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Abstract
Background: During the last few years, PCR-based methods have been developed to simplify and
reduce the time required for genotyping Mycobacterium tuberculosis (MTB) by standard approaches
based on IS6110-Restriction Fragment Length Polymorphism (RFLP). Of these, MIRU-12-VNTR
(Mycobacterial interspersed repetitive units- variable number of tandem repeats) (MIRU-12) has
been considered a good alternative. Nevertheless, some limitations and discrepancies with RFLP,
which are minimized if the technique is complemented with spoligotyping, have been found.
Recently, a new version of MIRU-VNTR targeting 15 loci (MIRU-15) has been proposed to improve
the MIRU-12 format.

Results: We evaluated the new MIRU-15 tool in two different samples. First, we analyzed the same
convenience sample that had been used to evaluate MIRU-12 in a previous study, and the new 15-
loci version offered higher discriminatory power (Hunter-Gaston discriminatory index [HGDI]:
0.995 vs 0.978; 34.4% of clustered cases vs 57.5%) and better correlation (full or high correlation
with RFLP for 82% of the clusters vs 47%). Second, we evaluated MIRU-15 on a population-based
sample and, once again, good correlation with the RFLP clustering data was observed (for 83% of
the RFLP clusters). To understand the meaning of the discrepancies still found between MIRU-15
and RFLP, we analyzed the epidemiological data for the clustered patients. In most cases, splitting
of RFLP-clustered patients by MIRU-15 occurred for those without epidemiological links, and
RFLP-clustered patients with epidemiological links were also clustered by MIRU-15, suggesting a
good epidemiological background for clustering defined by MIRU-15.

Conclusion: The data obtained by MIRU-15 suggest that the new design is very efficient at
assigning clusters confirmed by epidemiological data. If we add this to the speed with which it
provides results, MIRU-15 could be considered a suitable tool for real-time genotyping.
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Background
Genotyping methods have been extensively applied to
analyze the recent transmission dynamics of Mycobacte-
rium tuberculosis (MTB). IS6110-restriction fragment
length polymorphism (RFLP) is the reference technique
for genotyping MTB [1] because of its high discriminatory
power. However, the need for well-grown cultures and
purified DNA to obtain RFLP data means that it takes a
long time to produce results. In addition, analysis of RFLP
band-patterns requires specific software, which makes it
difficult to interpret and exchange data. Finally, RFLP is
limited when analyzing MTB strains with a low number of
IS6110 copies.

Different PCR-based genotyping approaches targeting the
variable number of tandem repeats (VNTR) have been
developed to compensate for the limitations of RFLP.
These include VNTR analysis based on mycobacterial
interspersed repetitive units (MIRU) [2,3], which has been
considered a good alternative to the reference method and
has proven to be faster and easier to perform. MIRU-VNTR
genotyping based on a 12-loci set (MIRU-12) has been
evaluated in several studies in different settings. Some
authors [2,3] have found it to show a discriminatory
power equivalent to that of RFLP and have considered it
an alternative to IS6110-RFLP for epidemiological pur-
poses [3-6]. However, other authors have found limita-
tions in its discriminatory power and incomplete
correlation with the RFLP analysis [7-9], indicating that
MIRU analysis should be combined with an additional
genotyping method [9-12].

Recently, a new MIRU-VNTR format has been developed
to improve the discriminatory power of MIRU-12 [13].
This new version targets 15 loci (6 from the previous 12-
loci version and 9 new ones), although to date few studies
have evaluated its efficiency [13,14]. We compared the
new 15-loci format of MIRU-VNTR (MIRU-15) with the
MIRU-12 version and IS6110-RFLP in two independent
samples in the context of molecular epidemiology studies.
These data could serve to clarify the final application of
this new procedure in our setting.

