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Abstract
Background: Emergence of drug resistant varieties of tuberculosis is posing a major threat to
global tuberculosis eradication programmes. Although several approaches have been explored to
counter resistance, there has been limited success due to a lack of understanding of how resistance
emerges in bacteria upon drug treatment. A systems level analysis of the proteins involved is
essential to gain insights into the routes required for emergence of drug resistance.

Results: We derive a genome-scale protein-protein interaction network for Mycobacterium
tuberculosis H37Rv from the STRING database, with proteins as nodes and interactions as edges. A
set of proteins involved in both intrinsic and extrinsic drug resistance mechanisms are identified
from literature. We then compute shortest paths from different drug targets to the set of
resistance proteins in the protein-protein interactome, to derive a sub-network relevant to study
emergence of drug resistance. The shortest paths are then scored and ranked based on a new
scheme that considers (a) drug-induced gene upregulation data, from microarray experiments
reported in literature, for the individual nodes and (b) edge-hubness, a network parameter which
signifies centrality of a given edge in the network. High-scoring paths identified from this analysis
indicate most plausible pathways for the emergence of drug resistance. Different targets appear to
have different propensities for four drug resistance mechanisms. A new concept of 'co-targets' has
been proposed to counter drug resistance, co-targets being defined as protein(s) that need to be
simultaneously inhibited along with the intended target(s), to check emergence of resistance to a
given drug.

Conclusion: The study leads to the identification of possible pathways for drug resistance,
providing novel insights into the problem of resistance. Knowledge of important proteins in such
pathways enables identification of appropriate 'co-targets', best examples being RecA, Rv0823c,
Rv0892 and DnaE1, for drugs targeting the mycolic acid pathway. Insights obtained about the
propensity of a drug to trigger resistance will be useful both for more careful identification of drug
targets as well as to identify target-co-target pairs, both implementable in early stages of drug
discovery itself. This approach is also inherently generic, likely to significantly impact drug
discovery.
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Background
Tuberculosis (TB) has remained one of the largest killer
infectious diseases despite the availability of several
chemotherapeutic agents and a vaccine [1]. The global
burden of TB has taken a new dimension in the recent
years due to the emergence of drug resistant varieties of
Mycobacterium tuberculosis, besides synergy with HIV [2].
Global surveillance indicates that multi-drug resistant
(MDR-TB) and extensively drug resistant TB (XDR-TB) are
spreading to many countries, posing a major threat to TB
eradication programmes [3,4]. Several different strategies
are being explored to counter the problem of resistance,
which include rotation of antibiotic combinations,
enhanced medical supervision to ensure patient compli-
ance, identification of new targets that may be less muta-
ble, search for new chemical entities for known targets,
use of virulence factors as targets and 'phenotypic conver-
sion', which aims to inhibit the resistance mechanism
employed by the bacterium [5]. While each of these may
be very important measures, available statistics indicate
that resistant forms are still on the rise, warranting more
research in the area. Of the different measures listed, the
most cogent in its approach in the long term, is targeting
the resistance mechanisms, since it enables confronting
the problem at its source. However, in order to use this
strategy effectively, it is at the outset, essential to under-
stand the ways by which resistance can emerge upon expo-
sure to a given drug.

Studies on the molecular mechanisms of resistance to
first-line and second-line anti-tubercular drugs have led to
mapping of several mutations in the drug targets and the
regulatory gene segments [3]. Besides these, the activation
of the efflux pumps and drug-modifying enzymes are
other known mechanisms of drug resistance [6]. Several
studies in other organisms have reported the acquisition
of drug-inactivating genes through horizontal gene trans-
fer (HGT) as a means of selection of the resistant variety
[7]. It is clear from these that diverse mechanisms can exist
for generating resistance and that the proteins involved in
each can be quite remote from the drug targets in terms of
their functional classes. While some of these may result
from the binding of the drugs directly to the relevant pro-
teins such as cytochromes, or the transporter proteins, a
majority of them cannot obviously be rationalised in the
same manner. This is particularly true for resistance mech-
anisms such as mutations in the target or for acquisition
of new genes through HGT to incapacitate the drug. This
strongly indicates that communication mechanisms must
exist in the cell, through which the required information
reaches the appropriate components of the resistance
machinery. The observed drug-induced expression data
from microarray experiments too suggest that variations
in expression pattern are quite complex and exhibit mod-

ifications in expression levels of several seemingly unre-
lated genes.

