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Abstract

Background: Decorin-binding proteins (Dbps) A and B of Borrelia burgdorferi, the agent of Lyme
disease, are surface-exposed lipoproteins that presumably bind to the extracellular matrix
proteoglycan, decorin. B. burgdorferi infects various tissues including the bladder, heart, joints, skin
and the central nervous system, and the ability of B. burgdorferi to bind decorin has been
hypothesized to be important for this disseminatory pathogenic strategy.

Results: To determine the role of DbpBA in the infectious lifecycle of B. burgdorferi, we created a
DbpBA-deficient mutant of B. burgdorferi strain 297 and compared the infectious phenotype of the
mutant to the wild-type strain in the experimental murine model of Lyme borreliosis. The mutant
strain exhibited a 4-log decrease in infectivity, relative to the wild-type strain, when needle
inoculated into mice. Upon complementation of the DbpBA-mutant strain with DbpA, the wild-
type level of infectivity was restored. In addition, we demonstrated that the DbpBA-deficient
mutant was able to colonize Ixodes scapularis larval ticks after feeding on infected mice and persist
within the ticks during the molt to the nymphal state. Moreover, surprisingly, the DbpBA-mutant
strain was capable of being transmitted to naive mice via tick bite, giving rise to infected mice.

Conclusion: These results suggest that DbpBA is not required for the natural tick-transmission
process to mammals, despite inferences from needle-inoculation experiments implying a
requirement for DbpBA during mammalian infection. The combined findings also send a cautionary
note regarding how results from needle-inoculation experiments with mice should be interpreted.

inasmuch as these interactions have been shown to be

Background

The causative agent of Lyme disease, Borrelia burgdorferi, is
introduced into a mammalian host via tick bite, where-
upon the organisms enter the skin, disseminate hematog-
enously, and persist in the presence of a strong host
immune response [1]. The dissemination and persistence
of B. burgdorferi within a mammalian host is thought to be
predicated, at least in part, on the organism's ability to
bind molecules of the extracellular matrix (ECM) [2-4],

important for other bacterial pathogens [5]. Among vari-
ous ECM components, B. burgdorferi binds to type I colla-
gen [4], fibronectin [6,7], integrins [8,9], the proteoglycan
decorin [10], and glycosaminoglycans (GAGs) [11,12].
The B. burgdorferi proteins described as ECM-binding pro-
teins include BBK32 [6,13], Bgp (borrelia-GAG binding
protein) [12], P66 (Oms66) [14], decorin-binding protein
(Dbp) A, and DbpB [10,15]. These proteins, and perhaps
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other as yet unidentified molecules, may play a significant
role in the infectivity and pathogenesis phenotypes of B.
burgdorferi.

Our laboratory has been interested in DbpA as a vaccine
candidate for the prevention of Lyme disease and the con-
tribution of DbpA and DbpB to B. burgdorferi pathogene-
sis and infectivity [16,17]. Since their in vitro
characterization as decorin-binding proteins [10,15], the
DbpA and DbpB lipoproteins have been implicated as
potential contributors to adhesion and colonization of B.
burgdorferi within mammalian hosts [15,18]. The genes
that encode DbpA and DbpB reside in an operon, dbpBA,
on linear plasmid 54 (Ip54) and are found within many
B. burgdorferi sensu lato isolates [19]. Neither protein is
expressed by B. burgdorferi within the tick vector [17],
however, expression of dbpA (and presumably dbpB) is
upregulated in the mammalian host after ticks deposit
spirochetes into the skin [20,21]. DbpA and DbpB expres-
sion likely remains high for the duration of mammalian
infection, as inferred by the presence of antibodies against
both antigens in the serum of mice as late as one year after
infection (Hagman, unpublished data). The presence of
antibodies against DbpA in the serum of patients with
late-stage, disseminated Lyme disease also is well-docu-
mented [22], providing added support for DbpA expres-
sion by B. burgdorferi during chronic infection.

Although the combined data to date suggest an important
role for the decorin-binding proteins of B. burgdorferi dur-
ing mammalian infectivity, virtually all data inferring the
importance of DbpA and DbpB thus far have been indi-
rect. The first direct investigation into the role of the
dbpBA operon in the infectious lifecycle of B. burgdorferi
was carried out by Shi et al [23]. In this study, mutational
analysis of dbpBA in B. burgdorferi strain B31 indicated
that neither DbpA, nor DbpB was essential in the murine
needle-challenge infection model of borreliosis. However,
there was evidence suggesting that these mutants exhib-
ited a modest level of attenuation in immunocompetent
mice. Unfortunately, a comprehensive 50% infectious
dose (IDs,) was not included in this report to further
investigate this possible defect, nor was genetic comple-
mentation of the mutation performed. This latter point is
of particular importance given the genetic plasticity of B.
burgdorferi and the possibility that spontaneous loss of an
endogenous borrelial plasmid might account for the
apparent defect in this mutant. To more directly examine
the role of both DbpA and DbpB in the murine/tick
model of Lyme disease, a dbpBA-deficient mutant and a
dbpA genetic complement of the mutant were generated in
the infectious strain 297 of B. burgdorferi. Phenotypic
assessment of mouse needle infectivity by ID, analysis
and Ixodes scapularis tick colonization and tick-transmis-
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sion capacity by the Bb297 dbpBA-mutant also were per-
formed.

Results

Construction and characterization of a dbpBA-deficient
mutant

To assess the roles that DbpA or DbpB play in the infectiv-
ity and pathogenesis of B. burgdorferi, we created a dbpBA-
deficient mutant by allelic exchange of a PflgB-kan cassette
for the majority of the dbpBA operon (Fig. 1A). Infectious
Bb297 was chosen for construction of the dbpBA mutant
because it is a human isolate [24] and prior infectious
mutants of this strain have been readily created [25-28].

Bb297 was electroporated with the suicide vector, pKHd-
bpAko, containing a PflgB-kan cassette flanked by 1.5 kb
of DNA on the left side of the dbpBA operon and 890 bp
of DNA on the right side of the dbpBA operon (Fig. 1A).
This allelic exchange strategy relies on a double crossover,
homologous recombination event to replace the dbpBA
operon with the PflgB-kan cassette. Several kanamycin-
resistant transformants were obtained, and the presence
(Fig. 1B) and orientation (Fig. 1C) of the PflgB-kan cas-
sette within the dbpBA operon was confirmed by PCR
analysis.

During genetic manipulation and in vitro cultivation, B.
burgdorferi may spontaneously lose endogenous plasmids
that are not required for growth in vitro, but are essential
for mammalian infection. At least two plasmid-encoded
genes, VIsE [29] and pncA (BBE22) [30], fit this criteria.
One kanamycin-resistant transformant, BbKH500,
retained both vIsE and pncA (Fig. 2) and was analyzed by
immunoblotting to confirm the loss of DbpA and DbpB.
As expected, DbpA and DbpB were absent from BbKH500
(Figs. 3A and 3B). BbKH500 exhibited identical doubling
times when compared to wild-type Bb297 (data not
shown) and PCR-based plasmid profiling revealed that
the endogenous plasmid profile of BbKH500 matched
that of the parent Bb297 (Fig. 2).

