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Abstract

Background: The boundaries of bacterial species and the mechanisms underlying bacterial
speciation are matters of intense debate. Theoretical studies have shown that recombination acts
as a strong cohesive force preventing divergence in bacterial populations. Streptococcus pneumoniae
populations have the telltale signs of high recombination with competence implicated as the major
driving force behind gene exchange. Competence in S. pneumoniae is triggered by a quorum-sensing
mechanism controlled by the competence-stimulating peptide pheromone.

Results: We studied the distribution of the two major pherotypes in the pneumococcal population
and their association with serotype, antimicrobial resistance and genetic lineage. Using multilocus
sequence data we evaluated pherotype influence on the dynamics of horizontal gene transfer. We
show that pherotype is a clonal property of pneumococci. Standard population genetic analysis and
multilocus infinite allele model simulations support the hypothesis that two genetically
differentiated populations are defined by the major pherotypes.

Conclusion: Severe limitations to gene flow can therefore occur in bacterial species in the
absence of geographical barriers and within highly recombinogenic populations. This departure
from panmixia can have important consequences for our understanding of the response of
pneumococci to human imposed selective pressures such as vaccination and antibiotic use.

and established the essential role of horizontal gene trans-
fer and recombination in bacterial evolution, revealing

Background
Horizontal gene transfer and recombination, although

recognized as important mechanisms in the evolution of
certain phenotypes such as penicillin resistance in both
Neisseria meningitidis and Streptococcus pneumoniae, were
considered to be rare [1,2]. Full genome sequences and
extensive surveys of bacterial populations using multilo-
cus sequence typing (MLST) have challenged this view

the high frequency of these events [3,4].

Streptococcus pneumonide (pneumococcus) is an important
human pathogen, taxonomically recognized as a group
within the pneumoniae-mitis-pseudopneumoniae cluster
of the Streptococcus genus [5]. The capacity of pneumo-
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cocci to undergo genetic transformation was recognized
early in the study of this bacterium [6] and it was later
found that competence presented the intriguing property
of being tightly controlled at the population level [7].
Competence was thus one of the first examples of a mul-
ticellular bacterial response coordinated by a diffusible
signal. These processes were later termed quorum-sensing
and found to be used by both Gram positive and Gram
negative bacteria to synchronize the switch of genetic pro-
grams simultaneously at the population level in order to
achieve goals that are unattainable by single cells [8]. Sev-
eral molecules are used by bacteria to regulate their quo-
rum-sensing mechanisms, with modified or unmodified
oligopeptides being used by Gram positive and Gram-
negative bacteria [8]. In S. pneumoniae, a secreted unmodi-
fied 17-aminoacid peptide pheromone, termed the com-
petence-stimulating peptide (CSP), is responsible for
quorum-sensing [9]. The product of the comC gene is
secreted and processed by an ABC transporter (ComAB)
resulting in the accumulation of CSP in the medium. A
two-component regulatory system consisting of a histi-
dine kinase receptor (ComD) and its cognate response
regulator (ComE) are then responsible for sensing the
CSP concentration and triggering the competence
response.

In pneumococci several distinct mature CSPs have been
identified, although the vast majority of strains produce
one of two variants: CSP-1 or CSP-2 (also designated CSP-
o and CSP-B, respectively) [5,10-12]. Each different CSP
variant identifies a pherotype and strains genetically carry-
ing one of the variants are mostly unable to respond to the
presence of the other signaling peptide, possibly due to
specificity of the ComD receptors for their cognate CSP
alleles [10,11].

Competent bacteria will recognize and bind naked double
stranded DNA fragments present in their environment,
and translocate these fragments in a single stranded form
across the membrane and into the cytoplasm. A number
of genes facilitating recombination of the incoming DNA
with the bacterial chromosome are also upregulated at
competence, favoring the integration of the foreign DNA
fragment that may permanently change the cell genotype
and phenotype [9]. Competent cells are also endowed
with the capacity to kill non-competent pneumococci in a
mechanism named fratricide [13,14] and this may be a
key property for transformation in vivo by providing a
source of free DNA.

