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Abstract

Background: Microbial biofilms represent an incompletely understood, but fundamental mode of
bacterial growth. These sessile communities typically consist of stratified, morphologically-distinct
layers of extracellular material, where numerous metabolic processes occur simultaneously in close
proximity. Limited reports on environmental isolates have revealed highly ordered, three-
dimensional organization of the extracellular matrix, which may hold important implications for
biofilm physiology in vivo.

Results: A Pseudomonas spp. isolated from a natural soil environment produced flocculent,
nonmucoidal biofilms in vitro with unique structural features. These mature biofilms were made up
of numerous viable bacteria, even after extended culture, and contained up to 50% of proteins and
accumulated 3% (by dry weight) calcium, suggesting an important role for the divalent metal in
biofilm formation. Ultrastructurally, the mature biofilms contained structural motifs consisting of
dense, fibrillary clusters, nanofibers, and ordered, honeycomb-like chambers enveloped in thin
sheets.

Conclusion: Mature biofilms contained living bacteria and were structurally, chemically, and
physiologically heterogeneous. The principal architectural elements observed by electron
microscopy may represent useful morphological clues for identifying bacterial biofilms in vivo. The
complexity and reproducibility of the structural motifs observed in bacterial biofilms appear to be
the result of organized assembly, suggesting that this environmental isolate may possess ecological
advantages in its natural habitat.

Background identified in natural aquatic environments [1], their
Bacteria possess the ability to adhere to surfaces and grow  importance in infectious disease is attracting much atten-
within an extracellular matrix of their own synthesis.  tion [2-4]. For pathogens, life in a biofilm offers protec-
Although these bacterial aggregates, or biofilms, were first ~ tion from mucociliary clearance, phagocytosis, and from
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antibiotic attack [3,5,6], thereby playing a participatory
role in persistent infections [2].

Bacteria are thought to organize into communities that
produce and populate the biofilm, controlling its mor-
phology by varying growth and gene expression, and by
interacting with neighboring cells. Random environmen-
tal pressures also participate in shaping these specialized
structures [7]. Chemotaxis and bacterially induced small-
scale water currents [8,9] have been used to explain large
(0.3-0.5 mm in diameter) periodic bacterial patterns on
mucus veils suspended over sulfidic marine sediments
[10]. Surface-bound biofilms have been observed to
develop into microscopic structures, such as the pillars
and mushroom-shaped cell clusters produced by Pseu-
domonas aeruginosa [11]. Pseudomonas fluorescens SBW25
produced biofilms that were comprised of extensive,
extracellular non-periodic webs of fine (< 20 nm wide)
cellulose fibers [12]. Freeze-dried colonies of Erwinia amy-
lovora were found to contain cross-linked stalactites of
extracellular polymeric substances (EPS) with an approxi-
mate spacing of 10 um [13], and biofilms of Listeria mono-
cytogenes strains consisted of complex, regular structures
with an approximate spacing of 50 um [14].

The organism studied in the present report is a Pseu-
domonas fluorescens soil isolate from an environment heav-
ily contaminated by tar seeps. P. fluorescens is a
ubiquitous, Gram-negative, motile, biofilm-forming bac-
terium commonly-encountered in soil and water habitats.
The organism plays an important role in food spoilage,
drinking water quality, plant disease, and nosocomial
infections. P. fluorescens also is known to form biofilms
and consequently the surface adhesion of a number of iso-
lates has been investigated. Cossard et al. determined that
the adherence properties of four P. fluorescens isolates were
independent of their ecological habitat [15]. P. fluorescens
WCS365 was found to produce a cell surface protein
(LapA) that promoted the colonization of glass, plastic,
and quartz sand via adhesion [16]. Biofilm formation by
P. fluorescens SBW25 at the air-liquid interface required an
acetylated form of cellulose [12] and the genetic systems
that underpin cellulose production and colonization in
numerous strains have been determined [17,18]. The
physiology and behavior of P. fluorescens biofilms under
diverse hydrodynamic stresses have been the subject of
numerous flow-chamber studies [ 19-22]. Biofilms formed
under a turbulent flow regime were more active and con-
tained more viable biomass than their laminar counter-
parts. Given P. fluorescens' resistance to a number of
bacterial agents, biofilm control methods involving bacte-
riophages have been investigated recently with encourag-
ing preliminary results [23]. Studies on biofilms produced
by P. fluorescens have relied heavily on optical microscopy,
notably on selective staining with fluorescent dyes fol-
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lowed by examination with confocal laser scanning
microscopy. Plasmid expression of specially-constructed
autofluorescent proteins also has been used to image P.
fluorescens strains in the rhizosphere [24,25] and on leaf
surfaces [25,26].

