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Abstract
Background: Brucellosis, caused by members of the genus Brucella, remains one of the world's
major zoonotic diseases. Six species have classically been recognised within the family Brucella
largely based on a combination of classical microbiology and host specificity, although more
recently additional isolations of novel Brucella have been reported from various marine mammals
and voles. Classical identification to species level is based on a biotyping approach that is lengthy,
requires extensive and hazardous culturing and can be difficult to interpret. Here we describe a
simple and rapid approach to identification of Brucella isolates to the species level based on real-
time PCR analysis of species-specific single nucleotide polymorphisms (SNPs) that were identified
following a robust and extensive phylogenetic analysis of the genus.

Results: Seven pairs of short sequence Minor Groove Binding (MGB) probes were designed
corresponding to SNPs shown to possess an allele specific for each of the six classical Brucella spp
and the marine mammal Brucella. Assays were optimised to identical reaction parameters in order
to give a multiple outcome assay that can differentiate all the classical species and Brucella isolated
from marine mammals. The scope of the assay was confirmed by testing of over 300 isolates of
Brucella, all of which typed as predicted when compared to other phenotypic and genotypic
approaches. The assay is sensitive being capable of detecting and differentiating down to 15 genome
equivalents. We further describe the design and testing of assays based on three additional SNPs
located within the 16S rRNA gene that ensure positive discrimination of Brucella from close
phylogenetic relatives on the same platform.

Conclusion: The multiple-outcome assay described represents a new tool for the rapid, simple
and unambiguous characterisation of Brucella to the species level. Furthermore, being based on a
robust phylogenetic framework, the assay provides a platform that can readily be extended in the
future to incorporate newly identified Brucella groups, to further type at the subspecies level, or to
include markers for additional useful characteristics.
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Background
Brucellosis remains one of the world's major zoonotic dis-
ease problems and can lead to reproductive problems in a
number of large livestock and other animals. In humans,
brucellosis is associated with a broad spectrum of symp-
toms and can occasionally be fatal [1]. Whilst brucellosis
is the global term for infection by organisms in the Gram-
negative genus Brucella, there are actually a number of
causative agents. Differentiation to species level within
the genus is based on both different phenotypic character-
istics and the host from which it was initially isolated [2].
These divisions are also supported by pulse field gel elec-
trophoresis (PFGE)-based physical mapping, showing
that each species has a specific physical organisation [3],
and techniques such as multilocus sequencing [4] and
variable number tandem repeat (VNTR) based typing
[5,6]. Bovine infection is generally caused by B. abortus, B.
melitensis infects predominantly sheep and goats, B. suis
infects pigs, hares and reindeer, B. ovis infects sheep only,
B. canis infects dogs, whilst B. neotomae has only been iso-
lated from the desert wood rat. In addition to the six clas-
sically described species novel members of the genus have
more recently been isolated from marine mammals, pre-
dominantly dolphins, porpoises and seals. These have
very recently been classified as two additional species, B.
ceti (cetaceans) and B. pinnipedialis (pinnipeds) [7]. In
addition, a novel species of Brucella (named as Brucella
microti), associated with voles, has recently been reported
[8,9]. Some Brucella species are further sub-divided into
groups known as biovars. Whilst these are of epidemio-
logical interest in B. abortus and B. melitensis, the five bio-
vars that are found in B. suis appear to relate to host
preference. In humans, four of the classical species (not B.
ovis or B. neotomae) have been shown to cause disease [2].
There is also evidence to suggest that humans can be
infected by marine mammal Brucella further highlighting
the importance of this group of organisms to human
health [10-12].

Identification to species level is traditionally based on
biotyping that examines antigenic, phenotypic and phage
susceptibility profiles. While the approach has been useful
for many years, it has a number of recognised drawbacks.
Being culture based, biotyping requires specialist han-
dling facilities for the initial isolation of a pure culture and
then needs additional culture time for phenotype and
phage susceptibility determination. In addition, some of
the differentiating characteristics can be very subtle mean-
ing that biotyping should only be carried out by highly
experienced individuals. However, even with this caveat,
interpretation of this method is acknowledged to be
rather subjective. Furthermore there are frequent reports
of atypical organisms that do not conform to the expected
characteristics of particular species.