Pneumococcal fratricide is committed by cells that are
competent and thus able to lyse non-competent siblings
[13,15-17] with the concomitant release of DNA that will
become available for transformation. The existence of two
predominant pherotypes in S. pneumoniae and the docu-
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mented occurrence of co-colonization [18,19], led to the
proposal of two contrasting models of the pherotype
impact on genetic exchange [15]. In the first model, the
lack of inter-pherotype communication prevents genetic
exchange between phenotypes favoring genetic differenti-
ation [20,21]. The second model is based on the proposal
that the absence of inter-pherotype cross-activation would
result in a race for competence activation with the win-
ning phenotype inducing the lysis of cells belonging to
the other pherotype [22]. The latter would result in a more
frequent exchange of genetic information between differ-
ent pherotype lineages that is assumed to result in
enhanced genetic diversity of pneumococci.

The human host is the only natural ecological niche of all
pneumococcal strains where they are exposed to the same
environmental insults and share very similar lifestyles. We
propose that limitations to lateral gene transfer, through a
kind of "assortative mating" promoted by the existence of
two pherotypes, is creating genetically differentiated sub-
populations within S. pneumoniae.

Results and discussion

Pherotype distribution among the pneumococcal
population

Traditionally, pneumococcal strains have been character-
ized by their capsular polysaccharide (serotype) of which
pneumococci produce 91 chemically and immunologi-
cally distinct variants [23]. Although it has been shown
that the serotype defines important epidemiological and
virulence properties of pneumococcal isolates [24], it is
also recognized that each serotype comprises different
clones that may present different properties [25].

The collection of 483 invasive pneumococcal isolates was
characterized for the comC allele (pherotype) carried by
each isolate. All isolates could be classified either as CSP-
1 or as CSP-2 and, in agreement with previous findings,
most presented the CSP-1 pherotype (70.6%) [see Addi-
tional file 1 - Table S1]. The data was analyzed to deter-
mine if the pherotypes were randomly distributed among
the population or if there were associations with particu-
lar characteristics of the isolates, namely serotype, antibi-
otic resistance and the genetic lineages identified by
pulsed-field gel electrophoresis (PFGE) profiling and
MLST.

As a first approximation we used the Wallace coefficient
(W) [26,27]. W provides an estimate of the probability of
two strains sharing the same pherotype if they share
another characteristic such as serotype or being classified
in the same PFGE cluster. Table 1 shows the W values
obtained, indicating that isolates sharing the same sero-
type have a high probability of belonging to the same phe-
rotype (W = 0.730) and this probability is higher if the
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Table I: Wallace's coefficients and respective confidence
intervals testing the ability of several methods to predict the
pherotype.

Parameter W (95% CI) w;a

Serotype 0.730 (0.689;0.772) 0.584
PFGE cluster 0.771 (0.726;0.816) 0.584
Sequence type 0.982 (0.964;1) 0.621
Clonal complex 0.986 (0.961;0.992) 0.621

aWi;is the expected Wallace coefficient if the classification method is
independent of the pherotype.

isolates belong to the same PFGE cluster (W = 0.771).
Both values are significantly different from the expected
values in case of a random association between pherotype
and either of these two characteristics (W, = 0.584), dem-
onstrating that pherotypes are not randomly dispersed
within the pneumococcal population.

To determine if individual serotypes and PFGE clusters
were significantly enriched in isolates presenting each
pherotype, odds ratios (OR) were calculated. A total of
five serotypes are significantly associated with either one
of the pherotypes (Table 2 and see Additional file 1 - Table
S1). The high Wallace values suggest that pherotype/sero-
type association is not only due to these five serotypes.
Many serotypes are present in insufficient numbers to
reach a significant odds ratio. By simultaneously looking
at each pair of strains the Wallace statistic has an increased
power to detect associations. Serotypes 1 and 14 are
strongly associated with CSP-1 whereas serotypes 3, 6A
and 9N show an association with CSP-2. The same
approach was used to determine if pherotypes were asso-
ciated with particular PFGE clusters within each serotype,
aiming to subdivide serotypes into closely related genetic
lineages. Five PFGE clusters showed association with a
particular pherotype [see Additional file 2 - Table S2]. Of
these, the largest PFGE clusters within serotypes 1, 3, 9N
and 14 maintained the same association found between

Table 2: Odds ratios measuring significant associations between
pherotype and serotype.