Recent studies on biofilms formed by a pathogenic strain
of Staphylococcus epidermidis have revealed highly ordered,
three-dimensional organization of extracellular matrix
that was vacated as the biofilm matured [27]. If the
remarkable ability to form complex extracellular struc-
tures were restricted to one strain of pathogenic bacteria,
it would constitute an interesting observation with lim-
ited applicability. Here we demonstrate that a strain of
bacteria isolated from a natural environment can produce
biofilms consisting of complex, organized structures.

Results

The bacterial isolate is an axenic Pseudomonad

The environmental isolate used in this study, EvS4-B1,
consisted of Gram-negative, rod-shaped (0.5 x 1.4 pm in
stationary phase) cells that produced fluorescent colonies
on Gould's S1 agar. To ensure that axenic cultures were
examined, the bacterial populations were propagated and
PCR was performed using a universal primer that ampli-
fies a consensus 16S rRNA gene, and a primer that identi-
fies a Pseudomonas-specific amplicon within the 16S rRNA
gene. The 16S rRNA gene sequence of EvS4-B1 was found
to be 99% identical (1248/1249, for the general primer;
881/882 for the Pseudomonas-specific primer) to the corre-
sponding region of P. sp. TM7_1. Metabolic tests and fatty
acid analysis identified EvS4-B1 as belonging to the P. flu-
orescens species (metabolic: % ID, 99.7; T, 0.87; FAME: SI,
0.642). The culture was free from contaminating species
based on the purity of the above sequence.

Bacteria growing in vitro form biofilms with reproducible
macroscopic features

Initially, axenic cultures of the bacterial isolate propagated
exponentially, but the optical density of the growth
medium started to decline significantly 24 h following
inoculation [see Additional file 1]. The drop in planktonic
bacterial numbers, estimated by optical density, coincided
with the formation of macroscopic opaque structures in
the bottom of the culture tube. These structures had a
diaphanous, gossamer appearance [see Additional file 2]
and consisted of a dense, fibrillary core, with interdis-
persed white flocs that usually were anchored firmly to the
bottom of the tube when grown as standing cultures; in
shaking cultures, the material was commonly detached
from the bottom of the tube. It was concluded that the
structures in the bottom of the tubes were biofilms.

Examination of the mature (between 1 and 3 weeks old)

hydrated biofilms in a dissecting microscope revealed

Page 2 of 13

(page number not for citation purposes)



BMC Microbiology 2009, 9:103

macroscopic features that were reproducible from culture
to culture. An aggregation of delicate flocs of opaque
material made up the bulk of the biofilm volume (Fig. 1A
and 1B). Tethered to this construct via a thin cord was a
parachute-like appendage approximately 2 mm in diame-
ter (Fig. 1C) that consisted of material resembling fibrous
sheets (Fig. 1D). While each culture only contained one of
these highly unusual parachute-like structures, they were
consistent macroscopic biofilm features when P. fluores-
cens EvS4-B1 was grown in minimal media. Glutaralde-
hyde fixation of the biofilms led to rapid dissolution of
the flocculent material and slowly dissolved the fibrous,
string-like core. The parachute-like appendage was the
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only biofilm component that remained after aldehyde fix-
ation and subsequent staining and dehydration.

Biofilms formed by the bacterial isolate have a complex
ultrastructural morphology

P. fluorescens EvS4-B1 biofilms were prepared for SEM
analysis using cryomethods. Conventional aqueous cross-
linking and contrasting agents, such as glutaraldehyde
and osmium tetroxide, were not used because of the struc-
tural disruption we observed under the dissection micro-
scope as described above. Low magnification SEM
examination of the prepared biofilms revealed unique
structural features (Fig. 2). Running through the biofilm

Figure |
P. fluorescens EvS4-B1 biofilms (21 days) contain macroscopic 3-dimensional structures. (A) Gentle disruption of
the biofilm revealed a fragile mass of amorphous material connected to a parachute-like structure. (B) The structures were
either well-defined packets (arrowheads) or aggregated flocs (asterisk) anchored to a fibrillary core (arrow). (C) The para-
chute-like structure was made up of 5 or 6 compartments. (D) Backlighting highlighted the fibrous nature of the parachute-like
structure (arrow). Scale bars = 1.5 mm.
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Figure 2
Scanning electron micrographs of P. fluorescens EvS4-B1 biofilms (14 days) prepared using cryomethods. (A).
Fibrillary structures appeared to be made up of twisted fibers (arrow) scale bar = | pm. (B). Flat sheets of material (arrow-