Knowledge of the molecular basis by which information
flows from the specific drug target to the proteins else-
where in the system, relevant to drug resistance, will help
us address the issue of resistance in more systematic,
rational and novel ways. With the availability of many
genome-scale data from several studies, it is now feasible
to address the issue of resistance from a systems perspec-
tive. Here, we use a proteome-scale network of protein-
protein associations to discover possible pathways that
may be responsible for generating drug resistance. The
network analyses reported here further help in classifica-
tion of these paths based on known resistance mecha-
nisms. The study also identifies controlling hubs within
these paths and suggests proteins that could be explored
for their use as drug 'co-targets'.

Results and discussion
The different steps involved in this study are illustrated in
the flowchart in Fig. 1. Interactions among proteins of M.
tuberculosis, discerned from the STRING database, have
been used to construct a protein-protein interactome,
which enables a novel formulation of the problem of drug
resistance and forms a first step towards countering drug
resistance at the drug discovery stage itself. In particular,
the questions addressed here are: (i) can we obtain
insights into the possible routes through which informa-
tion in the form of structural and biochemical signals can
flow from the drug target(s) of a given drug to the molec-
ular components of the resistance machinery, (ii) do dif-
ferent drugs follow different pathways of resistance,
therefore triggering different resistance mechanisms, (iii)
do different drugs have different propensities for inducing
resistance and (iv) lastly, can we design intelligent 'road-
blocks' to prevent the emergence of drug resistance.

Interactome network
A proteome-scale interaction network of proteins in M.
tuberculosis H37Rv was derived from the STRING database
[8], which includes interactions from published literature
describing experimentally studied interactions, as well as
those from genome analysis using several well-established
methods based on domain fusion, phylogenetic profiling
and gene neighbourhood concepts. Thus, the network
captures different types of interactions such as (a) physical
complex formation between two proteins required to
form a functional unit, (b) genes belonging to a single
operon or to a common neighbourhood, (c) proteins in a
given metabolic pathway and hence influenced by each
other, (d) proteins whose associations are suggested based
on predominant co-existence, co-expression, or domain
fusion. This network represents a first comprehensive
view of the connectivity among the various proteins, anal-
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ogous to obtaining the road map of a city. In STRING, a
confidence score is assigned to each identified protein-
protein association, derived by benchmarking the per-
formance of the predictions against a common reference
set of trusted, true associations, which also takes into
account the frequency or reciprocality of the detection
[8,9]. After assignment of association scores and transfer
between species, a final 'combined score' between any
pair of proteins is assigned. It is computed under the
assumption of independence for the various sources, in a
naïve Bayesian fashion [8,9]. A higher score is assigned
when an association is supported by several types of evi-
dence, thus expressing increased confidence. With the
methodology currently available, it is inevitable for a net-
work of this type to contain some false positives as well as

false negatives. To minimise this problem, all interactions
tagged as 'low-confidence' in the STRING database have
been eliminated from this study. 131,043 interactions
were observed for 3,958 proteins of M. tuberculosis; the
coverage of the M. tuberculosis proteome is seen to be as
high as 99%. Of the total 131,043 interactions, 11,425
were labelled as 'high-confidence', and 18,239 as
'medium-confidence'. Interactions in these two categories
(covering 3,925 of the proteins) were considered in our
analysis (listed in Additional File 1, along with the indi-
vidual scores). The considered network, despite its short-
comings, provides an excellent framework for navigating
through the proteome. It also allows for refinement of the
network upon the availability of new experimental data.

Progression of experiments in this studyFigure 1
Progression of experiments in this study. A flowchart illustrating the progression of experiments in this study. Different 
aspects indicated in this are interactome construction, curation of the resistance proteins, identification of source and sink 
nodes, derivation of the MAP-RES network, incorporation of drug-induced gene upregulation data, scoring and ranking of 
paths, identification of pathways to drug resistance and finally the identification of co-targets as a new concept to counter drug 
resistance.
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Derivation of MAP-RES: a sub-network to study drug 
resistance
The interactome network thus obtained contains 3,925
nodes (proteins), with 29,664 undirected edges (interac-
tions) between them. The clustering coefficient of the net-
work is 0.447. This high clustering coefficient is indicative
of the high density of connections in the network.

