTGCCGG 738-55 30 T. lecithinolythicum This study
VEI217 AATCCCCTCCTTCAGTGA 217-34 25-50 V. dispar [47]

aProbes were labeled at the 5'-end with Cy3, Cy5, 6-carboxyfluorescein (FAM), or 6-carboxy-X-rhodamine (ROX). The designations of all probes
containing locked-nucleic-acid (LNA) substitutions start with L-. b Bold printed characters indicate LNA substitutions [53]. LNA incorporated DNA
probes (LNA/DNA probes) have been described to improve significantly FISH fluorescence intensity in comparison to conventional DNA probes
with the same sequence [53]. Our data fully confirm these findings. Applied in FISH at 10-20% higher formamide concentration than the
corresponding conventional DNA probe with dental plaque samples, we noticed no loss of specificity for any of the new LNA/DNA probes (data not

shown).
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dration was done in a graded series of ethanol and then
propyleneoxide before embedding with Epon in flat poly-
styrene wells. The hardened, embedded biofilms were cut
into wedge-shaped pieces and treated with 10% EDTA for
3 days thus removing the HA. Ultra-thin sections were
contrasted with saturated, acidified uranyl acetate and
lead citrate for 3 min each. Sections were viewed on a
Philips EM400T transmission electron microscope at 60
kV.

Gingival cell isolation and culture

Gingival tissue biopsies were obtained with informed
consent from periodontally healthy patients undergoing
crown-lengthening procedures at the University of Louis-
ville School of Dentistry, Graduate Periodontics Clinic,
according to an IRB approval. The gingiva was treated with
0.025% trypsin and 0.01% EDTA overnight at 4°C and
HGEC were isolated as previously described [49]. The
authenticity of the gingival epithelial cells was confirmed
by immunohistochemistry with mAb against human pan-
keratin (Dako) and histologically by cell morphology.
The HGEC were seeded in 60-mm plastic tissue culture
plates coated with type-I collagen (BD Biocoat) and incu-
bated in 5% CO, at 37°C using KSFM medium (Invitro-
gen) containing 10 g ml! of insulin, 5 g ml! of
transferrin, 10 M of 2-mercaptoethanol, 10 M of 2-ami-
noethanol, 10 mM of sodium selenite, 50 g ml-! of bovine
pituitary extract, 100 units ml-! of penicillin/streptomycin
and 50 ng ml! of fungizone (complete medium). When
the cells reached sub-confluence, they were harvested and
sub-cultured as described [50].

HGEC:biofilm challenge

HGEC cultures at the fourth passage were harvested and
seeded at a density of 0.5 x 10° cells per well in a 6-well
culture plate coated with type-I collagen, and maintained
in 2 ml of complete medium. The HGEC used in this
study was chosen on the basis of it having a 'median’
responsiveness, sufficient quantity of cells for testing and
as our previous study showed consistent immunological
trends among different cultures [27]. Biofilms on HA discs
were defrosted and carefully placed for 24 h ("revived") in
fresh biofilm-medium (60% saliva, 10% human serum,
30% mFUM) or plain KSFM (for cytokine degradation
experiments; as explained later) in an oxygen-containing
atmosphere (90% N,, 5% CO,, 5% O,). When the HGEC
reached confluence (approximately 10° cells per well), the
HGEC were washed twice with fresh medium and then
challenged for 4 or 24 h in antibiotic-free medium at
37°C in 5% CO, with one biofilm carrying HA disc per
well that had just been dipped three times in sterile nor-
mal saline solution. The co-culture set-up is illustrated in
Fig. 3A. Discs were placed on the ring support (tip of a
sterile plastic inoculation loop; Copan) with the biofilm
towards the HGEC layer. A one millimeter distance
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between the biofilm and the HGEC was maintained to
allow fluid flow [51]. Neither the ring nor the HA disc trig-
gered any of the HGEC responses assayed in this study.
The effect of freezing, thawing and reviving of biofilms
has been carefully assessed (data not shown). Results
showed only minor differences in CFU/disc between fresh
biofilms and biofilms that had been frozen, shipped,
thawed and revived by incubating anaerobically in bio-
film medium for 24 h (data not shown).

Cytokine production and degradation assay

IL-1B, IL-6 and IL-8 were measured by ELISA using the
OptEIA kit (BD Biosciences) according to the manufac-
turer's instructions. The absorbance was read at 450 nm.
P. gingivalis strains at low passage were grown anaerobi-
cally in GAM media (Nissui Pharmaceutical) for 2 days.
After cultivation, the bacteria were harvested by centrifu-
gation, washed in PBS (pH 7.4) and then heat-inactivated
for 1 h at 60°C. Culture supernatants produced after a 24
h incubation of HGEC with heat-inactivated planktonic P.
gingivalis (MOI:100) were incubated at 37° C with: (i) bio-
film attached to HA discs (Biofilm), (ii) supernatant from
the biofilm culture (64.5 h) in the specific mFUM media
(Supernatant), (iii) supernatant from a 24 h "revival"
incubation of biofilm discs in plain KSFM either filtered
or unfiltered (media filtered and media unfiltered). The
reaction was stopped at 1 min, 30 min, 1 h, 2 hand 4 h by
placing the samples at -80°C until ELISA. All data are
expressed as the mean + SD of three experiments done in
triplicate. Statistical analyses were performed by one-way
analysis of variance (ANOVA) using the InStat program
(GraphPad, San Diego, CA) with Bonferroni correction.
Statistical differences were considered significant at the p
< 0.05 level.

TUNEL assay

Direct TUNEL (Terminal deoxynucleotidyl Transferase
Fluorescein-dUTP Nick End Labeling) assay was per-
formed using a commercially available kit (Cat No 11-
684795001, Roche Applied Science). Untreated cells were
used as a negative control and cells treated with DNase
1000 U/ml were used as a positive control. The assay was
performed according to the manufacturer's instructions.
Briefly, the HGEC were washed three times with PBS, fixed
with 4% paraformaldehyde(pH 7.4) for 30 min at room
temperature, washed twice, and then permeabilized with
0.1% Triton X (Sigma-Aldrich) for 3 minutes on ice. After
two washes, the cells were incubated with the TUNEL
reaction mixture for 60 min at 37°C and then washed
three times before analysis by CLSM (FluoView 500,
Olympus). The percentage of apoptotic cells was deter-
mined by counting TUNEL-positive cells, cells exhibiting
pyknosis and blebbing, and all cells present in four repre-
sentative fields of vision (x 600 magnification) from each
of two cultures with which TUNEL assays were performed.
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Abbreviations

CLSM: confocal laser scanning microscopy; FAM: 6-car-
boxyflurescein; FISH: fluorescent in situ hybridization;
HA: hydroxy apatite; HGEC: human gingival epithelial
cells; IF: immunofluorescence; LNA: locked-nucleic-acid;
mAb: monoclonal antibodies; mFUM: modified fluid uni-
versal medium; MOI: multiplicity of infection; ROX: 5-
carboxy-X-thodamine; TCC: total cell number; TEM:
transmission electron microscopy.
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