Molecular biology provides tools that can circumvent
such problems associated with classical microbiology by
using suitably validated genetic markers for objective and
unambiguous identification of groups. As DNA is the tar-
get of this testing, culturing can be reduced or potentially
bypassed, both removing the necessity for specialist han-
dling facilities, and shortening time from sampling to
identification. With the explosion of molecular sequence
data and an expanding array of technological platforms
the use of assays based on single nucleotide polymor-
phisms (SNPs) in microbial genotyping is becoming
increasingly common. For example, point mutations in
rpoB and katG have been used as markers for resistance to
rifampicin and isoniazid in Mycobacterium tuberculosis [13]
while SNPs have also been used to differentiate vaccine
and field strains of canine parvovirus [14]. In terms of
microbial diagnostics SNP-based genotyping has been
applied to a number of organisms including members of
the Mycobacterium tuberculosis complex [15], Bacillus
anthracis [16] and Burkholderia species. [17].

We have recently undertaken extensive phylogenetic anal-
ysis of the Brucella group involving the sequencing of
some 21 distinct gene fragments, from over 400 strains of
Brucella, representing the known genetic diversity of the
group [4, M.S. Koylass and A.M. Whatmore, unpublished
data]. While this extensive analysis confirmed the long-
standing view that the genus is highly homogeneous [18-
20] it has nevertheless allowed us to confidently identify
SNPs that we believe define each of the classically
accepted Brucella species. Furthermore SNPs are particu-
larly powerful markers in such a conserved group as they
are highly unlikely to have occurred twice independently
(i.e. in distinct evolutionary branches) and equally, hav-
ing occurred, are unlikely to mutate again back to their
ancestral state [21]. In addition, these studies revealed
strong linkage disequilibrium in the distribution of alleles
between Brucella species [4] implying that recombination
is rare and giving increased confidence in the robustness
and stability of species-specific SNPs selected as markers.

We have thus selected seven SNPs that we have worked
into a multiple outcome assay to identify Brucella isolates
at the species level. An assay based on these markers
should deliver unambiguous results without the subjec-
tivity associated with biotyping or problems associated
with strains that are phenotypically aberrant. We recently
described the development of a SNP-based assay identify-
ing Brucella to the species level on a primer extension plat-
form [22]. Here, we describe the development of an
equivalent tool for the real-time PCR platform that has
certain advantages in terms of speed, technical simplicity
and potentially wider applicability being based on a
cheaper, and more widely available, technological plat-
form. We describe the use of a panel of short Taqman 5'
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labelled, 3' Minor Groove Binding (MGB), probes to
interrogate species defining SNPs. Use of the MGB protein
raises the melting temperature of probes meaning that a
single base mismatch causes more destabilisation than
would be the case with a longer probe [23]. This facilitates
accurate SNP detection allowing us to use this approach in
an assay to identify Brucella to the species level.

Results
Assay design
Previous multilocus sequence analysis (MLSA) studies,
performed by us, identified a number of SNPs that are
specific for known Brucella spp. These form the basis of
the assay described here (see Table 1). Point changes spe-
cific for B. melitensis, B. ovis, B. canis and the marine mam-
mal Brucella were described previously [22] based on
multi-locus sequence analysis of 160 strains. The SNPs
specific for B. abortus, B. suis, and B. neotomae used in this
assay, were identified by extension of this work to exam-
ine a total of 21 gene fragments from over 400 strains (M.
Koylass and A. M. Whatmore, unpublished data). In the
case of B. suis it was not possible to identify a single SNP
specific to the classical taxonomic group. This reflects the
fact that B. suis biovar (bv) 5 is genetically distinct from
the remaining B. suis biovars [4,6,24]. The SNP used in the
assay described here therefore identifies only B. suis bvs 1–
4. There are SNPs specific to B. suis bv 5 [4] that could be
used in an assay to discriminate this biovar, although in
practical terms it has only rarely been isolated from

rodents and is of no diagnostic significance. The B. suis bvs
1–4 SNP in prpE is shared with B. canis reflecting the fact
that B. canis is embedded within the B. suis phylogenetic
cluster. However the presence of a SNP confined to B.
canis in omp25 allows unambiguous separation of these
two species [4]. In previous work, where we used primer
extension to determine species, we had not incorporated
a target to positively identify B. suis but rather used a proc-
ess of elimination to identify members of this species.
However, with the isolation of novel species such as B.
microti, it became necessary to redress this problem. Bru-
cellae isolated from marine mammals have recently been
formally designated as two distinct species, B. pinnipedialis
and B. ceti [7]. However, this designation is proving con-
troversial as it is inconsistent with apparent genetic divi-
sions within the marine mammal group [25,26].
Reflecting this, it has not been possible to identify SNPs
that specifically identify these two species. Thus the SNP
chosen for use in this assay, in trpE, is universal to all
marine mammal isolates [4].