Defining source and sink nodes
In order to study the portion of the large interactome rel-
evant for drug resistance, it is first required to define the
'source' and the 'sink' nodes for the flow of information.
A 'source' node in this case refers to the drug target, where
a drug is known to definitely make an impact, while the
sink nodes refer to the possible molecular components of
the resistance machinery. Three of the drugs – isoniazid,
ethionamide and isoxyl – are known to be inhibitors of
mycolic acid biosynthesis, for which the 26 proteins of the
mycolic acid pathway (MAP) [10] were used as source. It
can be envisaged that upon inhibition of a protein in a
given pathway, metabolic adjustments often occur so as to
minimise the effect of inhibition on the particular protein
[6]. In order to incorporate the effect of such adjustments,
we have considered the whole pathway as the source
rather than an individual protein. There are also reports in
the literature that multiple proteins in the MAP may be
targeted by some of these drugs [11], making it important
to consider the pathway as a whole.

Known mechanisms relevant to resistance were classified
into four types (a) efflux pumps, which transport drugs
out of the cell, (b) cytochromes and other target-modify-
ing enzymes that could cause potential chemical modifi-
cation of drug molecules, (c) SOS-response and DNA
replication leading to mutations in the gene or its regula-
tory region, (d) proteins involved in HGT to import a tar-
get modifying or detoxifying protein from its
environment. Although HGT is not known to be an
important mechanism in conferring drug resistance in M.
tuberculosis, four genes present in the M. tuberculosis
genome bear close similarity to well-established HGT
genes in other organisms. The report by Smith and
Romesberg [7] implicates these proteins in drug resistance
and therefore, these have been included in our curated set.
We curated a list of 74 genes in the M. tuberculosis genome
based on these mechanisms from published literature
(Table 1). This curated set of 'resistance proteins' were
grouped together as 'sink'.

MAP-RES network
Shortest 'paths' from source to the 'sink' (curated set of
resistance proteins) were computed as described in the
Methods section. A subset of the whole interactome net-
work consisting only of the nodes and edges that form a
part of the computed shortest paths was considered. This
subset, consisting of 616 nodes and 1683 edges, which is
referred to as the MAP-RES network hereafter (Fig. 2; also
see Additional File 2), is a sub-network of the entire inter-

Table 1: Curated list of resistance proteins

Antibiotic efflux pumps [6,29]
PstB (Rv0933), Rv2686c, Rv2687c, Rv1688c, IniA (Rv0342), Mmr (Rv3065)
Rv3239c, Rv3728, Rv2846c, Rv1877, Rv2333c, Rv2459, Rv1410c, Rv1250, Rv1258c, Rv0783c, Rv1634, Rv0849
Hypothetical efflux pumps [29]
Rv0191, Rv0037c, Rv2456c, Rv2994
Antibiotic degrading enzymes* [6]
BlaC (Rv2068c)
Target-modifying enzymes* [30,31]
Erm37 (Rv1988), WhiB7 (Rv3197A)

SOS and related genes [7]
DnaE2 (Rv3370c), RuvA (Rv2593c), RecA (Rv2737c), RecB (Rv0630c), RecC (Rv0631c), RecD (Rv0629c), DnaE1 (Rv1547), PolA (Rv1629), LexA 
(Rv2720)

Genes implicated in horizontal gene transfer [7,32]
SecA1 (Rv3240c), SecA2 (Rv1821), Rv3659c, Rv3660c