Loss of DbpBA significantly reduces the infectivity of B.
burgdorferi in mice when introduced via needle
inoculation

To determine the contribution of DbpA and DbpB to the
infectivity of B. burgdorferi in mice, C3H/HeJ mice were
challenged intradermally via needle inoculation with
increasing numbers of BbKH500 (104, 105, 10¢ and 107
spirochetes). As a positive control, an additional five mice
were inoculated with wild-type Bb297 at a dose of 103 spi-
rochetes (IDs, of approximately 50 spirochetes; [27]). The
results are shown in Table 1. Whereas the mice infected
with 103 of Bb297 showed culture positive ear punch
biopsies at two weeks post-infection, needle challenge of
naive mice with 104 BbKH500 did not produce an infec-
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Construction of dbpBA-deletion mutant BbKH500 and Prom-dbpA complementation vector and PCR confir-
mation. (A) Strategy for the replacement of the dbpBA operon with the PfigB-kan and complementation with pKH2000. pKH-
dbpBAko was the pGEM-T easy-based suicide plasmid used to transform Bb297 for the homologous recombination of the
kanamycin-resistance gene into the dbpBA operon. "A" denotes Ascl sites. PflgB-kan denotes the kanamycin-resistance marker
expressed from the flgB promoter. The borrelial shuttle vector containing the dbpBA Prom fused to the dbpA ORF (pKH2000)
was transformed into BbKH500 to restore DbpA expression. Oligonucleotide primers used for PCR are indicated with short
arrows. (B) PCR using primers ko5 and ko4 (shown in panel A). The first two lanes are undigested PCR products from Bb297
and BbKH500, whereas the second two lanes are the corresponding PCR products digested with Ascl. (C) Lanes |, 3 and 5 are
PCR products derived from BbKH500 template DNA and lanes 2, 4 and 6 are PCR products derived from Bb297 template
DNA. Primer pairs used in PCR are indicated above the lanes. FlaB5' and FlaB3' primers amplify flaB of B. burgdorferi. DNA size
standards (M) are shown in base pairs on the left.
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Figure 2

PCR-based plasmid profiling to compare the plasmid contents of the strains employed in this study. PCR ampli-
fication with primers specific for each of the known endogenous B. burgdorferi plasmids was used to compare the plasmid con-
tent of parent Bb297, BbKH500, and BbKH501. Sequence information for the primers utilized is provided in Table 4. Plasmid
designations above each lane are based on strain B3| plasmid annotation. DNA size standards (M) are shown in base pairs.

tion in any mouse (n = 15), even when the infection was
allowed to progress for 14 weeks. Seventeen mice chal-
lenged with 105 and ten mice challenged with 10°¢
BbKH500 also did not show signs of infection (negative
ear-punch biopsy culture) at four weeks post-challenge
(Table 1). However, after 10 weeks, three mice from the
group infected with 105> BbKH500 and two mice from the
group challenged with 106 BbKH500 were shown to be
infected by positive ear-punch biopsy cultures. Addition-
ally, mice were challenged with either 10> or 10°¢
BbKH500 and ear-punch biopsies were harvested 14
weeks after infection (Table 1). From the group that
received 10 spirochetes, two mice were infected (n = 10),
and from the group that received 10¢spirochetes, four
mice were infected (n = 10). All of the mice challenged
with 107 of BbKH500 had positive ear-punch cultures as
early as five-weeks post-challenge, and as late as 14 weeks
post-infection (n = 5). These spirochetes from ear punch-
positive cultures were analyzed by diagnostic PCR as
described above, and confirmed to be Bb297 or BbKH500
(data not shown). Aliquots of these cultures also were
passed to media containing kanamycin to confirm resist-
ance and sensitivity of BbKH500 and Bb297, respectively.
Seroconversion analyses performed on a subset of mice

also revealed that none of the mice infected with
BbKH500 showed antibody reactivity against DbpA or
DbpB (data not shown). Furthermore, only mice that
exhibited culture-positive ear punch cultures showed sig-
nificant serum antibody reactivity with P39 (data not
shown). Analysis of all infection results yielded an IDg,
for BbKH500 of 1.2 x 10¢ (p <0.001) compared with IDs,
of approximately 50 bacteria for wild-type Bb297 [27].

Complementation of the dbpBA-deletion mutant with
DbpA restores infectivity in needle-challenged mice

The results above suggested that the dbpBA operon is
required for full infectivity of B. burgdorferi when mice are
infected via needle inoculation. However, during genetic
manipulation of B. burgdorferi, it is not uncommon to lose
one or more plasmid(s) which potentially contribute to
infection, therefore genetic complementation is necessary
to definitely ascribe the attenuated phenotype in
BbKHS500 to the dbpBA lesion. Although BbKH500 carries
a mutation in both DbpA and DbpB, we chose to comple-
ment with only dbpA because i) DbpA is better character-
ized that DbpB [31,32] and ii) experimentation suggests
that DbpA is the prominent Dbp in B. burgdorferi [15,33].
To restore DbpA expression in BbKH500, a shuttle plas-
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Table I: Assessing infectivity of BbKH500 in needle-challenged
C3H/He) mice.

Inoculation dose (bacteria/inoculation)

Time post-infection (wks) 0% | 05a 1062 1072
5 0/10 0/17 0/10 5/5
10 ND 3/17 2/10 ND
140 0/5 2/10 4/10 5/5

Cumulative results 0/15 5/27 6/20 10/10

2 Mice were needle infected with varying concentrations of bacteria.
Infection rates were assessed at the noted timepoints by culturing
BbKH500 from ear-punch biopsies.

b Mice from 14 week timepoint represent groups distinct from the 5-
and 10-week groups.

mid carrying a copy of dbpA driven by its native promoter
was constructed (Fig. 1A). Since dbpA is the second gene in
the dbpBA operon, we chose to clone the promoter for this
operon upstream of the dbpA gene and then insert the
fusion product in the multiple-cloning site of pJD51.
BbKH500 cells were transformed with this shuttle plas-
mid (pKH2000), yielding clones resistance to both kan-
amycin and streptomycin. These transformants were
screened by PCR to verify the presence of the comple-
menting plasmid (Fig. 3C). Clones shown to contain the
complementing plasmid were checked for vIsE and pncA
(Fig 2.), as described above. PCR-based plasmid profiling,
performed on one of the transformants that contained
both pncA and visE, revealed a profile identical to the par-
ent strain, BbKH500 (Fig. 2). This clone, designated
BbKH501, was selected for further analysis and DbpA
expression was confirmed by both SDS-PAGE (Fig. 3A)
and immunoblot analysis (Fig. 3B). Proteinase K diges-
tion of BbKH501 and Bb297, under conditions that left
FlaB intact, demonstrated surface exposure of DbpA in
both strains (Fig. 3D). Three groups of five C3H/He]J mice
were needle inoculated (i.d.) with BbKH501 at 102, 103 or
104 borreliae per mouse. Ear punch biopsies were har-
vested at either two weeks (103 and 104 doses) or three
weeks (102 dose); all 15 mice became infected, as con-
firmed by positive ear-punch biopsy cultures. Although a
precise determination of the ID5, of BbKH501 could not
be calculated, the fact the 100% of the mice were infected
with 102 bacteria suggests that the IDs is less than 102 spi-
rochetes (4-logs lower than BbKH500). Aliquots of these
cultures were passed to media containing streptomycin
and kanamycin selection to confirm resistance. Diagnos-
tic PCR also confirmed that the spirochetes growing out of
the ear punch biopsy were BbKH501 (data not shown).
Seroconversion analyses carried out on a subset of mice
also revealed that the mice infected with BbKH501
showed antibody reactivity against DbpA, but not DbpB
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Characterization of BbBKH500 and BbKH501. (A)
Whole-cell lysates of Bb297, BbKH500, and BbKH501 were
resolved by SDS-PAGE (12.5% acrylamide) and stained with
Coomassie brilliant blue or (B) or transferred to nitrocellu-
lose and assessed by immunoblot analysis with antibodies as
noted on the right. (C) PCR analysis of Bb297, BbKH500 and
BbKH501 for presence of dbpA. (D) Immunoblot analysis of
whole-cell lysates of proteinase K-digested (+) or undigested
(-) Bb297 or BbKH501. Antibodies used noted on the right.
Molecular mass of markers (M) in panel A are shown in kDa.
The arrow at the right in panel A denotes the protein band
corresponding to DbpA. DNA size standards (M) in panel C
are shown in base pairs.

(data not shown). These data confirm that DbpA is neces-
sary for wild-type levels of B. burgdorferi infectivity in mice
when introduced via needle inoculation, and that DbpB is
dispensable for this aspect of the infectious process.