Serotype CSP-I CSP-2 OR (95%Cl)2 FDR®
[ 48 2 11.434 (2.923;98.526) < 10+
3 23 23 0.375 (0.193;0.729) 0.017
6A 2 N 0.071 (0.007;0.330) 0.001
9N 2 8 0.099 (0.010;0.506) 0013
14 6l 4 7.497 (2.698;28.985) <104

a0dds ratio (OR) describes the strength of the association between a
pherotype and a particular serotype. In each case, if the OR is
significantly > |, CSP-1 is associated with the serotype and if OR is
significantly < | means that the serotype is enriched in CSP-2 beyond
what would be expected.

bValues obtained after false-discovery rate correction for multiple
testing
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these serotypes and pherotype. Possibly due to the small
number of isolates in each PFGE cluster, none of the clus-
ters expressing serotype 6A was significantly associated
with either pherotype, in contrast with the association
found between this serotype and CSP-2. On the other
hand, serotype 4 presents one PFGE cluster that was sig-
nificantly associated with CSP-2, whereas no association
was found at the serotype level possibly as a consequence
of the largest cluster of serotype 4 being mainly CSP-1 [see
Additional file 2 - Table S2]. Taken together the data sug-
gest that pherotype is a clonal property that may vary
independently of the serotype.

MLST is a sequence based approach that uses the sequence
of internal fragments of housekeeping genes for the pur-
pose of characterizing, typing, and classifying members of
bacterial populations. The data derived from MLST can
also be used to study the population genetics of bacteria
such as Streptococcus pneumoniae [28]. Applying eBURST to
MLST data originates subnetworks of isolates with
increased probability of sharing a recent common ances-
tor. These subnetworks define clonal complexes as groups
of isolates that share the alleles at no less than six loci with
at least another member of that group [29]. MLST from 90
selected strains [30] revealed 57 different sequence types
grouped into 39 distinct clonal complexes. The ability of
sequence type and clonal complex to predict the phero-
type is remarkably high, both with W > 0.97 (Table 1).
PFGE and MLST are widely used tools to define bacterial
clones, the fact that the groups defined by both these
methods show such strong correspondence with phero-
type further strengthen the indication that pherotype is a
clonal property within the pneumococcal population.

A consistent hypothesis with pherotype clonality is that
the role of CSP in triggering competence and its conse-
quences on lateral gene transfer is itself responsible for the
distribution of the pherotypes in the pneumococcal pop-
ulation. If this hypothesis is correct and the pherotype is
indeed restricting gene transfer within the pneumococcal
population, genes that are under recent strong selective
pressure and that are known to be horizontally transferred
should be associated with pherotype.

Pherotype and antibiotic resistance

To test our hypothesis, we checked if there was an associ-
ation between antibiotic resistance and pherotype. Resist-
ance to several antibiotics in pneumococcus was shown to
be mediated by the acquisition of foreign DNA that has
subsequently spread within the pneumococcal popula-
tion [31]. Emergence of resistance in pneumococci and its
dissemination in the population is postulated to have
occurred since their widespread use in clinical practice in
the late 1940s. The results in Table 3 indicate that there
was an association of most antibiotics (with the exception
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Table 3: Association between antibiotic resistance and pherotype.
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Antibiotic CSP-1 CSP-2 OR (95% Cl)2 FDR®P
Resistant Susceptible Resistant Susceptible
Penicillin 4 92 249 21 121 2.13 (1.24;3.78) 0.012
Erythromycin 32 309 16 126 0.82 (0.42;1.65) 0.611
Clindamycin 22 319 16 126 0.54 (0.26;1.15) 0.141
Tetracyclined 18 323 20 122 0.31 (0.16;0.70) 0.010
Chloramphenicold 5 336 9 133 0.22 (0.05;0.75) 0.013
Co-trimoxazoled 89 252 17 125 2.59 (1.45;4.86) 0.005
Cefuroximed 68 272 12 129 2.68 (1.38;5.64) 0.010

2 Odds ratio (OR) measures the strength of the association between a pherotype and resistance to a particular antibiotic. In each case, if OR is
significantly > 1, CSP-1 is associated with resistance to that antibiotic and if OR is significantly < | this means that CSP-2 is associated with

resistance to that particular antibiotic.