Cytochromes [32]
CcdA (Rv0527), CcsA (Rv0529), CtaB (Rv1451), CtaC (Rv2200c), CtaD (Rv3043c), CtaE (Rv2193), CydA (Rv1623c), CydB (Rv1622c), CydC 
(Rv1620c), CydD (Rv1621c), Cyp121 (Rv2276), Cyp123 (Rv0766c), Cyp124 (Rv2266), Cyp125 (Rv3545c), Cyp126 (Rv0778), Cyp128 (Rv2268c), 
Cyp130 (Rv1256c), Cyp132 (Rv1394c), Cyp135A1 (Rv0327c), Cyp135B1 (Rv0568), Cyp136 (Rv3059), Cyp137 (Rv3685c), Cyp138 (Rv0136), 
Cyp139 (Rv1666c), Cyp140 (Rv1880c), Cyp141 (Rv3121), Cyp142 (Rv3518c), Cyp143 (Rv1785c), Cyp144 (Rv1777), Cyp51 (Rv0764c), DipZ 
(Rv2874), LldD1 (Rv0694), LldD2 (Rv1872c), QcrB (Rv2196), QcrC (Rv2194), SdhC (Rv3316)

*These proteins are antibiotic degrading and target modifying proteins, but since they are very few, have been included with the pumps for 
convenience.
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actome described earlier. The clustering coefficient of the
MAP-RES network is 0.056. The diameter of the network,
indicating the maximum length of a shortest path in the
network is 9. Of the 616 nodes in the network, 80 are
upregulated in response to one or more drugs. For this
sub-network, the number of neighbours for a node varies
from one to 43. For example, for Rv0904c (AccD3), there
are 41 neighbours; of these 41 interactions from STRING,
25 are high-confidence, and six of them have been corrob-
orated through experimental studies. On the other hand,
for Rv2459, a possible membrane transport protein, there
is only one neighbour in the MAP-RES network.

Incorporating expression information
Microarray experiments have been reported in the litera-
ture, where variation in the expression of mycobacterial
genes have been studied upon exposure to anti-tubercular
drugs [12,13]. These experiments provide global views of
the effects of anti-tubercular drugs on the mycobacterial
proteome, identifying lists of genes whose expression lev-

els were either increased or decreased upon exposure to
the drugs. Such data were obtained for seven drugs, viz.
isoniazid [12,13], ethionamide [13], isoxyl, tetrahydrolip-
statin, SRI-221, SRI-967 and SRI-9190 [12]. The patterns
of variation in terms of an increase or decrease in the
expression levels of individual genes are complex, indica-
tive of large systems-level effects, rather than being limited
to the vicinity of the target alone. It is noteworthy that sig-
nificant variation was observed for several resistance pro-
teins. 12 out of the 36 cytochromes present, five pumps
(of 25), one HGT protein (of four) and three SOS proteins
(of nine) were found to be upregulated in the expression
profile corresponding to at least one of the seven drugs
considered here. The study by Besra and co-workers [12]
reports the expression levels of proteins in M. tuberculosis
at the minimal inhibitory concentration (MIC) levels of
the various drugs, which has been considered as the pri-
mary data for analysis. The study by Fu [13] reports the
expression levels at much higher drug concentrations (5
μg/mL for isoniazid, MIC = 0.2 μg/mL). It must be noted

Illustration of the MAP-RES networkFigure 2
Illustration of the MAP-RES network. Illustration of a portion of the MAP-RES network. The full MAP-RES network (high-
resolution zoomable PDF) is available as supplementary material [see Additional File 2]. Only a portion of it is shown here for 
clarity. In this, the tight clustering of the cytochrome proteins (coloured as green nodes) can be seen. Rv0892, a co-target sug-
gested from this analysis links up the cytochrome clusters to the MAP proteins. Nodes correspond to the individual proteins in 
the network while the edges indicate interactions between them. Each class of nodes is coloured differently. The nodes are 
sized in proportion to the number of MAP drugs that induce its upregulation. The thickness of an edge is proportional to the 
number of times a shortest path is traversed through that edge.
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that it is possible that the high concentrations may lead to
abnormal expression levels, but has been considered here
as an additional set since with higher dose, there may be
a higher propensity for resistance to develop. Information
about the variation in gene expression levels has been
incorporated into the MAP-RES network as described in
the Methods section. In essence, a scoring scheme has
been used to weight the edges in the network such that the
edges between two upregulated nodes get better (lower)
weights than edges formed by one but not both upregu-
lated nodes, which in turn are better than the weights for
edges between nodes that are not upregulated at all. The
number of datasets from independent experiments in
which a given node is upregulated is also taken into
account; higher the number, better the weights.