Individual assays for each SNP are based on the use of two
alternative probes, one that preferentially binds to the
species-specific polymorphism, while the other binds to
the alternative allele state present in members of all other
species. In each case the species-specific probe is labelled
with VIC while the alternative state probe is labelled with
FAM (see Table 1). By following a strategy of optimising
each SNP discrimination assay to identical cycling condi-

Table 1: Gene targets, primers and allele-specific probes used in this study.

Species Gene target Location in B. 
abortus 9–941

Primers Probes

B. abortus fbaA AE017224 F TGACATCATGCTCCGTCACATG VIC ATGCCGTGGCGGAA
360225–361289 R CAGACCGGAATATGCGGATAGAT FAM ATGCCGTGACGGAA

B. melitensis gap AE017223 F GGCTCAGGTTCTCAACGATACTA
TC

VIC CGTGGTCATAAAGC

1684721–1685728 R TCGCCCGTATAGGAGTGGAT FAM CGTGGTCATGAAGC
B. ovis aroA AE017223 F CGACCACCGCATCGC VIC CCATGACAAGGAAAC

29246–30598 R CCGGCTTTTCCGATGCAA FAM CATGACGAGGAAAC
B. suis bv1–4 prpE AE017223 F GCGACCGCATCCTCATCTATATG VIC CAAGCGTGGCAACC

1687718–1689625 R CGCCGAATACGACGGAATGAAT FAM CAAGCATGGCAACC
Marine mammal 
Brucellae

trpE AE017223 F CGAGGATTCCTTCGTCCATACG VIC CCAATTATTTCCACCAGACG

1537355–1539550 R ACGCACGGTGGAAACCTT FAM CCAATTATTTCCGCCAGACG
B. canis omp25 AE017223 F GCTGGCGCCTTTGCT VIC AACTTCCAGAAGGACC

710024–710625 R GGCCGTCCTTGGACTTCTTG FAM AACTTCCAGCAGGACC
B. neotomae putative oxido-

reductase
AE017223 F GGTTTTCCATGCGGTTTATTTGC VIC CATTGAGTGGCCCGAT

1989869–1990870 R GGCATCATGCACAGTGATATCGA FAM ATTGAGCGGCCCGAT
16SrRNA771/778 16SrRNA - F CGCCGTAAACGATGAATGTTAGC VIC CGAAGTGTAAACACCCCGA

R GCGGAATGTTTAATGCGTTAGCT FAM CGAAGAGTAAACTCCCCGA
16SrRNA1055 16SrRNA - F GGGTTAAGTCCCGCAACGA VIC ACCCTCGCCTTTAGTT

R ACGTCATCCCCACCTTCCT FAM CCCTCGCCCTTAGTT

Gene targets, primers and allele-specific probes used in this study.  Brucella species-specific SNPs and non-specific SNPs (both underlined)  are 
shown within the relevant probes. Gene target locations are given  relative to the sequenced B. abortus 9-941 strain.
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tions all seven species-defining assays can be analysed
concurrently in a multiple outcome assay.

Optimisation
The single-tube assay, as provided by Applied Biosystems,
is provided with a standard probe and primer concentra-
tion. However upon initial testing, certain assays dis-
played background with some probes not predicted to
react in a particular sample, giving fluorescence values
above those expected. To overcome this we obtained indi-
vidual assay components and optimised primer and
probe concentrations to maximise discrimination (data
not shown). Details of final probe and primer concentra-
tions selected based on this work are presented in Table 2.

Assay performance
The optimised assay was run as shown in Figure 1 with
each individual SNP discrimination assay running in rows
(e.g. A1–A12 = B. abortus, B1–B12 = B. melitensis etc.). This
enables typing of twelve isolates on a single 96-well plate.
Reaction plots with the species-specific VIC labelled
probes are in green, with the alternative FAM labelled
probe in blue. In most cases each sample should generate
a strong curve with the VIC labelled probe in only one
well, and should react preferentially with the FAM-
labelled probe in the remaining six wells. In this manner
the sample in column one is identified as B. abortus, that
in column 2 as B. melitensis and so on. Reflecting their
phylogenetic position described above, B. canis isolates
react with the VIC probes for both B. suis and B. canis (see
column 5). The isolate in column 9 is B. suis bv 5 which
as described above lacks any of the species defining SNPs
and thus reacts only with all seven FAM-labelled alterna-
tive state probes. This is also the reaction outcome
expected with any novel isolates that are not members of
classically recognised species or the marine mammal Bru-
cella groups.