Results
I) MIRU-15 analysis of a convenience sample
a) Clustering rates and discriminatory power
As an initial approach to comparing the efficiency of
MIRU-15 with MIRU-12, we studied the same conven-
ience sample we had already used to test the efficiency of
MIRU-12 [7]. Spoligotyping indicated that most of the
isolates corresponded to the LAM (32.1%) and Haarlem
(28.4%) lineages. Only 2.2% of the isolates belonged to
the Beijing family. RFLP clustered 41% of the isolates in
17 clusters (2 to 9 representatives), whereas MIRU-12
clustered 57.5% in 20 clusters (2 to 14 representatives).

MIRU-15 clustered 34.4% of the isolates in 16 clusters (2
to 5 representatives). Therefore, the Hunter-Gaston dis-
criminatory index (HGDI) was higher for MIRU-15
(0.995) than for MIRU-12 (0.978). The loci with the high-
est HGDIs were QUB26 (0.8), QUB11b (0.78), and
MIRU40 (0.73), two of which were not present in the
MIRU-12 version (Figure 1). If we consider the nine new
loci that were not included in the MIRU-12 version, all of
them showed HGDI values over 0.5, whereas in MIRU-12
only three (MIRU10, MIRU16, and MIRU40) showed
equivalent values and the remainder showed HGDI values
below 0.25 (Figure 1).

b) Correlation analysis
The correlation between RFLP and MIRU-15 was higher
than that observed with MIRU-12 in our previous study
[7]. MIRU-15 showed full or high correlation in 14/17
(full correlation in ten and high in four) of the clusters
defined by RFLP, whereas MIRU-12 had shown an equiv-
alent correlation in only 8/17 clusters (seven with full cor-
relation and one with high correlation) (Figure 2).

Hunter-Gaston discriminatory index (HGDI) for the loci in MIRU-12 and MIRU-15 setsFigure 1
Hunter-Gaston discriminatory index (HGDI) for the 
loci in MIRU-12 and MIRU-15 sets. The HGDI of each 
locus was calculated based on the convenience sample of 134 
isolates.
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MIRU-15 showed noncorrelation with the RFLP data in
only three clusters (Figure 3), whereas MIRU-12 had
shown no correlation much more frequently. The discrep-
ancies shown by MIRU-15 corresponded to i) the addition
of two isolates to an RFLP cluster (cluster R7), although
with low IS6110 band similarities (66.7% and 47%), ii)
the discrimination of an isolate with a double locus vari-
ation (DLV) (cluster R15), and iii) full splitting (differ-
ences in more than two loci) of the largest cluster defined
by RFLP (cluster R16 which included nine isolates). Addi-
tionally, in one of these clusters with no correlation (clus-
ter R15), MIRU-15 grouped with high correlation another

isolate that showed 95% IS6110 band similarity (Figure
2).

MIRU-15 also defined a new cluster (cluster A) between
two isolates with low IS6110 band similarity (73%) (Fig-
ure 3). In our previous study [7], MIRU-12 defined up to
eight clusters not assessed by RFLP.

When spoligotyping was applied as a second-line method
in discrepant cases, all the isolates grouped by MIRU-15
that were unclustered by IS6110-RFLP (cluster R7 and
cluster A) were split. Cluster R16, which was subdivided
by MIRU-15, was split by spoligotyping (Figure 3).

Comparative analysis between RFLP and MIRU-15 in the convenience sampleFigure 2
Comparative analysis between RFLP and MIRU-15 in the convenience sample. N indicates the number of isolates 
clustered by RFLP or MIRU. The FITS column indicates the number of isolates grouped both by RFLP and MIRU-15. The Differ-
ences column indicates the number of isolates clustered by MIRU and unclustered by RFLP (+N) or the number of isolates 
clustered by RFLP and unclustered by MIRU (-N). The Correlation column specifies whether correlation is Full Correlation 
(FC), High Correlation (HC) or No Correlation (NC). For the isolates clustered with high correlation, the single locus varia-
tion (SLV) or percentage of IS6110 band similarity is specified.
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II) MIRU-15 analysis of a population-based sample
After observing that MIRU-15 improved the MIRU-12
data, we decided to re-evaluate MIRU-15 efficiency with
an independent sample. Unlike the first convenience sam-
ple, the new one included all the MTB isolates in Almería
during the period 2003–2006. In total, 308 isolates were
genotyped, corresponding to 140 autochthonous cases
(45.4%) and 168 immigrant cases (546%). The most
widely represented countries of origin in the study popu-
lation were Morocco (71 cases, 42.2%), Romania (22
cases, 13%), and Mali (13 cases, 7.7%).