head) also were observed. Some of the sheets seemed to be wrapped around other structures (arrow); scale bar = 20 um. (C)
The inside core of the "wrapped" structures consisted of bacteria, [B], embedded in an extracellular matrix of particulate mat-
ter and a thin sheet of material (arrow); scale bar = | um. (D) The outer sheet (arrowheads) enveloped an inner core consist-
ing of fibers forming irregular network-like structures (arrow); scale bar = 10 um. (E) The network consisted of fibers arranged
in a periodic pattern. The bacteria (arrows) were two to three times larger than the spaces in the network; scale bar =2 um.
(F) A sheet of material, [S], covered the fiber network and was attached to it. The fibers were associated with bacteria, [B], and
particulate matter, [P]; scale bar = 2 um.
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were cords of twisted material (Fig. 2A). Larger structures
consisting of wrapped sheets also were present inside the
biofilm (Fig. 2B). When specimen preparation led to
breaks in this structure, the biofilm core was exposed (Fig.
2C) and consisted of small numbers of bacteria embed-
ded in a matrix of fibers and particulate matter aggregating
on the fibers (Fig. 2C). In other parts of the biofilm, the
fibers were more apparent and formed irregular, net-like
structures (Fig. 2D). At higher magnification it was possi-
ble to see that the fibers were organized into ordered net-
works of periodic nets. These nets contained few bacteria
(Fig. 2E) and were covered by thin sheets of material sim-
ilar to that observed around the bacteria embedded in the
particulate matter (Fig. 2F).

The ultrastructures observed by SEM are not artifacts
resulting from sample preparation

The transmission electron microscopy (TEM) images of
the embedded biofilms (Fig. 3) are consistent with the
corresponding SEM data (Fig. 2) and therefore validate
the ultrastructural organization observed in the SEM sug-
gesting that they did not result from sample preparation.
The honeycomb-like structures, as well as the morphology
of the partitions, are clearly visible using both techniques.
The structures appeared to have two types of walls. Either
it was thin with a smooth surface, or it was thicker and
made up of globular structures (Fig. 3D-F). The thicker
walls, although smooth on the surface, were of variable
thickness giving them a bumpy appearance (Fig. 3D-F).
The section staining revealed separations between the
components of the thicker walls and globular masses sep-
arated by thin sheets (Fig. 3E-F). No obvious freezing
damage due to ice crystal formation was observed suggest-
ing that the EM data presented here are of real ultrastruc-
tural features in the biofilms and are not the result of
eutectic crystallization.

Biofilms are chemically heterogeneous

Hydrated biofilms from multiple cultures were combined
taking care to minimize the inclusion of spent media
without disturbing the fragile structures. No further han-
dling of the biofilms was carried out prior to freeze-drying
in order to preserve the chemical integrity of the struc-
tures. Physical or chemical treatments of the samples such
as centrifugation, filtration, extraction, and ion exchange
chromatography have the potential to significantly alter
the biofilm composition, thus biasing the results of the
chemical analysis. The method described here is simple,
convenient, minimally invasive, and is designed to pro-
vide representative samples for compositional analysis.
Hydrated biofilms (0.9189 g) afforded 15.6 mg of dry
material (16.0 mg g!) consisting of biofilm and spent
media, where-as spent media free of biofilm (1.9255 g)
afforded 10.8 mg of dry material (5.6 mg g!). Assuming
that the dry material makes up a negligible proportion
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(1.7% in the case of biofilm plus media) of the mass of
the hydrated sample, the media contribution to the mixed
sample was estimated as 5.2 mg (0.9189 x 5.6), or 33%
[(5.2/15.6) x 100%]. Background contributions from
spent media to the chemical sample make-up were sub-
tracted from the mixed biofilm-media samples according
to eq. 1. This simple relationship was employed through-
out to estimate biofilm composition. Results of the bio-
film chemical analyses are summarized in Table 1.

The principal IR absorption bands of the mixed biofilm/
media sample are presented elsewhere [see Additional file
1]. The most striking difference between the biofilm/
media and media spectra is the presence of the peak at
1536 cm! in the biofilm-containing sample, which is vir-
tually absent in the media sample. This peak likely corre-
sponds to an amide II stretch in proteins [28-30]. The
biofilm-containing sample lacks peaks at 2814, 1930,
1359, 1200,1191, and 940 cm!, which all are present in
the media sample. The relative f#-D-mannuronate (M) and
a-L-guluronate (G) content of alginate copolymers can be
estimated as the M/G ratio using the absorption bands at
1320 and 1290 cm'! [31]. The corresponding bands
observed here were at 1315 and 1275 cm-! and were weak,
suggesting a low alginate content. Strong absorptions in
the 1064-1078 cm! range assigned to vibrations in
polysaccharide ring structures [28] also were missing.
Although a very weak shoulder at 1745 cm-! was observed,
neither the biofilm nor the media IR spectra exhibited sig-
nificant peaks around 1728-1724 cm-!, which corre-
spond to the C = O stretch in O-acetyl esters [28],
specifically acylated sugars.