Assay validation
Assay validation was performed using 303 Brucella iso-
lates encompassing all species and biovar reference strains

and a collection of geographically and temporally distinct
field isolates comprising members of all known species
(Table 3). Alongside representatives of all species and bio-
vars, the vaccine strains B. abortus S19 and RB51 as well as
B. melitensis Rev1 were also included. In addition, strains
that had both genotypes and phenotypes that did not cor-
respond to any of the known classical Brucella species but
were shown to be Brucella by 16S rRNA typing were also
tested. When all seven individual assays were compared
the predicted species identity of the 303 strains was con-
sistent with identification based on other molecular and
phenotypic methods. Based on this analysis allele dis-
crimination plots were generated for each SNP assay (Fig-
ure 2). Each data-point represents the normalised end-
point fluorescence reading for both VIC and FAM labelled
probes plotted on the X-axis and Y-axis respectively. Each
plot shows that there is unambiguous discrimination
between genotypes with two distinct populations. One
population clusters around the X-axis and consists of iso-
lates that would be classified as a member of the species
targeted by this one specific SNP. The second population
clustering around the Y-axis represents members of the
remaining species. No template controls cluster around
the plot origin with negligible reaction with either probe.
The spread of data-points in the scatter plot reflects the
fact that DNA concentrations applied to the assay were
not normalised.

A number of isolates that represent likely new Brucella
groups, based on 16S rRNA sequencing and other exten-
sive analysis, were tested in the assay including recently
described B. microti [8,9] and an atypical isolate from a
human infection [27]. As with B. suis bv 5, seven non-spe-
cific curves were generated showing that this assay would
identify isolates such as these as Brucella, but recognise
that they did not belong to any of the currently described
species. Within the 303 isolates tested were three reference
strains (one of B. abortus, B. melitensis and B. suis) each cul-
tured in vitro through up to 35 passages. Testing of these
isolates showed that the target SNPs were stable even on
extensive in vitro culture.

Table 2: Optimised primer and probe concentrations determined for the seven species defining MGB assays.

MGB assay Final Forward primer 
concentration (nM)

Final Reverse primer 
concentration (nM)

Final VIC labelled probe 
concentration (nM)

Final FAM labelled 
probe concentration 

(nM)

B. abortus 500 700 300 100
B. melitensis 700 1100 200 100
B. ovis 300 300 250 50
B. suis bv1–4 300 300 200 100
B. canis 700 1100 250 200
Marine mammal Brucella 500 1100 300 50
B. neotomae 500 700 200 100

Primer and probe concentrations were optimised to give the greatest amount of discrimination with the least background using the minimum 
amounts of the various components.
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Limits of detection of genotyping assay
The analytical sensitivity of each MGB dual probe assay
was firstly tested at least four times for each serial dilution
from 5 ng (1.5 × 106 genome equivalents) to 0.5 fg (1.5 ×
10-1 genome equivalents) of its target species/type. A rep-
resentative example is shown in Figure 3a. Each individual
assay could reliably detect DNA down to 50 fg, or approx-
imately 15 cells from all the assays. Samples containing 5
fg could only be detected sporadically. Analytical sensitiv-
ity was in line with work done on Bacillus anthracis, where
the lowest detection levels were 100 fg or 17 cells [16].
Allelic discrimination plots for each individual SNP assay
comparing serial dilutions of target and non-target species
illustrated that there was still clear discrimination even at
50 fg of DNA (for example see Figure 3b).

Specificity
Initial optimisation work was carried out using the Taq-
man Universal mix which was effective for all seven assays
although fluorescence levels were lower for the B. abortus
probe pair. This led to lower sensitivity at 40 cycles for this
probe pair, although allelic discrimination was unaf-
fected. In order to check specificity of the assay five type
strains of Ochrobactrum, the closest phylogenetic neigh-
bour of Brucella [28], were tested in duplicate. They were