Correlation analysis
When the RFLP-clustered cases from Almería were ana-
lyzed by MIRU-15, full or high correlation was obtained
in 83% of the clusters (24/29 clusters; 20 full and four
high). MIRU-15 showed no correlation in the remaining
five RFLP clusters (Figure 4), and discriminated 12/20 iso-
lates grouped in them (13.2% of the total of the isolates
genotyped in the study). The discrepancies were as fol-
lows: i) one isolate clustered by RFLP (cluster 99) showed

a DLV (one repetition in MIRU26 and three repetitions in
locus 577); ii) splitting of two RFLP clusters (cluster 79
and cluster 343) with isolates showing differences in more
than four loci: and iii) three and four isolates clustered by
RFLP (in clusters 217 and 28, respectively) showed differ-
ences in two to eight MIRU-15 loci. Additionally, MIRU-
15 subdivided RFLP cluster 217 into three different MIRU
types.

In order to understand the significance of the concord-
ances and discrepancies between the clusters defined by
RFLP and MIRU-15, we evaluated the epidemiological evi-
dence found for these clusters. Therefore, we labeled the
clusters according to a gradient of evidence of epidemio-
logical links between their cases (proved, probable, or
improbable). For the RFLP clusters with full or high corre-
lation with MIRU data, we obtained epidemiological data
in 22/24 clusters. Of these, epidemiological evidence (val-
ues 1 or 2) was detected in 16/22 clusters (72.7%). For the
71 patients included in these 22 RFLP clusters, we
detected epidemiological links for 43/59 cases with avail-

Detailed analysis of the discrepant cases in the No Correlation (NC) clustersFigure 3
Detailed analysis of the discrepant cases in the No Correlation (NC) clusters. RFLP clusters are defined as Rn. M7: 
isolates grouped by MIRU together with the two isolates grouped in cluster R7. "A" indicates the cluster defined by MIRU but 
not by RFLP. N indicates the number of clustered isolates: The number of isolates clustered by MIRU and unclustered by RFLP 
(+N), or the number of isolates clustered by RFLP and unclustered by MIRU (-N) are highlighted in bold. MIRU loci showing 
differences are boxed. Spoligotypes are shown using octal code; differences are highlighted in bold.
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able epidemiological data (84.3%, 31 with value 1 and 12
with value 2). For the remaining 15 cases no epidemiolog-
ical evidence was found.

Epidemiological data were available for four of the five
clusters that were split by MIRU-15, and no links were
found for all the representatives which were discriminated
by MIRU-15 (Figure 4). A review of these cases reveals the
following: a) In cluster 99 (eight-band pattern), the only
isolate without epidemiological links was clearly split by
MIRU-15 (differing in two loci). This corresponded to an
unrelated Ghanian patient in a cluster of Spanish cases; b)
In a further two clusters (high-copy banded) involving
two cases each (clusters 79 and 343), MIRU-15 showed
discrepancies in five and six loci respectively, and once
again, no epidemiological connections were found; c) No
epidemiological links could be found for the remaining
cases involved in cluster 28 (differing in two to eight loci);
d) Cluster 217 (eight-band pattern), involving different
nationalities, was also split by MIRU-15, according to the
geographic origin/socio-cultural background of the cases
(one MIRU profile was shared by an Ecuadorian and a
Colombian patient, the second one grouped two Spanish

patients, and the third belonged to a Romanian patient).
No links were found between the multinational patients
grouped in RFLP cluster 217, but links were found
between the cases in at least one of the split subgroups
(the Spanish cluster).