b Correction for multiple testing performed by the false discovery rate method (FDR)

¢p < 0.05 after FDR correction.

dBoth penicillin intermediate and fully resistant isolates were considered resistant for this analysis.

of erythromycin) with a particular pherotype. Isolates
resistant to penicillin and other B-lactams were associated
with CSP-1. It is known that resistance to B-lactams was
acquired from closely related species of the mitis complex
and that genes encoding resistance are transferred within
the pneumococcal population by genetic recombination
[31]. The fact that penicillin resistant isolates are more fre-
quently CSP-1 suggests that, in addition to the expansion
of resistant clones, current gene flow occurs primarily
between isolates that share the same pherotype.

The relationship between pherotype and restriction/
modification systems

Another important mechanism of lateral gene transfer is
bacteriophage transduction [32]. This is an especially
important mechanism for the transfer of large DNA frag-
ments that may be restricted in transformation. This is for
instance the case of the locus encoding the capsular
polysaccharide biosynthesis machinery and of some of
the genetic determinants of resistance to tetracycline,
chloramphenicol or erythromycin, that are large compos-
ite transposons unable to transfer by conjugation, leaving
phage transduction as the most likely mechanism of dis-
semination in the bacterial population, similarly to what
was described in other streptococci [33].

Transduction should be independent of CSP activity, but
the presence of restriction/modification (R/M) systems
was shown to impair horizontal transfer through this
mechanism [34]. Pneumococci are unusual in that they
posses either one of two complementary R/M systems
located in interchangeable genetic cassettes. Strains of S.
pneumoniae contain either the dpnl cassete, containing an
endonuclease that cleaves only the methylated DNA-
sequence 5'GmeATC3' or the dpnll cassette, which
includes an endonuclease that cleaves the same sequence
when not methylated, together with the corresponding
methylase. These mutually exclusive R/M systems were

shown to protect against viral infection by viruses pro-
duced in cells of the opposite genotype, reducing infec-
tion frequency to < 10-5 [35].

The R/M cassette has a size compatible with horizontal
transfer by transformation, so we wondered if the distri-
bution of the R/M cassettes could be correlated to the phe-
rotype and thereby contribute to promote asymmetries of
horizontal gene transfer within the pneumococcal popu-
lation.

To pursue this hypothesis, the R/M cassette carried by
pneumococcal isolates previously characterized by MLST
was determined. The proportion of CSP-2 isolates with
the dpnll cassette (3/23) is lower than the proportion of
CSP-1 isolates with that same cassette (25/67) and the
association between pherotype and the R/M system is sig-
nificant (p = 0.037, Fisher exact test), suggesting that
phage transduction may be indirectly arbitrated by the
pherotype via the R/M systems, such that the spread of
large genetic elements that rely on this mechanism of hor-
izontal gene transfer could also be limited by pherotype.

Pherotype is a marker of population segregation

MLST data has been used to characterize the clonality of
bacterial populations and to explore the impact of recom-
bination and mutation in bacterial evolution [4]. For S.
pneumoniae the recombination rate has been estimated to
be 3-10 times the mutation rate per locus [28,36]. To test
if the pherotype could be limiting the genetic exchanges
within pneumococci, we took the simple approach of test-
ing among all pairs of sequence types that diverge at the
allele of a single locus (single-locus variants - SLV) and
that should represent the initial stages of diversification
dominated by recombination, if the allele that differed
was more frequent among sequence types sharing the
same pherotype or among isolates of a different phero-
type. Considering the observed SLV pairs in our study, the
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probability that the changing allele came from a different
pherotypeis 0.11. In a panmictic population, the expected
probability would be 0.38 (p < 104, permutation test),
again suggesting that recombination between pherotypes
is reduced.