shown not to give fluorescence readings greater than the
background with all seven probe pairs, which is the very
least we would see if these samples were Brucella. How-
ever, to improve upon the low fluorescence and sensitivity
associated with the B. abortus probes, we switched to an
improved reaction mix (TaqMan Genotyping mix) and
then repeated the work. Upon repetition of the Ochrobac-
trum work with the new mix, it was noted that we were
now seeing a seven probe profile for the five species that
had not been seen previously. However, the kinetics of
these reactions were clearly very different to those seen
with comparable concentrations of Brucella DNA. Reac-
tions were weak with very low endpoint fluorescence val-
ues (data not shown). When the targets of SNP assay were
compared against the published O. anthropi ATCC49188
genome sequence, it was found that there were polymor-
phisms in most of the primers and probes used in this
assay that might account for these differences in kinetics
(data not shown). This assay was not designed as a diag-
nostic assay to distinguish Brucella from other bacteria,
and there are other real time PCR assays available that can
do this. For example, the insertion sequence IS711 is con-
sidered specific for organisms of the genus Brucella. Bru-
cellae can be identified through amplification of this
element as demonstrated by Ouahrani-Bettache et al. [29]
or in the widely used Abortus-Melitensis-Ovis-Suis PCR
(AMOS-PCR) assay [30]. In addition, there are genus spe-
cific real time PCR assays based around the conserved

Seven Species defining MGB assay profileFigure 1
Seven Species defining MGB assay profile. Example of 
the multiple outcome assay used to identify twelve Brucella 
isolates. Each species-defining assay is run in rows (A-G) with 
samples run in columns. The green PCR profiles represent 
reactions with the VIC labelled probe, representing the spe-
cies-specific probe in each probe pair. The blue PCR profiles 
represent reactions with the FAM labelled probes, repre-
senting the reaction with the alternate state (non species-
specific) allele probe in each probe pair. The identity of each 
of the isolates 1–12 is indicated by a red dot where an isolate 
generates a positive PCR reaction with a VIC-labelled probe.

B.abortus B.ovis B.canis B.suis Bv5 B.abortus

RB51

B.melitensis B.melitensis

Rev1

B.abortus

S19

B.neotomae

B.melitensis

B.suis Bv1-4 Marine mammal

Brucella

B.abortus

MGB

B.melitensis

MGB

B.ovis

MGB

B.suis

MGB

Marine mammal

Brucella MGB

B.canis

MGB

B.neotomae

MGB

Table 3: Phenotype based identity of the 303 isolates used to 
validate the species defining MGB assay.

Species/Biovar Numbers present

B. abortus unknown biovar 22
B. abortus bv1 55
B. abortus bv2 6
B. abortus bv3 11
B. abortus bv4 8
B. abortus bv5 4
B. abortus bv6 11
B. abortus bv7 5
B. abortus bv9 1
B. melitensis unknown biovar 23
B. melitensis bv1 7
B. melitensis bv2 2
B. melitensis bv3 32
B. ovis 5
B. suis unknown biovar 30
B. suis bv1 13
B. suis bv2 8
B. suis bv3 3
B. suis bv4 5
B. suis bv5 2
Marine Mammal Brucellae 30
B. canis 12
B. neotomae 3
Novel phenotype/Brucella by 16S rRNA 5
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Discrimination of the seven species defining assaysFigure 2
Discrimination of the seven species defining assays. Allele discrimination plots generated by each species-defining MGB 
assay when applied to 303 Brucella isolates. Each assay was read after 40 cycles.
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Sensitivity and limits of discrimination using MGB assayFigure 3
Sensitivity and limits of discrimination using MGB assay. Sensitivity of the species defining assays. The data presented 
here relates to the B. melitensis gap assay with the remaining six assays giving equivalent results. A. Titrations of B. melitensis 16 
M DNA from 5 ng to 500 ag. B. Allele discrimination plot showing performance of the B. melitensis assay in distinguishing B. 
melitensis from non-B. melitensis (B. suis) down to 50 fg of DNA.
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bcsp31 target that can fulfil this role [31,32]. However, in
light of this observation, we sought to include additional
markers that would differentiate Brucella from its nearest
phylogenetic neighbours. To do this, we looked at the 16S
rRNA sequence as the target most commonly used for
identification of bacteria to the genus level [33,34]. Align-
ments of 16S rRNA sequences of Brucella spp. with Ochro-
bactrum spp. sequences deposited in GenBank, as well as
equivalent sequences for other related α-proteobacteri-
awere constructed. It should be noted at this point that
there are a number of Genbank entries annotated as Bru-
cella but which clearly represent Ochrobactrum.

On this basis three SNPs were identified that when used
in conjunction can distinguish Brucella from other α-pro-
teobacteria based on the sequences deposited in Genbank
currently (December, 2007) (Figures 4 and 5). The three
SNPs correspond to positions 771 (16S rRNA771), 778
(16S rRNA778), and 1055 (16S rRNA1055) in the B. abortus
9–941 ribosomal RNA sequence. MGB probes were
designed to discriminate alleles at these three sites, one
probing 16S rRNA771 and 16S rRNA778, the other probing
16S rRNA1055 (see Table 1 and Figures 4 and 5). These
were tested against all Brucella species and biovars as well
as the five Ochrobactrum type strains previously tested and
two additional Ochrobactrum anthropi strains
(ATCC49188 and ATCC49237). Using this combination
of three SNPs manages to distinguish Brucella isolates
from non-Brucella isolates (Figures 6a and 6b).