Discussion
During the last few years, the search for an alternative to
RFLP, has led to the development of a PCR-based tech-
nique, MIRU-VNTR [2,3,5]. This technique has proven to
be fast and easy to perform, and it allows the direct
exchange of data between laboratories. Different combi-
nations of MIRU and other VNTR loci have been pub-
lished [9-11,15,16], but most of the studies have focused
on a set of 12 MIRU loci [6,8,12,17-20]. This format offers
a higher discriminatory power (close to the gold standard
IS6110 RFLP) than other PCR-based genotyping tech-
niques [4-6,16,20]. Other studies [7,8,12,21], however,
have revealed lower discriminatory power and a low cor-
relation with RFLP data, which improved if comple-
mented with spoligotyping. In a previous study [7], we
focused on isolates with high-copy-number fingerprints,
to try to evaluate MIRU-12 in a more challenging situation

Discrepancies between RFLP clustered cases and MIRU-15 data in the population sampleFigure 4
Discrepancies between RFLP clustered cases and MIRU-15 data in the population sample. MIRU loci showing dif-
ferences are boxed. The last column shows the epidemiological evaluation of the clustered cases. Cluster 217 was subdivided 
by MIRU-15 into three different MIRU types (marked with numbers 1, 2, and 3).

RFLP 
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Data not available
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than that of studies performed in circumstances that could
favor MIRU, e.g. high proportion of low-copy-number
RFLP fingerprints, low variability of circulating strains due
to the prevalence of specific genetic families, etc. We
found that, compared with RFLP, MIRU-12 overestimated
candidates for recent transmission, by grouping a higher
number of isolates and defining a higher number of clus-
ters. Furthermore, 53% of MIRU-12 clusters showed a low
or no correlation with RFLP data. These data urge caution
when considering substituting RFLP with MIRU-12, and
suggest that incongruent study conclusions could be due
to geographic differences in the genotypic composition of
circulating strains.

Supply et al [13] have recently published a proposal for a
new refined set of 24 MIRU-VNTR loci. When the
advanced set was tested on 824 isolates including repre-
sentatives of the main MTB lineages, a subset of 15 loci
(MIRU-15) was considered to have the highest efficiency
because it contained 96% of the resolution obtained with
the whole 24-loci set. However, the MIRU-15 design has
received little attention [13,14]; therefore, additional
studies in a variety of socio-epidemiological backgrounds
are necessary to fully evaluate the usefulness of this new
strategy. This was the aim of our analysis. We began by
evaluating the new 15-loci MIRU version with the same
convenience sample that was used to evaluate MIRU-12.
The genetic lineages which were over-represented in this
sample were LAM and Haarlem, and only three Beijing
strains were found, thus ruling out enrichment in strains
which have been found to be poorly discriminated by
MIRU-12 [18]. MIRU-15 showed higher discriminatory
efficiency by grouping 23.1% fewer isolates than MIRU-
12 and showing a higher HGDI value (0.995 vs 0.978 for
MIRU-12). This increase in resolution was due to the nine
new loci whose HGDI values were higher than 0.5,
whereas only three in the previous set achieved equivalent
values, which justified the selection of these loci in the
new advanced design. With regard to the correlation with
RFLP, our previous study revealed that only 8 out of 17
RFLP clusters fitted well with MIRU-12 data, and it was
necessary to include spoligotyping to improve these
results. MIRU-15 alone increased the number of clusters
with good correlation with RFLP data to as many as 14/17.

In this study, we considered full or high values as indica-
tive of a good correlation between MIRU-15 and RFLP.
Correlation was considered to be high when MIRU-
grouped isolates sharing RFLP patterns showed high
IS6110 band similarity (≥ 95%), or isolates sharing RFLP
types showed subtle differences (single locus variations
[SLVs]) in the MIRU analysis. This decision was supported
by studies that found epidemiological links for clusters
including isolates with subtle differences in RFLP isolates
[22-25] and by reports that some MIRU loci have faster

molecular clocks [3,9,10,13,19], which could even lead to
SLVs between isolates linked to an ongoing transmission
event.