To test if the populations defined by each pherotype
showed genetic differentiation we analyzed the concate-
nated sequences of six of the genes used in MLST, exclud-
ing ddl since it was previously shown that this gene
showed a hitchhiking effect with pbp2b involved in peni-
cillin resistance|37] and could thus bias the results. Out of
143 mutations in 142 polymorphic sites, 66 were shared
between the two pherotype defined populations, 63 were
polymorphic in the CSP-1 population but monomorphic
in the CSP-2 population and 14 were polymorphic in
CSP-2 but monomorphic in CSP-1. To estimate the level
of gene flow and whether pherotype defined diverging
populations, the classic Fgy parameter [38], the K* ¢ statis-
tic [39] and the more powerful nearest-neighbor statistic
Syn [40] were used. The Fg;, K*¢p and S, statistics are
measures of population differentiation based on the
number of differences between haplotypes. The statistical
significance of both the K*¢yand S, statistics were evalu-
ated by permutation. The data in Table 4 shows that sta-
tistically significant K*¢ values (p < 0.01) were obtained
not only for the analysis of the concatenated sequences
but also for most of the individual genes. The more sensi-
tive S, statistic presented significant values (p < 0.01) for
the analysis of the concatenated sequence as well as for all
individual genes.

A different approach to test if the pherotype is a marker of
genetic isolation consists of calculating the probability
that pairs of isolates with increasing levels of genetic diver-
gence have of belonging to different pherotypes. Figure 1
shows that the closest pairs of isolates have a significantly
lower probability of having different pherotypes. When
genetic divergence increases, the probability of differing in
pherotype also increases, reaching the levels expected by

Table 4: Nucleotide variation and population differentiation
parameters.

Alleles T Fst K'st p(K¥%1)*  Sun P (Sw)?
aroE 0.005 0.021 0.018 0.022 0.721 <104
gdh 0.009 0.025 0.008 0.115 0.706  0.004
gki 0.019 0.134 0.045 <104 0810 <10+
recP 0.005 0.072 0.039 0.001 0717 <10+
spi 0.009 0.190 0.062 <104 0.677  0.004
xpt 0.007 0.133 0.042 <104 0790 <10+
ddl 0.012 0.018 0.012 0.033 0738 <10+
Combined® 0.009 0.115 0.025 <104 0833 <10+

2Probabilities evaluated by 1,000 permutations.
bThe results correspond to the analysis of the concatenated
sequences of the aroE, gdh, gki, recP, spi and xpt alleles.
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% CSP-1/CSP-2 pairs

# Different alleles

Figure |

Probability of pairs of isolates with different alleles to
belong to different pherotypes. The black line indicates
the fraction of observed CSP-1/CSP-2 pairs differing at the
indicated number of alleles and the grey line the expected
number if there was a random association between phero-
type and sequence type. As the allelic differences increase,
the probability of diverging in pherotype also increases
reaching levels undistinguishable from those expected by
chance when strains differ in more than three alleles. One
asterisk, p < 0.01 and two asterisks, p < 0.001.

chance when isolates differ in more than three alleles.
Again, these results show that isolates that are phylogenet-
ically closely linked have an increased likelihood of shar-
ing the same pherotype.

Infinite allele model

The structured nature of the pneumococcal population
and the geographically limited origin of our sample could
explain, at least partially, the segregation of pherotypes
seen in Figure 1 and the high Wallace indices of Table 1.
To address this issue a MLST infinite allele model was
used to test the effect of restricting or promoting recombi-
nation between the two pherotype defined subpopula-
tions. This modeling approach was previously shown to
reproduce the clonal structure of the pneumococcal pop-
ulation [36,41] and provides a possibly more realistic null
hypothesis for the distribution of phenotypes in the pop-
ulation. The model was expanded to include a new locus
with two possible alleles: CSP-1 and CSP-2. This extra
locus recombines with the same rate as the MLST loci and
the frequency of each allele is kept constant and equal to
70 and 30% of CSP-1 and CSP-2 respectively, correspond-
ing to the observed values in natural populations. Addi-
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tionally, a new parameter IPR was introduced, that
controls the probability of inter-pherotype recombina-
tion. If pherotype differences would not prevent or pro-
mote recombination, the observed frequencies of each
pherotype in the population would lead to a probability
of inter-pherotype recombination of 0.42. Figure 2A
shows that even in the absence of a pherotype effect on
recombination, high Wallace values of clonal complex
predicting pherotype are expected. This result is intuitive
since the recent common ancestry of strains belonging to
the same clonal complex would also cause them to share
the same pherotype. Still, there is a marked shift to higher
Wallace values when the probability of inter-pherotype
recombination decreases (IPR = 0.1 in Figure 2A). On the
other hand, if genetic exchange between pherotypes is
favored, in spite of their different prevalence in the popu-
lation (IPR = 0.9 in Figure 2A), a shift towards lower
Wecsr Values is observed. When systematically varying
IPR and computing the probability density for the
observed Wallace coefficients (Figure 2B), one concludes
that a value of 0.2 is 2-3 times more likely to explain the
observed values than an IPR of 0.42, expected in case of
no CSP effect in recombination. Since the more probable
IPR is lower than expected if the two pherotype popula-
tions were recombining freely, these results strengthen the