Discussion
The aim of this work was to use the robust phylogenetic
framework provided by existing MLSA studies to develop
a rapid, unambiguous assay for the real-time PCR plat-
form capable of identifying Brucella isolates to species
level. The approach is based on a series of discrimination
assays interrogating SNPs that we have shown to be spe-
cific to a particular Brucella species. As each individual
SNP assay will always give one of two results, species
determination is straightforward and unambiguous.
Amplification profiles, representing binding of either the
VIC- or FAM-labelled probe, are generated in all seven
individual discrimination assays. One of the seven indi-
vidual assays should give a positive reaction with the VIC-
labelled probe (or two in the case of B. canis), with a reac-
tion with the FAM-labelled probe apparent in all the
remaining assays. An assay which did not generate a pos-
itive PCR result from each of the seven individual probe
pairs would be considered to have failed. This approach
avoids any danger of 'false-negatives', where lack of a PCR
product could be indicative of PCR inhibition rather than
absence of target. Furthermore, although any signals gen-
erated by non-Brucella organisms in this study were weak,
we sought to absolutely ensure the specificity of the assay
by identifying three SNPs in 16S rRNA that, when used in

conjunction, differentiate Brucella from closely related
bacteria. Allele discrimination assays based on these three
markers were shown to clearly differentiate Brucella from
closely related α-proteobacteria examined.

As a SNP based speciation assay the approach described
here has a number of potential advantages, comparable to
those of our primer extension based SNP typing assay
[22], when compared to classical biotyping approaches.
Both methods overcome the subjectivity associated with
biotyping with approaches that are relatively technically
straightforward, unambiguous, and have substantial
advantages in terms of simplicity and speed. In addition,
both techniques reduce the potential exposure to live Bru-
cella. This is desirable given the ease of acquisition of Bru-
cella in the absence of stringent bio-containment facilities
[35,36].