Although good correlation was generally found in our
convenience sample, no correlation with RFLP was
observed for three RFLP clusters. MIRU-15 added two iso-
lates in the R7 RFLP cluster, which showed only low
IS6110 band similarity percentages with the other clus-
tered isolates. The spoligotypes for these two isolates were
also different from the R7 representative pattern, although
they belonged to the same genetic lineage (T5 family).
This could be due to the fact that MIRU-15 misassigned
these isolates and we were probably observing a genotypic
convergence phenomenon. On the other hand, the rate of
MIRU changes is relatively lower than that of IS6110-RFLP
and spoligotyping, so it could also be possible that the
MIRU type in this case is shared by different representa-
tives of the T5 lineage. In the remaining two noncorre-
lated clusters, we observed that MIRU-15 split them to a
different extent, and we detected differences (in more
than two loci) among isolates sharing an RFLP type. In
addition, the largest RFLP cluster was fully split by MIRU-
15 (spoligotyping also split this cluster) with differences
in 2–5 loci for all the isolates. Splitting of RFLP clusters by
MIRU-15 has been found in clusters involving strains with
low-copy-band fingerprints (< 6 bands) [6,15,17,26,27],
which is somehow expected, although in this case the
strain had seven bands. Splitting of RFLP clusters, even
those with high-copy-band strains has been described
elsewhere [13], and these findings urge caution in assum-
ing certainty for all defined clusters.

In order to fully understand the meaning of the concord-
ances and discordances between RFLP and MIRU-15 data,
we used an unselected population-based sample with
available epidemiological data to interpret potential dis-
crepancies. We chose the MTB isolates cultured in the
province of Almería during a 2.5-year period to ensure
quality in the clustering assignation and to increase the
observation time of other studies [14]. We decided not to
consider the orphan cases (unclustered by RFLP) and to
focus exclusively on the analysis of the RFLP clusters
detected in this population sample because they have epi-
demiological value, as they are used as markers for recent
transmission. The ability of MIRU-15 to classify as orphan
those cases unclustered by RFLP is being evaluated in an
ongoing prospective population-based study.

As with our findings in the convenience sample, the cor-
relation between MIRU-15 and RFLP genotypes was good;
full or high correlation with the RFLP data was detected
for 24 of the 29 clusters genotyped by MIRU-15. We found
epidemiological links in 72.7% of the clusters and in
84.3% of the cases with available epidemiological data.
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These percentages of "epidemiologically proved" clusters
agree with those of other studies, and it is well known that
higher values are only obtained if highly refined epidemi-
ological surveys are followed up [28-30]. It is noteworthy
that almost all the clusters (5/6) without epidemiological
links involved two cases, and it is generally assumed that
the detection of links in transmission chains involving a
reduced number of cases produces a lower yield. It is inter-
esting that, of the four RFLP clusters with epidemiological
information available which were split by MIRU-15, no
links were found for all the representatives which were
discriminated by MIRU-15. This suggests that MIRU-15
was able to detect some cases that were falsely clustered by
RFLP. Moreover, in at least one case, MIRU-15 redefined
epidemiologically-consistent subclusters within a com-
mon RFLP cluster which was not epidemiologically sup-
ported.

Conclusion
The data obtained by MIRU-15 in this study and else-
where [14] suggest that the new design is very efficient at
assigning clusters confirmed by epidemiological data. If
we add this to the speed with which it provides results,
MIRU-15 could be considered a suitable tool for real-time
genotyping. This could be essential in study populations
such as ours, which is undergoing an epidemiological
transformation due to the marked increase in tuberculosis
among immigrants. The complexity of this situation
reduces the efficiency of standard epidemiological
approaches and demands new strategies such as MIRU-15
to allow rapid identification of clusters.

Methods
Sample
Clinical specimens were processed according to standard
methods and grown in Lowenstein-Jensen slants and in
MGIT (Becton Dickinson, Sparks, Maryland, USA) liquid
media.

Convenience sample
This was composed of 134 MTB isolates from independ-
ent patients in three institutions in Almería (southeast
Spain). The isolates had been previously analyzed using a
set of 12 MIRU-VNTR loci and IS6110-RFLP [7].