Neither DbpA nor DbpB is required for acquisition of B.
burgdorferi by ticks or infection of mice via tick bite

To determine whether I. scapularis ticks could acquire bor-
reliae lacking dbpA and dbpB, naive larvae were allowed to
feed to repletion on mice infected with BbKH500 or on
mice infected with Bb297. Larvae were collected after
feeding, allowed to molt, and the unfed nymphs were
examined for the presence of B. burgdorferi by IFA; approx-
imately 11 weeks had elapsed since these ticks had fed to
repletion as larvae. Microscopic examination of multiple
fields revealed approximately one spirochete per field in
the BbKH500-infected ticks (23 ticks examined), as
opposed to 20-30 spirochetes per field in the Bb297-
infected ticks (10 ticks examined). All Bb297-infected
ticks examined were positive for B. burgdorferi. Of the ticks
that had fed on BbKH500-infected mice, 80% were posi-
tive for spirochetes.
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Table 2: Assessing infectivity of BbKH500 via tick inoculation of
C3H/He) mice

Strain Ticks/mouse? Mouse infectivity®
Bb297 5 2/2
BbKH500 5 12

10 4/6

2 Varying number of ticks infected with BbKH500 were allowed to
feed to repletion on naive mice.

b Infection rates were assessed at three weeks post-infestation by
culturing BbKH500 from ear-punch biopsies

Because the ticks maintained strain BbKH500 through
their molt, it was important to assess whether the loss of
DbpA and DbpB affected B. burgdorferi transmission to
mice via tick bite. To test this, five BbKH500-infected
nymphs were placed on each of two naive mice and ten
BbKH500-infected nymphs were placed on each of six
naive mice. An additional two naive mice received five
Bb297-infected ticks each. The ticks were allowed to feed
to repletion, and at three weeks post-infestation, ear-
punch biopsies were harvested from all mice. The ear-
punch biopsies were cultured in BSK medium and the cul-
tures examined by dark-field microscopy for the presence
of B. burgdorferi. These results are shown in Table 2. One
of the two mice infested with five ticks harboring
BbKH500 was infected as demonstrated by a positive ear-
punch culture, and four of the six mice infested with ten
ticks harboring BbKH500 were infected. Both of the mice
on which the Bb297-infected ticks fed had positive ear-
punch biopsy cultures. These spirochetes were analyzed
by diagnostic PCR as described above, and confirmed to
be Bb297 or BbKH500 (data not shown). Seroconversion
analyses performed on a subset of the BbKH500-infected
mice also revealed that none of the mice infected with
BbKH500 showed antibody reactivity against DbpA or
DbpB (data not shown). Furthermore, only mice that
exhibited culture-positive ear punch cultures showed sig-
nificant antibody reactivity against P39 (data not shown).
Taken together, these data indicate that DbpA and DbpB
are not essential for the transmission of B. burgdorferi from
ticks to mice.

Discussion

The importance of ECM-binding proteins to the patho-
genic strategy of B. burgdorferi is not currently known. It is
presumed that borreliae bind mammalian host cells dur-
ing infection because binding to various ECM molecules
and to tissue culture cells has been demonstrated in vitro
[4,34,35]. Of the known ECM-binding proteins of B. burg-
dorferi, Bgp [36] and BBK32 [37] have been deleted from
infectious strains N40 and B31, respectively, and shown
to be dispensable for infectivity in the mouse model of
Lyme disease. A deletion of integrin-binding protein, P66,
in a noninfectious strain of B. burgdorferi, HB19 [38],
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caused the spirochetes to lose their ability to bind b;-
chain integrins [14] but the phenotype of a P66 mutant in
an infectious strain of B. burgdorferi is currently unknown.
The remaining two known ECM-binding proteins, DbpA
and DbpB, were the focus of this work due to multiple
lines of evidence suggesting a role for one or both proteins
during infection of mammalian hosts [15,18,31]. To
directly address the contribution of both DbpA and DbpB
to B. burgdorferi infectivity, we created BbKH500, a dbpBA-
deletion mutant of the human isolate Bb297, and used
this strain to challenge mice with increasing numbers of
spirochetes. We observed a 4-log reduction in infectivity
of the mutant strain when the spirochetes were needle
inoculated into mice. Complementation of the dbpBA-
mutant with DbpA alone in the dbpBA-mutant restored
infectivity of B. burgdorferi to wild-type levels.

Prior to this work, Fischer et al. [18] had restored DbpA
and DbpB expression (via shuttle plasmid) to B. burgdor-
feri strain B314, a non-adherent, noninfectious derivative
of strain B31 that has lost several plasmids, including Ip54
[39]. Although expression of the Dbp molecules restored
binding of the spirochetes to purified decorin, dermatan
sulphate, and human epithelial cells [18], experiments to
test the infectivity of B314 expressing DbpA and DbpB in
the murine model of Lyme disease were implausible due
to the loss of plasmids that are required for mammalian
infection [39]. A recent study by Shi et al. [23] assessed the
infectivity of a DbpA,B mutant of B. burgdorferi strain
5A18NP1, a B31 derivative that lacks the BBEO2 gene [40].
Based on needle-challenge results obtained from a single
inoculation dose of 10> bacteria (80% infection), Shi et al.
[23] ascertained that the dbpBA locus was not required for
infectivity. However, in the present study, we observed a
4-log increase in the ID;, of BbKH500 (>10°bacteria) and
a 19% infection rate with a dose of 105> BbHK500 when
mice were infected by needle inoculation. The reason for
the difference in infectivity levels of the dbpBA-deficient
mutants reported by Shi et al. and BbKH500 created in
our laboratory is unknown at this time. One possible
explanation for this disparity could be due to our use of
Bb297 as the parental strain for the present mutational
analysis, whereas Shi et al. [23] utilized a clonal derivative
of B31 that is a BBEO2-mutant. This variability also could
be explained by spirochete enumeration differences prior
to needle challenge. As mentioned in the Methods, signif-
icant attention was given to the enumeration of BbKH500
prior to needle inoculation of mice.

It should be noted that during the course of the study
described herein, a subsequent report on the role of
DbpBA was published by Shi et al. [41], which, unlike
their previous study, included genetic complementation
experiments. Our current findings agree with those of this
most recent report in that Shi et al. also observed a 4-log
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increase in IDs, values with their dbpBA mutant [41]. In
addition, Shi et al. observed a defect in the ability of the
dbpBA mutant to colonize heart, joint and skin tissues,
suggesting an overall deficiency in dissemination [41].
The observation that mice infected with BbKH500
showed a delay in infectivity (10- to 14-weeks post-infec-
tion) also suggests that BbKH500 might be attenuated
with respect to its capacity to disseminate through the
host. However, whereas we were able to compensate fully
for the loss infectivity in the dbpBA mutant by comple-
menting with dbpA alone (as assessed by ear punch biopsy
culture), Shi et al. reported that both dbpA and dbpB were
required to restore the infectivity of their dbpBA mutant
[41]. Although the precise reason for this disparity is
unknown at this time, there are several differences
between the experimental approaches of these studies that
might account for these differing results. First, it is possi-
ble that some intrinsic differences(s) in the bacterial
strains utilized might account for the variation observed
between these two studies. Specifically, as noted above,
strain 297 was the parental strain used in the current
study, and Shi et al. utilized a highly-transformable clone
(5A13) of strain B31 that lacks both 1p56 and the viru-
lence-associated plasmid Ip25 as the background for their
mutagenesis experiments [30,41]. Second, the disparity in
our results might be due to the use of different strains of
mice in these two studies; C3H/HeJ mice were used in our
study, whereas Shi et al used BALB/c [41]. This may be rel-
evant because numerous studies have reported that exper-
imental infection of C3H strains of mice with B.
burgdorferi results in significantly different disease pathol-
ogies [42,43], higher spirochetal loads in multiple tissues
[44], and different cytokine responses [45,46] by compar-
ison to similarly infected BALB/c mice. Although, it is dif-
ficult to precisely predict how the reported differences in
pathogenesis observed in these two distinct murine back-
grounds might be impacted by DbpA and/or DbpB during
infection, it is reasonable to suspect that these differences
might account for some of the disparity in the results of
complementation experiments obtained in the aforemen-
tioned studies.