Both assays also have substantial advantages over cur-
rently used molecular assays. They can be carried out on
crude bacterial lysates bypassing the need for lengthy
DNA extraction procedures as required by some molecu-
lar typing approaches [20,37] and, as PCR based methods,
both techniques should theoretically be applicable
directly to field material obviating the need for any cul-
ture. In contrast to some extensively used existing assays
such as AMOS-PCR [30] these assays are all encompassing
identifying all relevant biovars of all species. Of the classi-
cally recognised Brucella species and biovars only B. suis
bv 5 will not be positively identified as a particular Bru-
cella species by the real-time PCR assay, reflecting its
unique phylogenetic position within the group appar-
ently distinct from other B. suis. However, like other
potentially novel Brucella groups, such isolates are posi-
tively identified as Brucella displaying seven clear non spe-
cies-specific FAM signals. Both techniques lend
themselves to future expansion to include markers for
such new groups. For example, after this manuscript was
submitted a novel species, B. microti, was described. We
have already described a SNP specific to this species based
on MLSA [9] and probes interrogating this SNP could
readily be incorporated into this assay. This capacity for
rapid inclusion of newly identified species is a potential
advantage over some other molecular assays such as the
multiplex PCR assay proposed by Garcia-Yoldi et al [38].
Both the primer extension assay and the real-time PCR
based assay described here have the advantage of poten-
tially increased sensitivity associated with PCR based tech-
niques. We have shown that the real-time PCR assay
described here can detect and differentiate as little as 15
genome equivalents suggesting that it could possibly
identify the organism in relevant field material such as
foetal tissue or vaginal swabs.
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Alignments of various 16SrRNA sequences around the location of the 16S rRNA771/778 probesFigure 4
Alignments of various 16SrRNA sequences around the location of the 16S rRNA771/778 probes. Alignments of frag-
ments of 16S rRNA centred around SNPs at bases 771 and 778 relative to B. abortus 9–941, used in combination with the 16S 
rRNA1055 SNP to separate Brucella from closely related bacteria. The alignment contains 65 sequences taken directly from Gen-
bank and includes many examples of Ochrobactrum, the closest phylogentic neighbour of Brucella as well as other, less-closely 
related, members of the α-proteobacteria. In this figure, the targetted Brucella specific SNPs are highlighted in red and the non-
Brucella alternatives in blue. The green bar above both figures represents the location of probe hybridisation. The alignment 
includes only one Brucella sequence as there is 100% identity in the 16SrRNA sequences between all Brucella [34]. Using this 
assay on its own will discriminate most but not all of the non- Brucella shown from Brucella organisms.
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   G T T A G C C G T C G G G C A G T T T A C T G T T C G G T G  Sinorhizobium meliloti LMG15285 (Genbank: AJ295071)
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Alignments of various 16SrRNA sequences around the location of the 16S rRNA1055 probesFigure 5
Alignments of various 16SrRNA sequences around the location of the 16S rRNA1055 probes. Alignments of frag-
ments of 16S rRNA centred around SNP at base 1055 relative to B. abortus 9–941 showing location of the SNP, used in combi-
nation with the 16S rRNA771/778 SNPs to separate Brucella from closely related bacteria. The alignment contains 65 sequences 
taken directly from Genbank and includes many examples of Ochrobactrum, the closest phylogentic neighbour of Brucella as well 
as other, less-closely related, members of the α-proteobacteria. In this figure, the targetted Brucella specific SNP is highlighted 
in blue and the non-Brucella alternatives in red. The green bar above both figures represents the location of probe hybridisa-
tion. The alignment includes only one Brucella sequence as there is 100% identity in the 16SrRNA sequences between all Bru-
cella [34]. Whilst this assay on its own is not as discriminatory as 16S rRNA771/778 assay, it crucially distinguishes non-Brucella 
not detected by the afore mentioned assay.
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There are, however, substantial advantages in the use of a
real-time PCR platform, compared to the primer exten-
sion format that led us to investigate and report this alter-
native approach. The primer extension approach requires
a DNA sequencer, while the approach described in this
manuscript requires only a real-time PCR machine.
Indeed, it could feasibly be undertaken in a simpler for-
mat with a conventional thermocycler and a basic fluores-
cence plate reader. Thus, while the primer extension assay
might be appropriate in larger reference laboratories, the
technique described in this manuscript is likely to prove
far more applicable in routine diagnostics. This is particu-
larly so as real-time PCR machines become more widely
available in areas of the world where brucellosis remains
a major public and animal health issue. In contrast, the
uptake of sequencing based technologies, requiring a sub-
stantially greater capital input, is likely to be much slower
in these areas. Furthermore, the real-time PCR approach is
also technically simpler, faster and cheaper than the
primer extension based approach. As amplification and
detection is carried out concurrently the real-time assay
described here can characterise isolates in around two
hours. This compares to the day required for the primer
extension based approach that also involves a much less
straightforward experimental procedure. Although both
primer extension and real-time assays could be further
expanded the number of markers that can be included in
a single primer extension assay is limited by the need to
space markers (ideally by at least 5 bp) between the 13 bp
and 88 bp size standards. There is no such limitation with
the real-time PCR described here where additional mark-
ers can be interrogated simply by the addition of an addi-
tional probe pair in another well of a 96 well plate. This
will make the latter assay our approach of choice for
incorporation of additional markers to type at the sub-
species level. Finally, the primer extension assay we
described did not include a specific marker for B. suis, with
this species being recognised by process of elimination
(i.e. lack of any of the markers specific for the other classi-
cal Brucella species). While this was appropriate at the
time, the recent description of a novel species of Brucella
(B. microti) indicates the added value of including a spe-
cific marker for each species. The inclusion of a marker for
B. suis in the real-time assay ensures that all species are
identified 'positively' by the recognition of a SNP shown,
by the extensive population genetic analysis that supports
this work, to be specific for the B. suis/canis group.

Conclusion
We have described a simple and unambiguous multiple
outcome SNP assay based on a robust phylogenetic frame-
work that can characterise Brucella isolates to the species
level. The approach is based on a sensitive and rapid real-
time PCR platform that will be widely applicable in diag-
nostic laboratories and is readily expandable as knowl-

edge of the genus increases. Further work will focus on the
expansion of the assay to include markers to discriminate
live vaccine strains and to type at the sub-species level.

Methods
Bacterial isolates
All Brucella examined in this study came from the Veteri-
nary Laboratories Agency strain archive. In total, 303
crude extractions from Brucella isolates were used to vali-
date the complete assay. These consisted of either boiled
cells or crude methanol extractions prepared as described
previously [5]. The purified genomic DNA extracts used
for sensitivity determination were isolated from B. abortus
544, B. melitensis 16 M, B. suis 1330, B. ovis F10/B7/02, B.
canis 79/92, B. neotomae 65/196, and VLA04/72 (isolated
in a porpoise from South West England). The non-Brucella
used in this work were Ochrobactrum anthropi (LMG3301,
ATCC49188 and ATCC49237), O. intermedium (LMG
3331), O. gallinifaecis (DSM15295), O. grignonense
(LMG18954), and O. tritici (LMG18957).