Population-based sample
From January 2003 to June 2006, 353 MTB isolates were
cultured from independent patients (60% of all diag-
nosed TB cases) from the three public hospitals in the
province of Almería (635,850 inhabitants) and 308 of
these (87.2%) were genotyped by RFLP. From this sample,
we selected the 91 isolates clustered by RFLP. All the iso-
lates analyzed had patterns with more than six IS6110
copies.

Molecular typing methods
DNA extraction, IS6110-RFLP typing, and spoligotyping
were performed according to standard methods [1].
MIRU-VNTR was performed by amplifying the 15 MIRU-
VNTR loci as described elsewhere [13] with some modifi-
cations: DMSO was added to the PCR mixtures instead of
Q-solution (4% DMSO for MIRU loci 580, 2996, 802,
960, 1644, and 3192, and 12% DMSO for the remaining
loci). MIRU loci 580, 2996, 802, 960, 1644, and 3192
were amplified using two multiplex-PCRs and fragment
sizes were analyzed by GeneScan™ 2500 ROX™ Size Stand-
ard and the ABIPRISM 3100 genetic analyzer (Applied
Biosystems, Foster City, California, USA). The remaining
loci were amplified individually and PCR products were
separated by electrophoresis at 45 V for 17 h 30 min, using
MS8 2% agarose gels (Pronadisa, Madrid, Spain). Frag-
ment sizes were calculated with the ChemiDoc system
(BioRad, Hercules, California, USA) and the Diversity
database (BioRad), using a 100-bp ladder (Invitrogen,
Carlsbad, California, USA) as a molecular weight marker.
The number of repeats in each locus was calculated by
applying the corresponding conversion tables (P. Supply,
personal communication).

The MIRU-type was defined after combining the results
for the 15 loci in the following order: 580 (MIRU4), 2996
(MIRU26), 802 (MIRU40), 960 (MIRU10), 1644
(MIRU16), 3192 (MIRU31), 424 (Mtub04), 577 (ETRC),
2165 (ETRA), 2401 (Mtub30), 3690 (Mtub39), 4156
(QUB4156), 2163b (QUB11b), 1995 (Mtub21), and
4052 (QUB26).

Molecular typing analysis
Cluster definition
Genotypes were analyzed using Bionumerics 4.6 (Applied
Maths, Sint-Martens Latem, Belgium). Clusters were
defined when 100% IS6110 band similarity was observed
between patterns. IS6110-RFLP, spoligotyping, and
MIRU-VNTR dendrograms were generated using the
unweighted pair group method with arithmetic averages
(UPGMA). The Dice coefficient was used with RFLP and
the categorical coefficient with spoligotyping and MIRU.

Correlation analysis between clusters obtained by different 
techniques
Correlation between MIRU-VNTR and IS6110-RFLP anal-
ysis was defined as follows:

a) Full correlation, when the isolates clustered by IS6110
RFLP and MIRU shared identical patterns.

b) High correlation, when we detected an SLV by MIRU
(one or two alleles of difference in a single locus) in the
cluster defined by RFLP or some MIRU-clustered isolates
Page 7 of 9
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not sharing identical RFLP genotypes but with a high
IS6110 band similarity (≥ 95%).

c) No correlation, when RFLP-clustered isolates were
clearly split by MIRU (differences in more than one locus)
or MIRU-clustered isolates were clearly different by RFLP
(similarities < 95%).

Discriminatory power
The Hunter-Gaston discriminatory index (HGDI) was cal-
culated as described elsewhere [31].

Epidemiological analysis of clusters
In order to evaluate the epidemiological support of clus-
ters in the population sample in Almería, we retrospec-
tively analyzed data from the clinical charts and from
standardized interviews with the patients. From these data
we defined a scale of epidemiological evidence for the
clustered cases based on Supply et al [13] as follows:

Value 1: proved, when the standard epidemiological sur-
vey or the interview of the clustered cases revealed the
existence of proven links between the cases.

Value 2: probable, when the standard epidemiological
survey of the clustered cases revealed the existence of
likely links between the cases.

Value 0: improbable, when the standard epidemiological
survey of the clustered cases revealed lack of links between
the cases.

Value -1: epidemiological data unavailable.
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