Biofilms contain viable bacteria and glycoproteins

The primary goal of the confocal laser scanning micros-
copy (CLSM) studies was to determine if viable bacteria
were present in the mature biofilm structures. CLSM in
combination with multiple, chemo-specific, fluorescent
labels are increasingly being used to achieve in situ charac-
terization of bacterial biofilms with up to single cell reso-
lution [32-34]. Biofilms from P. fluorescens EvS4-Bl
cultures were labeled with BacLight and were examined by
CLSM. This technique optimizes the possibility of detect-
ing intact, viable bacteria that may be un-culturable on
agar plates or as planktonic forms in liquid medium. The
labeling demonstrated that the bacterial biofilms con-
tained significant populations of living bacteria in clusters
surrounded by dead bacteria (Fig. 4A-C). These results
indicate that the mature biofilms are still physiologically
active and are not merely aggregates of cellular debris.

Concanavalin A (Con A) is one of the most widely used
and best characterized lectins in biomedical research. It
has a broad applicability because it binds to alpha-linked
mannose residues, a common component of the core oli-
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Figure 3

Transmission electron microscopy images of P. fluorescens EvS4-B1 biofilms (21 days). Specimens were prepared
using cryomethods and embedded in resin. The sections represent regions of biofilm containing structured networks of fibers
and sheets, but few bacteria. (A) The walls consisted of thin laminar structures (arrowhead) with globular material (arrow)
accumulating in branching regions; scale bar = 500 nm. (B) In other regions of the biofilm, the wall-like structures had different
thicknesses. The thin walls (arrowhead) were attached to thicker walls (arrow); scale bar = 500 nm. (C) Different wall mor-
phologies consisted of thin, straight walls (arrowhead) branching from thicker walled structures (arrows); scale bar = 500 nm.
(D) The thicker walls were composed of globular amorphous masses (arrows) covered in part by a distinct coating (arrow-
heads); scale bar = 200 nm. (E) and (F) The different components of the thicker walls consisted of globular masses (arrows)
separated by and covered with thin coatings (arrowheads); scale bar = 500 nm.
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Table I: Biofilm chemical composition.

Analyte Analysis method Mass concentration (uig mg-')2
Calcium ICP-AES 299

Magnesium ICP-AES 10.1

Total proteins UV absorption 490

Total proteinsb Folin reaction (Lowry assay) 240

Acidic polysaccharidesc Phenol-sulfuric acid reaction 79

Neutral polysaccharides¢ Phenol-sulfuric acid reaction 67

Nucleic acids UV absorption 46

DNA DAPI-fluorescence 54

aDry material.
bMeasured as BSA.
‘Measured as dextrose monohydrate.

A

Figure 4

Confocal images of P. fluorescens EvS4-B1 biofilms (7 days) labeled with the Live/Dead stain (A-C) and with
concanavalin A/Syto 9 (D-F). (A) Propydium iodide labeled dead bacteria. (B) Syto 9 labeled live bacteria. (C) The two
images merged; scale bar = 50 um. (D) Concanavalin A labeled coiled structures (arrow). (E) Syto 9 labeled bacteria. (F) The
two images merged; scale bar = 50 um.
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gosaccharide of many glycoproteins. The presence of Con
A binding is usually an indication that glycoproteins are
present. Con A binding was observed in many regions of
the biofilm that also contained bacteria, as determined by
Syto 9 staining (Fig. 4D-F). The cords of twisted material
running through the biofilm were easily recognizable fea-
tures of the biofilm that labeled with Con A (Fig. 4D-F).
These cords appeared to be embedded in aggregates of
bacteria that did not label with Con A. The structures that
labeled with Con A in other regions of the biofilm
appeared diffuse and were not easily identified (data not
shown).

Discussion

A bacterial species from an extreme environment rich in
toxic compounds was isolated into axenic culture and
grown in the laboratory. During the course of these stud-
ies, it was observed that the isolate produced atypical
growth curves and formed a macroscopic structure teth-
ered to the bottom of the culture tubes. These biofilms
were unusual as they did not consist of the typical mucoi-
dal material, but were made up of well-defined solid struc-
tures. Confocal laser scanning microscopy confirmed that
these mature structures contained significant zones of
physiological activity. Physical and chemical characteriza-
tion of the mature biofilms was carried out and is dis-
cussed below.