Even though DbpA was required for full infectivity by
Bb297 in mice when introduced by needle inoculation
(intradermally), neither DbpA, nor DbpB, was required
for infection of larval I. scapularis ticks or for transmission
of BbKH500 from infected ticks to naive mice. That DbpA
was not required for uptake of the spirochetes by larval
ticks was not surprising due to our earlier work demon-
strating that DbpA is not expressed by B. burgdorferi har-
bored within the tick vector [17]. However, based on the
data we obtained from needle inoculation of mice with
BbKH500, it was surprising that as few as five nymphal
ticks could transmit BbKH500. This is especially surpris-
ing because semi-quantitative analysis of the total number
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of spirochetes observed in the midguts of unfed ticks
infected with BbKH500 showed a lower spirochete den-
sity (approx. 1/field) by comparison to number of bacte-
ria present in the dissected midguts of the Bb297-infected
ticks (20-30/field). While these data might suggest a pos-
sible defect in either the efficiency of acquisition of the
dbpBA mutant or the capacity of this mutant to persist in
the tick midgut, there were still sufficient numbers of the
mutant spirochetes in these ticks to infect naive mice.
Since it is not known precisely how many spirochetes are
transmitted by ticks during the feeding process [47], it was
impossible to directly compare the number of B. burgdor-
feri transmitted by tick bite to our needle-challenge exper-
iments. Spirochete numbers within salivary glands during
tick feeding have been estimated between 20 [47] and 61
spirochetes [48] per salivary gland pair. These data suggest
that an individual tick deposits far fewer than 104 spiro-
chetes during the feeding process, and our results have
shown that by the needle-inoculation route, 104
BbKH500 are not infectious.

In addition to the data presented by Fischer et al. [18],
additional reports have attempted to address the role of
DbpA, DbpB, and the ECM proteoglycan, decorin, with
respect to the infectivity and pathogenesis of B. burgdor-
feri. Brown et al. described B. burgdorferi infection of deco-
rin-deficient mice (Dcn/-) [49]. Brown et al. [49] found
that, by comparison to Dcn*/+ mice, Dcn’/- mice chal-
lenged with a higher dose of B. burgdorferi (104) had i)
fewer infected joints, ii) a reduction in the severity of
arthritis, but iii) no significant defect in colonization of
the other tissues. Whereas 104 wild-type B. burgdorferi
were infectious for Dcn/- mice in the studies by Brown et
al. [49], the Bb297 dbpBA-mutant was unable to infect
mice at this dose. When considered together, these data
support the hypothesis that DbpA, in addition to binding
decorin, may have an additional ligand(s) or has another
function critical for infectivity. At the present time, the
only other known ligand recognized by DbpA is the GAG
dermatan sulfate [ 18], but the contribution of this interac-
tion to the pathogenesis of B. burgdorferi remains to be
elucidated.

Conclusion

Despite the disparities between the results of the comple-
mentation experiments described in the current study and
those obtained by Shi et al. [41], the overall results of our
needle-inoculation experiments are in agreement with the
most recent conclusion of Shi et al. that mutation of
dbpBA results in significant attenuation of B. burgdorferi in
the murine model of Lyme borreliosis. However, the
observation that the dbpBA mutant showed a significant
reduction in infectivity when the mice were needle inocu-
lated is overshadowed by the finding that this same
mutant was capable of infecting mice via tick challenge.
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Table 3: Oligonucleotide primers used for cloning and PCR confirmation.

Designation Sequence

kol GGATCTTAAGAATTTCAAATTTT

ko2 TATAGGCGCGCCAATACTACATGCGACCAAT?

ko3 TATAGGCGCGCCTGAAGAGAATCCTCCAACT?

ko4 TTTAGATTCTAAAGTTTAGATAAAAATTGGTCGGG

ko5 AAACAAGTCTTAAAATCACAAGC

kan5' AGCCATATTCAACGGGAAACG

kan3' TTCATATCAGGATTATCAATACC

vIsE-5' GATGCAGAGAAGGCTGCTGCTGCAGTTAGTGC

vIsE-3' TATAAGCTTTCATCAGAGAGTCTTATTAACAGCAGTCTCAAC
BBE22-5' AAATTAATTTCTTTGATCAACCAAC

BBE22-3' TATATTAAGCTTACTTTGGCTGTCG

FlaB5' ATGATTATCAATCATAATACATCAGCTATTAA

FlaB3' TTATCTAAGCAATGACAAAACATATTGGGGAA

compl GGCTTCTCTTTTATTTTTAAGACC

comp2 CATATGTTCCTCCTTCTATTAAATTTAGTTAAATTTAAATTTTAGCCCACY
comp3 AGATCTCATATGATTAAATGTAATAATAAAACTTT®

comp4 GCATGCCTTTGGGTTAATTGCTTTAAC:

comp5 GTAGCTCCACTTTTGCTTC

2 Ascl site underlined.
b Ndel site underlined.
< Sphl site underlined

The fact that DbpA and DbpB are dispensable for infec-
tion via the tick-mediated route of infection suggests that
B. burgdorferi transmitted via tick bite are in some way
phenotypically different than their in vitro-cultivated
counterparts, and/or that tick-derived salivary compo-
nents, such as Salp15, may assist B. burgdorferi during the
early infection process [50]. Taken together, these results
emphasize the importance of characterizing the impact of
a given gene in the infectious lifecycle of B. burgdorferi
using the natural tick vector, as opposed to using only the
artificial needle-challenge model.

Methods

Bacterial strains and growth conditions

Infectious, low-passage B. burgdorferi strain 297 (Bb297)
[51] was used for these studies. Bacteria were cultivated in
vitro in either Barbour-Stoenner-Kelley (BSK)-II [52] or
BSK-H Incomplete medium (Sigma-Aldrich, St. Louis,
MO) supplemented with 6% normal rabbit serum (Pel-
Freeze Biologicals, Rogers, AR) at 35°C with 5% CO,.
When necessary, BSK media was supplemented with bor-
relia antibiotic mix (BAM; Sigma-Aldrich), 600 pg/ml
kanamycin, or 700 pg/ml streptomycin.

Generation of DbpBA deletion mutant in Bb297

The dbpBA-deficient Bb297 strain was created by allelic
exchange of the dbpBA operon with a kanamycin-resist-
ance cassette, PflgB-kan [53], derived from pBSV2 [54].
The mutagenesis construct, pKHdbpBAko, was created by
generating two PCR products that constituted the left and

right flanking regions of the dbpBA operon which then
were joined via an Ascl restriction site, thus deleting a sig-
nificant portion of the dbpBA operon. Takara EX Taq
polymerase (Takara Bio Inc., Shiga, Japan) and oligonu-
cleotide primers kol and ko2 (Table 3) were used to
amplify the left arm and ko3 and ko4 (Table 3) were used
to amplify the right arm; primers ko2 and ko3 were mod-
ified such that Ascl restriction sites would be introduced
into the "middle termini" of the two PCR fragments. The
resulting PCR products then were digested with Ascl and
ligated together. The linear ligated product was used as the
template in a second PCR amplification containing the
primers kol and ko4. The resulting PCR product, repre-
senting the joined flanking regions, was cloned into
PGEM-T Easy vector (Promega Corp., Madison, WI) to
generate pGEMT-dbpBA-Ascl. The PflgB-kan cassette was
from pJD55, a derivative of pJD44 in which the original
aph [3'|-Illa was replaced with the PflgB-kan cassette of
pBSV2 [27,54]. In pJD55, the PflgB-kan cassette is flanked
by Ascl sites which facilitated the cloning of the marker
into the unique Ascl site within pGEMT-dbpBA-AscI to
create pKHdbpBAko. Primers kan5' and kan3' were used
with primers ko1 and ko4 to determine the orientation of
the PflgB-kan cassette with respect to the dbpBA operon.