SNP identification
Identification of SNPs was based on an extension of pre-
viously discussed MLSA work [4] to examine twenty-one
distinct gene fragments from over 400 isolates of Brucella.
In addition to the SNPs isolated in four genes gap, omp25,
trpE, and aroA identified in this previous study [4], SNPs
located in three further genes, fbaA, prpE, and a putative
oxidoreductase encoding gene (see Table 1) were used in
the setting up of this assay. The locations of all SNPs in
relation to the sequenced strain, B. abortus 9–941 is shown
in Table 1. In the case of the assay to distinguish Brucella
spp. from near neighbour organisms 16S rRNA sequence
data from a number of different members of the α-proteo-
bacteria group were downloaded from Genbank and
aligned with a number of known Brucella species using the
ClustalW algorithm on the Lasergene 7 Megalign pro-
gramme (DNAstar, Madison, Wisconsin, USA). Many of
these sequences were recently described by Scholz et al.,
[39] who demonstrated separation of Brucella from Ochro-
bactrum based on them. Polymorphisms were selected
based on the ability to separate Brucella sequences as a
complete entity from within the remaining α-proteobac-
teria. In total, three polymorphisms were found that were
able to distinguish Brucella isolates from their genetic
"near neighbours".

Design of multiple-outcome assay to type Brucella species
The design of this multiple-outcome assay involved the
development of seven individual allelic discrimination
assays to determine bases present at the seven species
defining SNP sites interrogated. Using the MLSA data
available, sequences of around 170 bp containing the spe-
cies defining SNP were edited using the Applied Biosys-
tems File Builder 3.1 software. Probes and primers were
Page 11 of 14
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Discrimination of the Brucella genus defining assaysFigure 6
Discrimination of the Brucella genus defining assays. Application of the two 16S rRNA based probe pairs in distinguish-
ing isolates from the genus Brucellae from other α-proteobacteria. a. Results generated by the 16SrRNA771/778 probe pair when 
used against 5 species of Ochrobactrum (including three strains of O. anthropi) and representatives of all the known Brucella spe-
cies and biovars. This reaction separates Brucella isolates from all other except O. anthropi ATCC49237. b. Results generated 
with the application of 16SrRNA1055 probe pair illustrating the use of this assay to further separate O. anthropi ATCC49237 
from Brucella isolates.
Page 12 of 14
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designed and provided in a single tube, with the species-
specific probe labelled with VIC, and the alternative state
probe (reacting with all other species) with FAM. The
sequences of both primers and both probes are shown in
Table 1. All assays were first checked for species specificity
on a small panel of isolates of 27 methanol isolates. All
real time PCR reactions were initially run in a final vol-
ume of 12.5 μl, comprising of 6.25 μl Taqman universal
master mix (Applied Biosystems, Warrington, UK), 900
nM final concentration of each primer, 200 nM final con-
centration of each probe, and an arbitrary volume of 0.5
μl sample (DNA not quantified). All PCR reactions were
run on the Stratagene MX3000P platform (Stratagene, La
Jolla, USA) as follows: 1 cycle at 50°C for 2 mins, fol-
lowed by 1 cycle at 95°C for 10 mins, followed by 40
cycles of 92°C for 15 secs, and 60°C for 1 min. The con-
centrations of primers and probes were then optimised to
maximise discrimination with the least amount of rea-
gents (see Table 2). For all real time reactions involving
the validation on 303 isolates and the sensitivity work, the
Taqman universal mix was replaced by Taqman Genotyp-
ing mix (Applied Biosystems, Warrington, UK) but other-
wise, the reactions were the same. For the work involving
assay sensitivity genomic DNA, extracted by a phenol/
chloroform method [20], was quantified by spectropho-
tometer (Smartspec Plus, Bio-Rad, Hemel Hempstead,
UK). This DNA was then diluted to the required concen-
tration in DNA/RNA free sterile water (Ambion, Hunting-
don, UK) prior to replicate testing. For the Brucella genus
specific MGB dual probe assays, probes and primers were
designed around the three SNPs of interest in the 16S
rRNA sequence (Table 1). Real time PCR reactions for this
part of the study were run as for the validation and sensi-
tivity work for the seven SNP species defining assays.
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