When examined by light microscopy, bacterial cultures
reproducibly contained similar structural motifs that were
composed of viable bacteria as well as dead cells and
extracellular material. At the macroscopic level, delicate
flocculent material of what appeared to be bacterial aggre-
gates was enveloped by a network of fibers. Smaller fibers
branched from this central core in a microscopic analogue
to tree branches emanating from a trunk and surrounded
by foliage (i.e., the bacterial aggregates). Each culture tube
also contained one complex three-dimensional structure
that resembled a parachute.

At higher magnification using the confocal microscope,
the thick fibers in the flocculent material appeared tightly
coiled. The tightly coiled structures contained bacteria and
had an affinity for fluorescently-labeled concanavalin A
(conA). These results suggest that there are specialized
zones within the biofilm consisting of bacteria associated
with extracellular proteins. The presence of bacterial
aggregates in the biofilm that did not label with con A sug-
gests that at least part of the extracellular material contains
glycoproteins.

Rapid freezing of biofilms followed by freeze substitution
and epoxy resin embedding of the specimens enabled
examination of thin sections through biofilms that had
been minimally disturbed [35,36]. Cryofixation followed
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by freeze-substitution has been shown to be a highly effec-
tive method for preserving biofilm organization for EM
examination [37]. It is well known, however, that freezing
can lead to structural artifacts [38] and that highly
hydrated structures such as biofilms will collapse to some
extent during sample preparation that involves dehydra-
tion. These distinct features must be recognized to avoid
misinterpretation of the images. The fact that complex
three-dimensional structures were observed in fully
hydrated living specimens using a dissecting microscope,
a compound microscope, and with a confocal microscope
is strongly suggestive that the biofilm structures observed
here are real, and not the result of either sample prepara-
tion or specimen handling. The same structures also were
present in rapidly frozen, freeze-substituted material that
has been embedded in resin.

The results presented in this preliminary account are
derived from monospecies biofilms, grown in the labora-
tory under artificial conditions. Biofilms produced in situ,
either in the environment or in medical specimens, usu-
ally consist of more than one species or subspecies, some-
times making up highly complex microbial communities.
The extracellular ultrastructures of such multispecies bio-
films could differ from that of the monospecies model
biofilms studied here by forming a more heterogeneous
matrix, or by providing substrates for catabolic processes
in other species. Therefore, it is possible that the observed
high degree of matrix organization could be the result of
growing pure cultures under constant conditions and may
not be as pronounced in the environment. More research
on multispecies biofilms observed in vitro as well as those
taken directly from natural environments is required to
thoroughly address this important issue.

The biofilms were characterized in terms of their overall
chemical composition (Table 1) and were found to con-
sist primarily (up to 49% wt) of proteins, reflecting the
typical dry weight composition of E. coli cells under bal-
anced growth conditions [39]. Polysaccharides were
found to make up a smaller fraction of the biofilm mass
(ca. 15% wt), and were of the magnitude expected in a
vegetative bacterial cell. These results are atypical for EPS
produced by Pseudomonads, which generally have a
higher sugar-protein ratio. Pseudomonas aeruginosa is con-
sidered a model organism for biofilm research and conse-
quently has been studied intensively within this context
[40]. The EPS of P. aeruginosa SG81 consists primarily of
uronic acids (alignate) and proteins, in roughly a 2:1 ratio
(by weight, sugar-protein) [41]. Marcotte et al. reported
sugar-protein weight ratios of 0.79 for P. aeruginosa,
where-as the intracellular sugar-protein weight ratios for
two P. aeruginosa strains were in the 0.27-0.36 range [29].
It should be noted that the biofilms in these studies were
processed by different methods to those described here.
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The comparison of sugar-protein ratios, however, still is
relevant and underscores the difference in chemical com-
position of the biofilms produced by these related Pseu-
domonads. Alginates in biofilm EPS have been implicated
in the development and maintenance of the mechanical
stability of biofilms formed by P. aeruginosa both on living
and abiotic surfaces [42]. The lack of observed O- or N-
acetylation in the biofilm samples analyzed here also is
noteworthy, as these groups are common components of
biofilm EPS produced by Pseudomonas spp. [28].

Total nucleic acid levels in the biofilm (ca. 5% wt) were
one order of magnitude higher than corresponding DNA
measurements (ca. 0.5% wt). This was not unexpected as
total nucleic acid levels will include contributions from
RNA; E. coli cells typically contain six times more RNA
than DNA [39]. The nucleic acid mass fraction of the stud-
ied biofilms, however, was ca. 5 times lower than the
nucleic acid dry weight content of E. coli.