Bb297 were made electrocompetent and transformed
with pKHdbpBAko as described by Yang et al [28]. After
electroporation with pKHdbpBAko, spirochetes were
allowed to recover overnight at 35°C without antibiotic
selection in 20 ml BSK-H. The cells were diluted in BSK-H
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medium containing the appropriate concentration of
antibiotic(s) and aliquoted in 96-well tissue culture plates
(Corning, Lowell, MA). Transformants were recovered 7-
21 days after plating from wells in which a red to orange
color change of the medium was observed. The presence
of viable spirochetes was confirmed visually by dark-field
microscopy and clones expanded into BSK medium sup-
plemented with kanamycin.

Transformants were verified as dbpBA-deficient mutants
by diagnostic PCR using primers ko5 and ko4 (Table 3)
followed by analytical restriction enzyme digestion of the
PCR product with Ascl. DNA for PCR analysis was
extracted from borreliae harvested from the expansion
cultures. The PCR product generated from amplification
of Bb297 DNA (wild-type) is of similar size to that gener-
ated by amplification of DNA from a dbpBA::PflgB-kan
mutant, but the former lacks Ascl sites. Therefore, to verify
that the dbpBA operon was replaced by the PflgB-kan cas-
sette, PCR products from both Bb297 and mutant-derived
were digested with Ascl prior to agarose-gel electrophore-
sis. The presence of the vIsE and pncA (BBE22) genes in
kanamycin-resistant transformants was confirmed by PCR
using vIsE-5' and vIsSE-3' for vIsE amplification or BBE22-
5'and BBE22-3' for BBE22 amplification; refer to Table 3
for sequence information. FlaB5' and FlaB3' primers,
which amplified the flaB gene of B. burgdorferi, were used
as a control for DNA integrity. A single dbpBA-deficient
clone, BbKH500, that retained vIsE and pncA, was chosen
for additional PCR-based analyses to compare the endog-
enous plasmid content of this clone to Bb297. The
sequences of the primers utilized for plasmid profiling are
provided in Table 4. Nine of the primer pairs have been
previously described by Eggers et al. [55]. The remaining
primers utilized are unique from those cited by Eggers et
al. and were designed primarily based on sequence data
from strain 297.

Construction of shuttle plasmids for genetic
complementation of BbLKH500 with DbpA
Complementation of DbpA in BbKH500 was achieved by
transforming electrocompetent BbKH500 with the B.
burgdorferi-shuttle plasmid, pKH2000. Because dbpB pre-
cedes dbpA in the native operon, it first was necessary to
clone the promoter for the dbpBA operon directly in front
of the dbpA gene from Bb297, thereby removing the dbpB
gene. The dbpBA promoter region (Prom) was amplified
by PCR using primers compl and comp2 and the dbpA
open reading frame (ORF) was amplified using primer
comp3 and comp4. To facilitate fusion of the Prom and
dbpA open reading frame fragment, an Ndel restriction site
was introduced into the 3' end of oligonucleotide comp2
and the 5' end of primer comp3. Following PCR amplifi-
cation, the resulting PCR fragments were digested with
Ndel and ligated together. A second PCR amplification
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was performed using the ligation product as the template
and the oligonucleotides comp1 and comp4 for primers.
The resultant PCR product was digested with BglII (a
unique BgIII site is located in the PCR product, 11 bp
downstream of the 3' end of the comp1 primer) and Sphl
(5' end of comp4 primer) then cloned into the BgIII and
Sphl sites of pJD51, a derivative of pJD44 [27], that con-
tains the aadA gene encoding streptomycin resistance in B.
burgdorferi [56], to create pKH2000. Electroporation of
BbKH500 was performed as described above and trans-
formants were selected in the presence of kanamycin and
streptomycin. Antibiotic-resistant clones first were
checked for the presence of the Prom-dbpA construct by
PCR using primers ko5 and comp5 (the latter anneals
near the middle of the dbpA coding strand); Bb297 = 1.2
kb product; BbKH500 = no product; Prom-dbpA = 535 bp
product. Next, DbpA expression in clones identified by
PCR confirmation was assessed by immunoblot analysis
as described below. Clones that expressed DbpA from the
Prom-dbpA construct were assessed for the presence of the
vIsE and BBE22 genes by PCR amplification using the
primers described above. One clone, BbKH501, was cho-
sen for further characterization. PCR-based plasmid pro-
filing was performed on BbKH501, as described above, to
compare the plasmid content of this clone to BbKH500
and Bb297.

Proteinase K digestion of B. burgdorferi

Intact, motile borreliae were exposed to 200 pg of protei-
nase K (40 mg/ml; Fisher Scientific, Pittsburgh, PA) or
were sham treated for 40 min at room temperature. To
stop the reaction, 10 ul of phenylmethylsulfonyl fluoride
(50 mg/ml in isopropanol; Sigma) was added to each
sample and the bacteria prepared for SDS-polyacrylamide
gel electrophoresis (PAGE) and immunoblot analysis as
described below.

Immunoblot analysis

B. burgdorferi whole-cell lysates were generated by wash-
ing the spirochetes with wash buffer (10 mM HEPES, 150
mM NaCl, pH 7.5) three times, incubating the cells in
BugBuster plus Benzonase solution (Novagen, Madison,
WI) overnight then adding an equal volume of 2x SDS-
PAGE running buffer (Bio-Rad Laboratories, Hercules,
CA) for a final concentration of 107 bacteria/ml. Whole-
cell lysates were separated via electrophoresis through
12.5% SDS-polyacrylamide gels (approximately 107 spi-
rochetes per lane) and transferred to nitrocellulose (0.45
pm; Bio-Rad Laboratories) for immunoblot analysis.
Nitrocellulose membranes were probed with either 6B3-
DbpA, a mouse monoclonal antibody that specifically rec-
ognizes DbpA, chicken anti-B. burgdorferi FlaB IgY, or rat
anti-DbpB anti-sera. The monoclonal antibody, 6B3-
DbpA, was produced in collaboration with the Antibody
Production Core facility at UT Southwestern and the pol-
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Table 4: Oligonucleotide primers used for plasmid profiling.

http://www.biomedcentral.com/1471-2180/8/82

Primer Sequence Reference
Ip54 5' ATGAGCAAAAAAGTAATTTTAATAT [55]
Ip54 3' CACTAATTCTTTTTGAATTACTAAT [55]
cp26 5' ATGCCTCCAAAAGTGAAGATAAAAA [55]
cp26 3' TAGCTTATAATTAAAAATTATTGAT [55]
cp9 5’ ATGCAAAAAATAAACATAGCTAAAT [55]
cp9 3 ATCTTCTTCAAGATATTTTATTATA [55]
Ipl75' GTGTATACTGACCCAAGGTCAATTA [55]
Ipl7 3 CAATAATGTGATATTTTTAAGAAAT [55]
Ip25 5' AAATTAATTTCTTTGATCAACCAAC This study
1p25 3' TATATTAAGCTTACTTTGGCTGTCG This study
Ip28-1 5' GATGCAGAGAAGGCTGCTGCTGCAGTTAGTGC This study
Ip28-1 3' TATAAGCTTTCATCAGAGAGTCTTATTAACAGCAGTCTCAAC This study
p28-2 5' ATGGCGCTGATTACATTAATTGTCG [55]
1p28-2 3' AATCTTGAAGAACCTTGCATCTTTA [55]
Ip28-3 5' CTGAAAATGAAGGAGAAGCGGGTGG [55]
1p28-3 3' TAGGCTAATACCAATTCGTACAAAT [55]
1p28-4 5' ATGAAATGCCATATAATTGCAACTA [55]
1p28-4 3' AATCCGACAGATCTGGTTTGTCCAG [55]
Ip385' ATGATTATTACCCAAACAACGCCC This study
Ip38 3' TTTTAAATCCATTTTCACAATATG This study
Ip36 5' TTCTTATCCCTGACTTTCACTTTTGAGG This study
Ip36 3' TCCTTTACTTCTATGTTTTTACTTTCCTTGGT This study
Ip5 5' ATGAATGGAATAATTAACGATACAC [55]
Ip5 3' AATATTAGGATGAAGATTATAAATT [55]
Ip21 5' TGTGGTTGCTAAAACCCAAGCGT This study
Ip21 3' TTGTTTCTAATTGCTCTGAATTGCATCC This study
Chrom 5' GATTATCAATCATAATACATCAGC [55]
Chrom 3' TCTAAGCAATGACAAACATATTGG [55]
cpl8-15' AGGGGAATGTATTAATTGATAATTCA This study
cpl8-13' AGATTTTTTCAAAACATTTGGCGAT This study
cpl8-25' TCAGAAAGCATACCATTACAAGACAAC This study
cpl8-23' AATAATACCTTTTTCTACGCCCGATA This study
cp32-1 5' GTTATAATACCTATTCAAGCAGAAAGG This study
cp32-1 3 GCTCCCTTCTAATACTTTTCTATAA This study
cp32-2 5’ CAAGCGAGTTTATTCCCCTTAAA This study
cp32-23' ATTCTAATATTGTCCACTTTATGAAAT This study
cp32-35' ACTTGCAAGAGCACAGGTCTATAATTA This study
cp32-33' CTTAATACAATTAACGTTTCCAGTATA This study
cp32-45' GTATAAATGCTTTTGGTTATAAGCACAC This study
cp32-43' GAAACTCCTTCTCTAACCTTTACATAC This study
cp32-55' GCCTTATAAGGAACATAGGTTAAAGG This study
cp32-53' AGATTTCAAGCGCTCCTTCAACAAA This study
cp32-6 5' GGTGCTTTAGACACAAGAGATGTG This study
cp32-6 3' GAACAAATTTCAGATTTAACATTTATCG This study
cp32-75' GTCAAATTTAAGCTGTTTTAGCAGTG This study
cp32-7 3' TATTTACTAATCTATTTTTCAATTTTTCA This study