45
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proposal that recombination is promoted within individ-
uals sharing the same pherotype, promoting the diver-
gence of two subpopulations of S. pneumoniae.

Conclusion

In agreement with previous suggestions [14,20,21], we
propose that the specific ComC/ComD match facilitates a
form of assortative genetic exchange, which could main-
tain genetically diverse subpopulations within this spe-
cies. Although recent studies addressing the phenomenon
of fratricide in pneumococci favor the hypothesis of pref-
erential inter-pherotype genetic exchange [42], the data
presented here argues that in natural populations intra-
pherotype exchanges prevail, creating a barrier to gene
exchange. In vitro studies that led to the fratricide hypoth-
esis show that if two pneumococcal strains with different
pherotypes are grown together, the one that becomes
competent earlier will have a greater probability of being
transformed with DNA from the other strain [42]. In order
to observe the impact of this admixture promoting event
in pneumococcal natural populations, frequent and ade-
quate co-colonization events involving different phero-
types must occur. On the other hand, fratricide has also
been observed in experiments with a single strain [13].
Dynamic bi-stable regulatory systems, as described for

25

Probability density function of Wallace values for simulated populations. Multilocus sequence types of a pneumo-
coccal population were generated with an adapted infinite allele model [36]. It includes an additional locus for CSP type and a
new parameter IPR that, given a recombination event, defines the probability that the two recombining strains have different
pherotypes. The prevalence of each pherotype in the population was fixed during the simulation at 70% for CSP-1 and 30% for
CSP-2. (A) From 1,000 simulations, the probability density functions of Wallace values for Clonal Complex predicting phero-
type were computed for three scenarios: (1) pherotype is a barrier to recombination (IPR = 0.1, red line), (2) pherotype has no
impact in gene exchange (equivalent to IPR = 0.42, black dashed line) and (3) inter-pherotype recombination is favored (IPR =
0.9, green dotted line). The vertical blue line indicates the observed Wallace value in the studied sample. (B) To identify the
value of the IPR parameter that is in best agreement with the data, the probability density at the observed Wallace values was
computed for simulated populations with varying inter-pherotype recombination probabilities (IPR from 0.1 to 0.9), both for
Wallace indexes of sequence type (blue line) and of clonal complex (red line) predicting pherotype.
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Bacillus subtilis [43], may underlie the mechanism leading
to the simultaneous presence of competent and non-com-
petent cells of the same strain or the same pherotype. If
natural co-colonization by strains of different pherotypes
is rare or inadequate to promote gene exchange, it is pos-
sible to reconcile the inter-pherotype fratricide observa-
tions with the pherotype defined genetic differentiation
identified here. The observed genetic barrier would then
be justified if co-colonization events involving different
strains of the same pherotype are more frequent or more
adequate for recombination, leaving intra-pherotype frat-
ricide and genetic exchange as the most common event in
natural populations.

All the isolates analyzed were recovered in Portugal from
invasive infections and it is therefore unlikely that geo-
graphic or ecological fragmentation could explain the pat-
tern observed. The model simulations also exclude the
possibility that our observation results simply from the
structure of the pneumococcal population, with multiple
isolates sharing the same genotype or with a recent com-
mon ancestry. It would also be plausible to assume that
the CSP-2 population was recently established by intro-
duction of a novel pherotype into pneumococci. This
would result in the genome wide differentiation observed,
but if it had occurred recently it would also cause lower
haplotype diversity in the CSP-2 population, that the data
does not support. Furthermore, the CSP-2 pherotype was
found in multiple serotypes and clones, including strains
differing in the alleles of up to five of the seven genes used
in the pneumococcal MLST scheme. These observations
support an ancient origin of the CSP-2 pherotype that
would have allowed sufficient time for the coalescence of
the two pherotype defined populations due to the high
recombination of pneumococci.