The calcium content (3% wt) of P. fluorescens EvS4-B1 bio-
film equaled the total dry weight of all inorganic ions
typically found in E. coli [39] and was three times higher
than the calcium content of the spent media. Korstens et
al. studied the mechanical properties of P. aeruginosa bio-
films as a function of calcium ion concentration and
found that the apparent Young's modulus, representing a
measure of biofilm stiffness, increased strongly at a critical
calcium concentration and subsequently remained con-
stant at higher calcium levels [43]. This behavior was
explained in terms of calcium ions crosslinking EPS com-
ponents. Based on these results it is conceivable that the
observed calcium accumulation in the biofilms studied
here plays a significant role in crosslinking/bridging EPS
components and herewith determining the geometry and
maintaining the integrity of the observed structures.
Unlike calcium, magnesium was not found to accumulate
significantly in the biofilms relative to the spent media.

Note that the chemical composition of the biofilm pre-
sented in Table 1 is a semi-quantitative approximation
rather than a rigorous, absolute quantitation, which is vir-
tually impossible as the chemical heterogeneity of bacte-
rial biofilms [44] precludes representative standards to be
used in a number of the above assays.

Cell and colony morphology have been used by micro-
biologists in the identification of bacteria since van Leeu-
wenhoek developed the optical microscope nearly three
hundred and fifty years ago. The morphology of bacterial
biofilms also may contain elements that can assist identi-
fication, but the features can only be observed under the
electron microscope. The difficulty in preparing biofilm
samples for examination by this technique without intro-
ducing artifacts has limited its usefulness. The emergence
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of cryomethods such as those described here has enabled
the reliable application of electron microscopy to biofilm
research. Recent results suggest that bacterial biofilms
contain architectural motifs that may be useful in identi-
fying these structures in medical, dental, and environmen-
tal samples. This approach has been used by Costerton
and colleagues in studying intraamniotic infections [45]
and affected bone in patients with osteonecrosis of the
jaws secondary to bisphosphonate therapy [46]. Biofilms
produced by P. fluorescens EvS4-B1, P. putida [27], and P.
fulva (data to be presented elsewhere) isolates from the
same environment share a common morphology suggest-
ing that these microscopic features may be useful for in
vivo identification.

Conclusion

The present work provides evidence that a Pseudomonas
strain isolated from a natural soil environment can self-
organize into elaborate biofilm constructs made up of an
extracellular matrix of repeating motifs. Mature biofilms
contained living bacteria and were structurally, chemi-
cally, and physiologically heterogeneous. These remarka-
ble structures are formed in the laboratory without
unusual culturing conditions (i.e., beyond the choice of
medium, temperature, and incubating conditions) and
the organism does not appear to lose the ability to form
biofilm, even after a six or more subcultures. The principal
architectural elements observed by electron microscopy
may be useful morphological identifiers for classifying
bacterial biofilms in vivo.

The complexity and reproducibility of the structural
motifs in the observed biofilms suggest that they are the
result of organized assembly and not a result of ad hoc
associations. These results suggest possible ecological
advantages of the P. fluorescens EvS4-B1 strain. Coopera-
tion among microbes currently is generating much inter-
est within both the evolutionary and microbial
communities [47]. The matrix of cross-linked polymers
observed in the studied biofilms is being produced in
copious amounts with high associated costs to the bacte-
ria, while causing large separations between cells. These
are relevant and impressive observations, especially
within the context of recent theoretical studies [48], which
have demonstrated that polymer production in biofilms
can be a competitive trait allowing EPS-producing bacte-
ria to occupy more favorable locations in the biofilm
while "suffocating”" strains of non-polymer producers.
Conversely, biofilm EPS may provide a protective micro-
environment fostering mutualism, such as encountered
among endophytic bacteria that colonize intercellular
spaces in various interior plant tissues and in the rhizo-
sphere without causing damage. It has been suggested that
biofilms produced by facultative endophytes may be
involved in protecting plants from vascular pathogens

Page 9 of 13

(page number not for citation purposes)



BMC Microbiology 2009, 9:103

and may have applications in pesticide phytoremediation
[49]. Begun et al. showed that EPS from staphylococcal
biofilms protected the enclosed bacterial communities
against the immune defenses of the model nematode
Caenorhabditis elegans [50].

Methods

Bacterial isolation and culture conditions

The bacteria used in this study were isolated from soil (T
= 31.6°C) directly adjacent to a tar seep at a location on
Sulphur Mountain (Ventura County, CA). The soil isolate
EvS4-B1 was obtained following enrichment on solid
media containing 10 uM thioanisole using the minimum
number of passes required to obtain a pure culture. Work-
ing cultures of the EvS4-B1 isolate were maintained as
slants on complex media inoculated directly from cryos-
tocks. Slants were discarded two weeks following inocula-
tion.