yclonal rat anti-DbpB antisera was described previously
[16]. The chicken anti-FlaB antibody was produced in col-
laboration with Lampire Biological Laboratories (Pipers-
ville, PA). Secondary antibodies were horseradish
peroxidase-conjugated goat anti-mouse immunoglobulin
G (IgG), donkey anti-chicken IgY, or goat anti-rat IgG
(Jackson ImmunoResearch Laboratories, Inc., West
Grove, PA) diluted 1:10,000-1:30,000 for chemilumines-
cent detection. Immunoblots were developed using
Immobilon Chemiluminescent Western HRP Substrate

(Millipore, Billerica, MA) and exposed to X-ray film (Phe-
nix Research Products, Hayward, CA).

Infection of mice by needle inoculation

Prior to use of the cultures in needle-inoculation experi-
ments, the bacterial cell density in each culture was accu-
rately determined by counting spirochetes in no fewer
than 60 microscopic fields (400x magnification) using
dark-field microscopy. Cultures exhibiting cell aggrega-
tion were not used for infections as the presence of clumps
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prevented accurate enumeration of spirochete density.
Cultures with spirochetes exhibiting reduced motility also
were not used for mouse infections. Three- to five-week-
old female C3H/HeJ mice (The Jackson Laboratory, Bar
Harbor, ME) were used for all studies. Mice were infected
via intradermal injection with serial dilutions of B. burg-
dorferi in BSK medium as previously described [16]. At the
appropriate time intervals, ear-punch biopsies were har-
vested using a 2 mm ear punch, placed in BSK-H medium
supplemented with BAM, and cultures were examined by
dark-field microscopy for the presence of spirochetes.
Aliquots of each culture were passed to media containing
antibiotics to confirm the antibiotic-resistance phenotype
of the bacteria that were recovered from cultures of the ear
punch biopsies. The ID, was calculated using the method
described by Reed and Muench [57]. UT Southwestern is
accredited by the International Association for Assess-
ment and Accreditation of Laboratory Animals Care
(AAALAC) and all animal protocols were approved by the
Institutional Animal Care and Use Committee (IACUC) at
UT Southwestern.

Colonization of Ixodes scapularis larvae with B.
burgdorferi

Female C3H/HeJ mice were needle inoculated as
described above with either Bb297 (104 spirochetes) or
BbKH500 (100 pl of a post-exponential growth phase cul-
ture; 10°-107 spirochetes). Infection of mice was con-
firmed by ear-punch biopsy culture; 4- and 8-weeks post-
inoculation for Bb297 and BbKH500, respectively. Naive,
pathogen-free 1. scapularis larvae, obtained from the
Department of Entomology and Plant Pathology at Okla-
homa State University (Stillwater, OK), were allowed to
feed to repletion on the infected mice individually housed
in cages with raised wire-bottoms above water to facilitate
recovery of the ticks. Fed larvae were collected and washed
sequentially with 70% ethanol, deionized water (dH,0),
1x Fungizone (Gemini Bio-Products, West Sacramento,
CA), and dH,O before placing them in 100% cotton fab-
ric-lined Petri dish molting chambers for storage until
they molted to the nymphal stage. The molting chambers
containing the ticks were housed in a humidified chamber
(97-98% humidity) containing saturated potassium sul-
fate solution at 20°C with a 16 h light, 8 h dark cycle.
Unfed nymphs were collected and stored in autoclaved
glass vials containing approximately 1 cm of sand. The
vials were closed with vented lids and the ticks housed as
described above.

Direct immunofluorescence assay (IFA) on B. burgdorferi-
infected ticks

Prior to placement of unfed (flat) nymphs on naive mice,
five nymphs from each of two individual mice were dis-
sected on silylated slides (CEL Associates, Inc., Pearland,
TX) in 50 pl phosphate-buffered saline containing 10 mM
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MgCl,. At the time testing was performed, approximately
11 weeks had elapsed since these ticks had fed to repletion
as larvae. Midgut tissues were extracted from the ticks,
allowed to dry on the slides, blocked with Tris-buffered
saline with 0.1% Tween-20, then probed with a FITC-con-
jugated rabbit anti-B. burgdorferi antibody (Fitzgerald
Industries International, Inc., Concord, MA) as described
previously [27].

Transmission of B. burgdorferi from infected nymphal
ticks to naive mice

To assess the transmissibility of strain Bb297 and
BbKH500 from flat nymphs to naive mice, either five or
ten ticks were allowed to feed to repletion on three- to
five-week-old female C3H/HeJ mice. At three-weeks post-
infestation, ear-punch biopsies were harvested from each
mouse and cultured in BSK-H medium without antibiot-
ics to determine infection status. Borreliae from the ear-
punch biopsy cultures were transferred to BSK-H medium
supplemented with kanamycin and streptomycin to con-
firm their antibiotic-resistance phenotypes.

Statistical analysis

Statistical analysis was performed with assistance from the
UT Southwestern Clinical Sciences Department. Both chi-
square and Fisher's exact test were applied to the mouse
infection data in pair-wise comparisons between experi-
mental groups.

Authors' contributions

JSB and KEH performed experiments and analyzed results.
JSB, KEH, and MVN participated in experimental designs
and co-wrote the manuscript. All authors read and
approved the manuscript.

Acknowledgements

We thank Sarah Sutton, Carl Stephens, and Rachel Metz for technical assist-
ance, and Alan Elliot for assistance with statistical analysis. We also thank
Melissa Caimano and Justin Radolf for strain 297-specific primer sequences
for plasmid profiling experiments. This work was supported by Public
Health Service Grant Al-051332 and Al-059602. |.S.B. was supported by the
National Institutes of Health Training Grant T32-Al07520 and the Ruth L.
Kirschstein National Research Service Award F32-Al058487 from the
National Institutes of Health.

References

l. Steere AC, Coburn J, Glickstein L: The emergence of Lyme dis-
ease. | Clin Invest 2004, 113(8):1093-1101.

2. Coburn J, Fischer JR, Leong JM: Solving a sticky problem: new
genetic approaches to host cell adhesion by the Lyme dis-
ease spirochete. Mol Microbiol 2005, 57(5):1182-1195.

3. Coburn ), Medrano M, Cugini C: Borrelia burgdorferi and its tro-
pisms for adhesion molecules in the joint. Curr Opin Rheumatol
2002, 14(4):394-398.