Although only invasive strains were used in the present
study, a comparison of previous studies [30,44] indicates
that clones found causing invasive infections are also
found among the most prevalent in carriage, meaning that
the results described here are also expected to be valid for
the overall pneumococcal population in Portugal.

The concept of allopatric speciation follows the intuitive
rationale that genetic divergence subsequent to geo-
graphic isolation could lead to the emergence of different
species [45]. In bacteria, this has been connected with the
concept of ecotypes [46], arising as a consequence of a sin-
gle clone expanding into a new niche. These events have
been implicated in the emergence of human pathogens
from environmental or commensal species, such as the
rise of Yersinia pestis or Mycobacterium tuberculosis from
within the Yersinia and mycobacteria respectively [47].
But genetic differentiation in microorganisms was also
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shown to occur mainly as a result of geographic barriers,
such as that of the wild yeast Saccharomyces paradoxus [48].

In the absence of ecological isolation, a process of sympat-
ric speciation, shown to occur in sexual eukaryotes [45], is
deemed unlikely in bacteria due to the occurrence of
recombination. In fact, theoretical studies have shown
that if recombination is more frequent than mutation, the
"cohesive force of recombination" is an effective barrier to
divergence and to bacterial speciation [49,50]. This
received further support from the recent observation of an
accelerated convergence of species within the Campylo-
bacter genus proposed to be caused by the breakdown of
ecological or geographical barriers and the effect of
recombination [51].

Pneumococci are generally considered a sexual popula-
tion due to the dominant role of recombination in the
evolution of this species [49]. It was therefore surprising
to find that two genetically distinct subpopulations could
be identified. Extensive sequence divergence, previously
shown to be a major barrier to gene exchange [52], could
not be implicated as attested by the low & values and the
fact that 66 out of the 143 mutations were shared between
the two pherotype populations. Interestingly, the exist-
ence of three differentiated subpopulations within pneu-
mococci, with different rates of admixture, was recently
inferred using a Bayesian method of population analysis
[53], but no explanation for this differentiation was pre-
sented.

We propose that "assortative mating" mediated by differ-
ent pherotypes and ongoing genetic drift may be driving
an incipient speciation process within S. pneumoniae. Our
data support theoretical predictions that the existence of
barriers to recombination allow the accumulation of sig-
nificant genetic drift, even within highly recombinogenic
bacterial species. An understanding of these mechanisms
and their consequences offer further insights into the evo-
lution of bacterial pathogens and may allow more
informed predictions on the consequences of human
interventions such as antibiotic use and vaccination on
bacterial populations.

Addendum in proof

We recently became aware of a study (Omar Cornejo, per-
sonal communication) that has addressed the same issue
discussed here. In contrast to our findings, the authors
failed to detect any differentiation between the two phe-
rotype defined populations. The reasons behind this dis-
crepancy of results is not clear and further studies are
needed to reconcile these apparently contradictory find-
ings.
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Methods

Bacterial strains, growth conditions, PFGE and MLST

A collection of 483 invasive pneumococcal isolates recov-
ered during the period of 1999 to 2002 in Portugal were
obtained from the Faculdade de Medicina de Lisboa col-
lection. The serotype, PFGE type, MLST characterization
and antibiotic susceptibility of these strains were collected
from previous studies[25,30,54]. Briefly, all S. pneumoniae
strains were grown in a casein-based semi-synthetic
medium (C+Y) at 37°C without aeration or in tryptic soy
agar (TSA) (Oxoid, Hampshire, England) supplemented
with 5% (v/v) sterile sheep blood incubated at 37°C in
5% CO,. Antimicrobial susceptibility, serotyping and
PFGE analysis was performed for all isolates. MLST analy-
sis was performed for at least one isolate in each major
PFGE cluster (n = 90) and revealed 57 different sequence
types (ST) corresponding to 39 different lineages by
eBURST analysis.