Strain EvS4-B1 was cultured using a freshwater medium
lacking essential vitamins and minerals (10 mL, see
below) in 20 mm culture tubes. Cultures were maintained
at 30°C and were shaken at 250 rev min'!. The same
growth medium was used throughout.

Freshwater minimal medium, with essential vitamins and
minerals omitted, (FW-Min, NVNM) consists of:
Na,C,H,0,.6H,0 (2.7 g.L-1), Na,SO, (0.14 gL-1), 100X
FW base (10 mL.L-1), and MOPS (1 M, 5 mL.L-1, pH 7.2).
100x FW base consists of: NaCl (100 g.L-1), KCl (50 g.L-1),
MgCl,.6H,0 (40 g.L1), CaCl,.2H,0 (10 gL1), NH,CI
(25 g.L'1), and KH,PO, (acidic, 20 g.L'1). Deionized water
(DI-H,0) was used throughout.

Identification of the bacterial strain

Genomic DNA was extracted using a rapid desalting proc-
ess (MasterPure Complete DNA and RNA Purification Kit,
Epicentre Biotechnologies, Madison, WI) and samples
were prepared following the protocols provided. PCR
amplification of the genomic DNA was carried out using
two primer types: (1) universal primer pair [51], 63f
(CAGGCCTAACACATGCAAGTC) and 1387r (GGGCG-
GWGTGTACAAGGC) (Invitrogen Life Sciences, Carlsbad,
CA); and (2) Pseudomonas-specific primer pair [52], Ps-
for (59-GGTCTGAGAGGATGATCAGT-39) and DPs-rev
(59-TTAGCTCCACCTCGCGGC-39) (Invitrogen Life Sci-
ences, Carlsbad, CA). The PCR system consisted of 1 pL
undiluted template, 1 uL 200 pM dANTP mixture, 1 pL (20
pmol) primer (each), 5 pL buffer (from Taq polymerase
kit, see below), 1 pL Taq polymerase (ELT PCR System,
Roche Applied Science, Indianapolis, IN). The mixture
was diluted to a final volume of 50 pL using MilliQ-H,O.
Initial denaturation was achieved by heating the mixture
at 95°C for 1-2 min, followed by 30 cycles of the follow-
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ing thermal profile: denaturation, 95°C, 30 s; annealing,
57°C, 30 s; and polymerization, 72°C, 60 s.

The PCR product was analyzed by agarose gel electro-
phoresis (100 V, 20 min) using a 1.2% agarose gel con-
taining ethidium bromide (7 pL in 50 mL of agarose) in a
1x TAE buffer. The most intense band in the gels was cut
and purified using a PCR gel extraction kit (QIAquick,
QIAGEN Sciences, Germantown, MD). Sequences were
determined by the California Institute of Technology
Sequencing Analysis Facility using a Model 3730 DNA
Analyzer (Applied Biosystems, Foster City, CA) and ABI
BigDye terminator cycle sequencing chemistry with the
same primer pair as used in the PCR. The partial
sequences were analyzed with the Basic Local Alignment
Search Tool (BLAST) and compared to BLASTN nucleotide
databases [53]. BLAST analysis was used to determine the
closest known relatives by comparison with sequences
contained in the GenBank database. The purity of the
sequence was assessed visually using Chromas 2.3 (Tech-
nelysium Pty Ltd, Tewantin, QId, Australia). The sequence
data have been submitted to the GenBank database under
accession number F[226759.

Complementary metabolic tests were carried out with a
commercial identification system (API 20 NE,
bioMérieux, Inc., Durham, NC) following the manufac-
turer's instructions. Fatty acid analyses were obtained
(MIDI Labs, Inc., Newark, DE) from single bacterial colo-
nies grown on TSA following derivatization as the methyl
esters and analysis by GC/MS [54,55].

Scanning electron microscopy (SEM)

Biofilms (1 to 3 weeks old cultures, depending on the
experiment) were removed from culture tubes and pre-
pared for SEM as described previously [36]. The dried bio-
films were mounted on metal specimen stubs, coated with
a 16 nm thick platinum film, and imaged using an XL-30 S
FEG SEM (FEI Company, Hillsboro, OR) operating at 5 kV.