4. Zambrano MC, Beklemisheva AA, Bryksin AV, Newman SA, Cabello

FC: Borrelia burgdorferi binds to, invades, and colonizes

native type | collagen lattices. Infect Immun 2004,

72(6):3138-3146.

Finlay BB, Falkow S: Common themes in microbial pathogenic-

ity revisited. BMC Microbiol 1997, 61:136-169.

I

Page 11 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15085185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15085185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16101994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16101994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16101994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15155615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15155615

BMC Microbiology 2008, 8:82

20.

21.

22.

23.

24.

25.

Fischer JR, LeBlanc KT, Leong JM: Fibronectin binding protein
BBK32 of the Lyme disease spirochete promotes bacterial
attachment to glycosaminoglycans. Infect Immun 2006,
74(1):435-441.

Grab D), Givens C, Kennedy R: Fibronectin-binding activity in
Borrelia burgdorferi. Biochim Biophys Acta 1998, 1407(2):135-145.
Behera AK, Durand E, Cugini C, Antonara S, Bourassa L, Hildebrand
E, Hu LT, Coburn J: Borrelia burgdorferi BBB07 interaction
with integrin alpha3betal stimulates production of pro-
inflammatory mediators in primary human chondrocytes.
Cell Microbiol 2007/09/08 edition. 2008, 10(2):320-331.

Coburn J, Chege W, Magoun L, Bodary SC, Leong JM: Characteri-
zation of a candidate Borrelia burgdorferi beta3-chain
integrin ligand identified using a phage display library. Mol
Microbiol 1999, 34:926-940.

Guo BP, Norris §J, Rosenberg LC, Hook M: Adherence of Borrelia
burgdorferi to the proteoglycan decorin. Infect Inmun 1995,
63:3467-3472.

Isaacs RD: Borrelia burgdorferi bind to epithelial cell prote-
oglycans. | Clin Invest 1994, 93(2):809-819.

Parveen N, Leong JM: Identification of a candidate gly-
cosaminoglycan-binding adhesin of the Lyme disease spiro-
chete Borrelia burgdorferi. Mol Microbiol 2000, 35(5):1220-1234.
Probert WS, Johnson BJ: Identification of a 47 kDa fibronectin-
binding protein expressed by Borrelia burgdorferi isolate
B3 1. Mol Microbiol 1998, 30:1003-1015.

Coburn J, Cugini C: Targeted mutation of the outer membrane
protein P66 disrupts attachment of the Lyme disease agent,
Borrelia burgdorferi, to integrin alphavbeta3. Proc Natl Acad
Sci USA 2003, 100(12):7301-7306.

Guo BP, Brown EL, Dorward DW, Rosenberg LC, Hook M: Deco-
rin-binding adhesins from Borrelia burgdorferi. Mol Microbiol
1998, 30:711-723.

Hagman KE, Lahdenne P, Popova TG, Porcella SF, Akins DR, Radolf
JD, Norgard MV: Decorin-binding protein of Borrelia burgdor-
feri is encoded within a two-gene operon and is protective in
the murine model of Lyme borreliosis. Infect Immun 1998,
66:2674-2683.

Hagman KE, Yang X, Wikel SK, Schoeler GB, Caimano M), Radolf |D,
Norgard MV: Decorin-binding protein A (DbpA) of Borrelia
burgdorferi is not protective when immunized mice are
challenged via tick infestation and correlates with the lack of
DbpA expression by B. burgdorferi in ticks. Infect Imnmun 2000,
68:4759-4764.

Fischer JR, Parveen N, Magoun L, Leong JM: Decorin-binding pro-
teins A and B confer distinct mammalian cell type-specific
attachment by Borrelia burgdorferi, the Lyme disease spiro-
chete. Proc Natl Acad Sci USA 2003, 100(12):7307-7312.

Roberts WC, Mullikin BA, Lathigra R, Hanson MS: Molecular anal-
ysis of sequence heterogeneity among genes encoding deco-
rin binding proteins A and B of Borrelia burgdorferi sensu
lato. Infect Immun 1998, 66:5275-5285.

Hodzic E, Feng S, Freet K], Borjesson DL, Barthold SW: Borrelia
burgdorferi population kinetics and selected gene expres-
sion at the host-vector interface. Infect Immun 2002,
70(7):3382-3388.

Schulte-Spechtel U, Lehnert G, Liegl G, Fingerle V, Heimerl C, John-
son BJ, Wilske B: Significant improvement of the recombinant
Borrelia-specific immunoglobulin G immunoblot test by
addition of VISE and a DbpA homologue derived from Bor-
relia garinii for diagnosis of early neuroborreliosis. | Clin Micro-
biol 2003, 41(3):1299-1303.

Nowalk AJ, Gilmore RD Jr., Carroll JA: Serologic proteome anal-
ysis of Borrelia burgdorferi membrane-associated proteins.
Infect Immun 2006, 74(7):3864-3873.

Shi Y, Xu Q, Seemanapalli SV, McShan K, Liang FT: The dbpBA
locus of Borrelia burgdorferi is not essential for infection of
mice. Infect Immun 2006, 74(11):6509-6512.

Xu'Y, Johnson RC: Analysis and comparison of plasmid profiles
of Borrelia burgdorferi sensu lato strains. | Clin Microbiol 1995,
33(10):2679-2685.

Caimano M), Eggers CH, Hazlett KR, Radolf |D: RpoS is not central
to the general stress response in Borrelia burgdorferi but
does control expression of one or more essential virulence
determinants. Infect Immun 2004/10/27 edition. 2004,
72(11):6433-6445.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

http://www.biomedcentral.com/1471-2180/8/82

Hubner A, Revel AT, Nolen DM, Hagman KE, Norgard MV: Expres-
sion of a luxS gene is not required for Borrelia burgdorferi
infection of mice via needle inoculation. Infect Immun 2003,
71(5):2892-2896.

Revel AT, Blevins JS, Almazan C, Neil L, Kocan KM, de la Fuente |,
Hagman KE, Norgard MV: bptA (bbel 6) is essential for the per-
sistence of the Lyme disease spirochete, Borrelia burgdor-
feri, in its natural tick vector. Proc Natl Acad Sci USA 2005,
102(19):6972-6977.

Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV: Essential role for
OspA/B in the life cycle of the Lyme disease spirochete. | Exp
Med 2004, 199(5):641-648.

Lawrenz MB, Wooten RM, Norris §J: Effects of vIsE complemen-
tation on the infectivity of Borrelia burgdorferi lacking the
linear plasmid Ip28-1. Infect Inmun 2004, 72(11):6577-6585.
Purser JE, Lawrenz MB, Caimano M), Howell JK, Radolf D, Norris SJ:
A plasmid-encoded nicotinamidase (PncA) is essential for
infectivity of Borrelia burgdorferi in a mammalian host. Mol
Microbiol 2003, 48(3):753-764.

Brown EL, Guo BP, O'Neal P, Hook M: Adherence of Borrelia
burgdorferi. Identification of critical lysine residues in DbpA
required for decorin binding. | Biol Chem 1999/09/03 edition.
1999, 274(37):26272-26278.

Pikas DS, Brown EL, Gurusiddappa S, Lee LY, Xu Y, Hook M: Deco-
rin-binding sites in the adhesin DbpA from Borrelia burgdor-
feri: a synthetic peptide approach. | Biol Chem 2003/05/23
edition. 2003, 278(33):30920-30926.

Hanson MS, Cassatt DR, Guo BP, Patel NK, McCarthy MP, Dorward
DW, Hook M: Active and passive immunity against Borrelia
burgdorferi decorin binding protein A (DbpA) protects
against infection. Infect Immun 1998/05/09 edition. 1998,
66(5):2143-2153.

Coburn J: Adhesion mechanisms of the Lyme disease spiro-
chete, Borrelia burgdorferi. Curr Drug Targets Infect Disord 2001,
1(2):171-179.