Detection of the pherotype and endonuclease restriction
phenotype by PCR

CSP-1 and CSP-2 gene fragments were amplified using
multiplex PCR with primers CSP_up (5'-TGA AAA ACA
CAG TTA AAT TGG AAC-3'), CSP1_dn (5'-TCA AGA AAG
GAT AAA GGT AGT CCT C-3') and CSP2 _dn (5'-TAA AAA
TCT TTC AAT CCC TAT TT-3'), which allowed the ampli-
fication of fragments of 620 bp for the CSP-1 allele and
340 bp for the CSP-2 allele. dpnl and dpnll genotype was
also detected by multiplex PCR with primers Dpnl_up (5'-
GAA GTA GGA GAT AAA TTG CCA GAG), Dpnll_up (5'-
TAC GAA TGA TGG GAATACTGT G-3') and Dpn_dn (5'-
TGT CCT CAA TGC CGT ATT AAA TC-3'), with the
expected products of 342 bp and 421 bp for dpnl and
dpnll, respectively. Template DNA was prepared by dilut-
ing 9 ul of an overnight culture in 441 pl of water and
boiling this mixture for 2 minutes. The PCR reactions were
performed in 50 pl of final volume containing 20 ul of
template solution, 1x reaction buffer (Biotools, Madrid,
Spain), 10 mM dNTPs (Fermentas, Vilnius, Lithuania), 20
pmol of each of the primers and 1.25 U GoTaq Polymer-
ase (Invitrogen, Carlsbad, California). The same PCR pro-
gram was used consisting of 30 cycles of denaturation at
95°C for 1 min, annealing at 55°C for 30 sec, and primer
extension at 72°C for 1 min. Followed by 10 min incuba-
tion at 72°C to complete extension.

Data analysis

Statistical association between serotypes, PFGE clusters,
antimicrobial resistance or endonuclease restriction phe-
notype and pherotype where characterized by odds ratios
(OR) with 95% confidence intervals (CI) computed
through the Fisher method implemented in the epitools
package for the R language. OR significance was evaluated
with the Fisher exact test. The resulting p-values were cor-
rected for multiple testing by controlling the False Discov-
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ery Rate (FDR) under or equal to 0.05 through the linear
procedure of Benjamini and Hochberg [55].

Wallace coefficients (W) and respective 95% confidence
intervals were computed as previously described [26,27].

The relationship between cross-pherotype pair frequency
and the number of divergent alleles between STs was val-
idated for statistical significance by permutation tests. The
latter consisted in repeating the computation of frequen-
cies of cross-pherotype strain pairs for 1,000 times, ran-
domly shuffling the pherotype assignment of the strains
before each repetition. The p-values were obtained from
the fraction of the 1,000 random runs where the cross-
pherotype pair frequency was lower than the respective
values with the correct pherotype assignment. A permuta-
tion test was also performed to evaluate the significance of
the probability that a divergent allele in an SLV pair was
donated from a strain with a different pherotype. In this
case, in each of the 1,000 runs, the divergent allele was
randomly sampled from the corresponding locus in the
collection of STs. The determination of w, Fg, K*¢rand S,
for the analysis of sequence data was done using the
DNASP v4.50.3 program. The values of K*gand S, were
used to assess population differentiation in combination
with permutation tests (1,000 permutations).

Neutral Multilocus Infinite Allele Model

The model presented by Fraser et al. [36] was expanded to
include an additional CSP locus and a new IPR parameter.
The CSP locus has only two possible alleles, CSP-1 and
CSP-2 that can interchange by recombination but are not
affected by mutations. The parameter IPR defines the
inter-pherotype recombination probability. The model
was simulated with the parameter values determined in
[36] for the pneumococcal population. Namely, the pop-
ulation size was 1,000, the population mutation and
recombination rates were 5.3 and 17.3, respectively. All
the analyses were repeated with a population recombina-
tion rate reduced in 50% and the results were qualitatively
similar. All simulations were run for 1,000 generations,
after which the sequence type diversity was stable, as
measured by the Simpson's index of diversity [56]. At each
generation, 70% of the selected individuals were CSP-1
and 30% were CSP-2. For each value of parameter IPR,
1,000 independent simulations were carried out. Wallace
coefficients for ST and CC predicting CSP type were calcu-
lated for each of the final 1,000 populations. Probability
density functions for the Wallace distributions were deter-
mined by kernel density estimation with a Gaussian ker-
nel function. All simulations and computations were
done in Matlab version 7.7.
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