Transmission electron microscopy (TEM)

Bacterial biofilms (1 to 3 weeks old cultures, depending
on the experiment) were immobilized by rapid freezing
[56], dehydrated by freeze-substitution in cold acetone
containing glutaraldehyde (1% v/v, from a 10% stock
solution in acetone; EMS Hatfield, PA) and osmium
tetroxide (1% w/v) [57-59] and embedded in resin. Rapid
freezing was achieved either by using a high-pressure
freezer (EMPACT2 HPF, Leica Microsystems, Inc, Deer-
field, IL) or by immersion in liquid propane. Thin sec-
tions were prepared from different regions of the
embedded specimen blocks, stained with uranyl acetate
and lead citrate, and were examined in a TEM (CM 120
BioTwin, FEI, Inc., Hillsboro, OR).
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Biofilm chemical analysis

Supernatant spent media was decanted from biofilms (1
week old culture) at the bottom of the culture tubes. A
glass Pasteur pipette was then used to aspirate the com-
plete biofilm from the tube and collected in a 12 mm glass
test tube. Biofilms from 17 culture tubes were combined
in this fashion. Biofilm-free spent media (5 x 2 mL in 12
mm tubes) and the combined biofilm samples were
freeze-dried overnight in a SpeedVac concentrator
(SVC100H, Savant, Thermo Fisher Scientific, Inc.,
Waltham, MA) equipped with a refrigerated condensation
trap. SDS-buffer consisting of 1 mM Tris/Tris HCI, 0.1 mM
EDTA, 0.15 M NaCl, 1% w/v SDS with a final pH (unad-
justed) of 7.51 at 25°C was used to dissolve freeze-dried
biofilm/media samples (10 mg in 3 mL) with sonication
until a pale yellow solution was obtained.

Dry biofilm and media samples were analyzed for calcium
and magnesium content by ICP-AES (Galbraith Laborato-
ries, Inc., Knoxville, TN). IR absorption spectra were col-
lected on an FTIR spectrometer (Magna-IR 560, Nicolet,
Madison, WI) as 12 mm diameter discs using ca. 3 mg of
dry sample in ca. 150 mg of potassium bromide. UV spec-
tra of the SDS-buffer solutions were obtained using a
Model 8452A (Hewlett-Packard, Palo Alto, CA) diode
array spectrophotometer in a 1 cm optical path with SDS-
buffer as a reference. Total carbohydrate concentrations
were measured as previously described [41,60]. These
measurements were carried out on suspensions of solid
biofilm/media samples in DI-H,0O because SDS-buffer
interfered with the assay. Dextrose monohydrate in DI-
H,0 (21.3 mgin 100 mL) was used as a stock solution to
prepare standards. The absorbances at 480 nm (acidic
polysaccharides) and at 490 nm (neutral polysaccharides)
were corrected with the absorbance at 600 nm. Protein
and nucleic acid concentrations were estimated from the
baselined UV spectra [61,62]. Protein concentrations in
SDS-buffered samples were measured using a modified
Lowry Protein Assay Kit (23240, Pierce, Rockford, IL)
according to manufacturer's instructions. Calibration
standards were prepared from the supplied BSA standard
(2.0 mg mL-1) using pipettors and SDS-buffer as the dilu-
ent. The DNA content of SDS-buffered samples was esti-
mated according to the method described by Brunk et al.
[63] using a fluorescence spectrophotometer (F-4500,
Hitachi, Schaumburg, IL) with deoxyribonucleic acid
sodium salt from salmon testes (D1626, Sigma, Milwau-
kee, W1, 2.4 mg in 100 mL SDS-buffer) as the standard.

Volumetric concentrations of mixed biofilm/media sam-
ples were converted into mass concentration, which were
corrected according to eq. 1 for contributions from spent
media to afford analyte levels in the biofilms.

[Y] %’x = [Y]ﬁ?oﬁlm x Xbioﬁlm + [)/]rAr?edia x Xmedia
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where [y|M,,; is the mass concentration of substance y in
the biofilm/media mixture; [y|M,;,,, is the mass concen-
tration of substance y in the biofilm; X, is the mass
fraction of substance y in the biofilm; [y|M,,,, is the mass
concentration of substance y in the media; X,,,;, is the
mass fraction of substance y in the media.

Confocal laser scanning microscopy

Biofilms (1 to 3 weeks old, depending on the experiment)
were removed from culture tubes and placed in the
depression of concavity microscope slides (EMS, Had-
field, PA). The bacterial material was incubated in the
presence of fluorescent dyes, rinsed, covered, and the liv-
ing, hydrated biofilms were examined by confocal micro-
scopy (SP5 high speed spectral confocal microscope, Leica
Microsystems, Inc, Deerfield, IL).

Image processing and manipulation

All images in this study were digitally captured and
manipulated to adjust image size, contrast and brightness.
Linear adjustment of size, contrast or brightness was
always applied equally to the entire image.
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