Leong JM, Morrissey PE, Ortega-Barria E, Pereira ME, Coburn J:
Hemagglutination and proteoglycan binding by the Lyme
disease spirochete, Borrelia burgdorferi. Infect Immun 1995,
63(3):874-883.

Parveen N, Cornell KA, Bono JL, Chamberland C, Rosa P, Leong |M:
Bgp, a secreted glycosaminoglycan-binding protein of Borre-
lia burgdorferi strain N40, displays nucleosidase activity and
is not essential for infection of immunodeficient mice. Infect
Immun 2006, 74(5):3016-3020.

Li X, Liu X, Beck DS, Kantor FS, Fikrig E: Borrelia burgdorferi
lacking BBK32, a fibronectin-binding protein, retains full
pathogenicity. Infect Immun 2006, 74(6):3305-3313.

Coburn J, Leong JM, Erban JK: Integrin alpha Ilb beta 3 mediates
binding of the Lyme disease agent Borrelia burgdorferi to
human platelets. Proc Natl Acad Sci USA 1993, 90(15):7059-7063.
Sadziene A, Thomas DD, Barbour AG: Borrelia burgdorferi
mutant lacking Osp: biological and immunological charac-
terization. Infect Inmun 1995, 63(4):1573-1580.

Kawabata H, Norris S), Watanabe H: BBE02 disruption mutants
of Borrelia burgdorferi B31 have a highly transformable,
infectious phenotype. Infect Inmun 2004, 72(12):7147-7154.

Shi Y, Xu Q, McShan K, Liang FT: Both decorin-binding proteins
A and B are critical for the overall virulence of Borrelia burg-
dorferi. Infect Immun 2008, 76(3):1239-1246.

Barthold SW, Beck DS, Hansen GM, Terwilliger GA, Moody KD:
Lyme borreliosis in selected strains and ages of laboratory
mice. | Infect Dis 1990, 162(1):133-138.

Barthold SWV, Persing DH, Armstrong AL, Peeples RA: Kinetics of
Borrelia burgdorferi dissemination and evolution of disease
after intradermal inoculation of mice. Am | Pathol 1991,
139(2):263-273.

Yang L, Weis JH, Eichwald E, Kolbert CP, Persing DH, Weis J): Her-
itable susceptibility to severe Borrelia burgdorferi-induced
arthritis is dominant and is associated with persistence of
large numbers of spirochetes in tissues. Infect Immun 1994,
62(2):492-500.

Keane-Myers A, Nickell SP: Role of IL-4 and IFN-gamma in mod-
ulation of immunity to Borrelia burgdorferi in mice. | Immunol
1995, 155(4):2020-2028.

Zeidner N, Mbow ML, Dolan M, Massung R, Baca E, Piesman J:
Effects of Ixodes scapularis and Borrelia burgdorferi on mod-

Page 12 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16368999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16368999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16368999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9685613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9685613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17822440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17822440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10594819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10594819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10594819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7642279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7642279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8113413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8113413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10712702
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10712702
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10712702
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9988477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9988477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9988477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12748384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12748384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12748384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10094620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10094620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9596733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9596733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9596733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12773620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12773620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12773620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9784533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9784533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9784533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12065476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12065476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12065476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12624072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12624072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12624072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16790758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16790758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16954404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16954404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16954404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8567905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8567905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12704164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12704164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12704164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14981112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14981112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12694619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12694619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12694619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10473582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10473582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10473582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9573101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9573101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9573101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12455413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12455413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7532628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7532628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7532628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16622242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16622242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16622242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16714558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16714558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16714558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8394007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8394007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8394007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7890424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7890424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7890424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15557639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15557639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15557639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18195034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18195034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18195034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2141344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2141344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2141344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1867318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1867318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1867318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8300208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8300208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8300208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7636253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7636253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9234760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9234760

BMC Microbiology 2008, 8:82 http://www.biomedcentral.com/1471-2180/8/82

ulation of the host immune response: induction of a TH2
cytokine response in Lyme disease-susceptible (C3H/He))
mice but not in disease-resistant (BALB/c) mice. Infect Immun
1997, 65(8):3100-3106.

47. Piesman J, Schneider BS, Zeidner NS: Use of quantitative PCR to
measure density of Borrelia burgdorferi in the midgut and
salivary glands of feeding tick vectors. Journal of Clinical Microbi-
ology 2001, 39:4145-4148.

48. Ohnishi ], Piesman J, de Silva AM: Antigenic and genetic hetero-
geneity of Borrelia burgdorferi populations transmitted by
ticks. Proc Natl Acad Sci USA 2001, 98:670-675.

49. Brown EL, Wooten RM, Johnson B, lozzo RV, Smith A, Dolan MC,
Guo BP, Weis JJ, Ho6k M: Resistance to Lyme disease in deco-
rin-deficient mice. J Clin Invest 2001, 107:845-852.

50. Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, Anguita
J, Norgard MV, Kantor FS, Anderson JF, Koski RA, Fikrig E: The
Lyme disease agent exploits a tick protein to infect the
mammalian host. Nature 2005, 436(7050):573-577.

51. Norton Hughes CA, Kodner CB, Johnson RC: DNA analysis of
Borrelia burgdorferi NCH-I, the first northcentral U.S.
human Lyme disease isolate. Journal of Clinical Microbiology 1992,
30:698-703.

52. Pollack R}, Telford SR, Spielman A: Standardization of medium
for culturing Lyme disease spirochetes. | Clin Microbiol 1993,
31(5):1251-1255.

53. Bono L, Elias AF, Kupko JJ 3rd, Stevenson B, Tilly K, Rosa P: Efficient
targeted mutagenesis in Borrelia burgdorferi. | Bacteriol 2000/
04/13 edition. 2000, 182(9):2445-2452.

54. Stewart PE, Thalken R, Bono JL, Rosa P: Isolation of a circular plas-
mid region sufficient for autonomous replication and trans-
formation of infectious Borrelia burgdorferi. Mol Microbiol
2001/02/13 edition. 2001, 39(3):714-721.

55. Eggers CH, Caimano M), Clawson ML, Miller WG, Samuels DS, Radolf
JD: Identification of loci critical for replication and compati-
bility of a Borrelia burgdorferi cp32 plasmid and use of a
cp32-based shuttle vector for the expression of fluorescent
reporters in the lyme disease spirochaete. Mol Microbiol 2002/
05/03 edition. 2002, 43(2):281-295.

56. Frank KL, Bundle SF, Kresge ME, Eggers CH, Samuels DS: aadA con-
fers streptomycin resistance in Borrelia burgdorferi. | Bacte-
riol 2003/11/05 edition. 2003, 185(22):6723-6727.

57. Reed LJ, Muench H: A simple method of estimating fifty per-
cent endpoints. Am | Hyg 1938, 27:493-497.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 13 of 13

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9234760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9234760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11682544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11682544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11682544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11209063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11209063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11209063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11285303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11285303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16049492
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16049492
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16049492
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1551988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1551988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1551988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8501226 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8501226 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10762244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10762244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11169111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11169111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11169111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11985709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11985709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11985709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594849
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Construction and characterization of a dbpBA-deficient mutant
	Loss of DbpBA significantly reduces the infectivity of B. burgdorferi in mice when introduced via needle inoculation
	Complementation of the dbpBA-deletion mutant with DbpA restores infectivity in needle-challenged mice
	Neither DbpA nor DbpB is required for acquisition of B. burgdorferi by ticks or infection of mice via tick bite

	Discussion
	Conclusion
	Methods
	Bacterial strains and growth conditions
	Generation of DbpBA deletion mutant in Bb297
	Construction of shuttle plasmids for genetic complementation of BbKH500 with DbpA
	Proteinase K digestion of B. burgdorferi
	Immunoblot analysis
	Infection of mice by needle inoculation
	Colonization of Ixodes scapularis larvae with B. burgdorferi
	Direct immunofluorescence assay (IFA) on B. burgdorferi- infected ticks
	Transmission of B. burgdorferi from infected nymphal ticks to naïve mice

	Statistical analysis
	Authors' contributions
	Acknowledgements
	References