Identifying resistance pathways
A shortest path refers to the minimum number of hops
required to reach one node from another in the network,
where traversal along each edge is considered as a hop.
Since these are computed on the whole interactome, all
paths for the source to sink sets of nodes have been auto-
matically evaluated to find the shortest paths, for the der-
ivation of MAP-RES network. Shortest paths indicate the
most feasible path that can be taken by a protein to com-
municate with another. The concept of shortest paths has
been well accepted in graph theory and is a commonly
used metric in the analysis of various networks in fields
ranging from transport and communication to speech rec-
ognition [14]. It seems reasonable to assume that a path
of two hops would be preferred to a path of four hops to
transmit the same information from the same source to
the same destination. We have used a scoring scheme (as
described in the Methods section) to score the edges
occurring in these shortest paths. The first parameter used
in the scoring scheme is that involving 'betweenness', a
measure of centrality. Node centrality or 'node-hubness' is
a parameter that has been used often to indicate the rela-
tive importance of a given node [15]. Here, we have
extended the concept to the edges and have evaluated
'edge-hubness' or edge centrality, also referred to as
'betweenness' [16]. In other words, a high value of edge
betweenness indicates that the given edge occurs several
times in all the possible paths available to reach a destina-
tion from a given source and that the traversal along this
edge is inevitable. Taking roads in a city as an analogy, this
is equivalent to a particular road and not merely a partic-
ular junction being the main link between two other
nodes and hence traversal along that road being inevita-
ble. Fig. 2 illustrates some edge hubs (shown as thick
lines) in the MAP-RES network. The second parameter in
computing the scores is the expression information, as
described in the Methods section. If both nodes of a given
edge, which is also an edge-hub are upregulated, then that
edge gets the best score. The values for edge frequency vary

from 78 to 1. For example, the edge Rv3546 (FadA5)-
(395)→ Rv3545c (Cyp125) occurs 78 times in the short-
est paths that comprise the MAP-RES network. The final
path score is the summation of the individual edge scores
that have considered both edge frequency and upregula-
tion information. Thus, in obtaining the final scores, the
path length also features as a parameter. The individual
edge scores range from values close to zero to 1.0. The
path scores were found to range from 0.0048 to 4.0.
Scores close to zero refer to a top ranked path (a low 'cost'
path), with a very short path length, where all nodes in it
are upregulated and all edges have high betweenness val-
ues, whereas a score such as 4.0 refers to the other
extreme, a path of length four, that contains edges of low
betweenness (appearing only once in the set of shortest
paths) and none of its nodes being upregulated.

Paths to resistance from targets in MAP
The best ranked shortest paths to each of the four resist-
ance mechanisms were identified as shown in Table 2 (for
the complete list, see Additional File 3). High-scoring
paths to each of the resistance mechanisms were observed
from MAP (Fig. 3). However, paths to SOS proteins top
the list, followed by paths to cytochromes, while paths to
HGT and pumps were of much lower rank. Nodes and
edges that occur most frequently in a given set of paths are
considered as node and edge hubs. Top edge-hubs in
MAP-RES are provided as supplementary material [see
Additional File 4]. Several of the nodes in these edge hubs
also happen to be top node hubs. Some such edge hubs
are MmaA4 (Rv0642c) – Rv0892, FabD (Rv2243) – FadA5
(Rv3546), FadA5 (Rv3546) – Cyp125 (Rv3545c), Rv0049
– PcaA (Rv0470c), Rv0823c – DesA1 (Rv0824c), Acs
(Rv3667) – Rv3779 and KasA (Rv2245) – RecA
(Rv2737c).

It is interesting to note that many of these edges can be
attributed to metabolic linkages wherein the reactions
involving the two proteins share a common metabolite
(e.g. Rv0642 – Rv0892 or Rv0892 – Rv3801c). A few other
edges could be attributed to adjacency of the genes in the
genome whose transcription may be regulated by a com-
mon mechanism. A number of these proteins are also
upregulated in the top paths (Figs. 2, 3). In some cases, the
entire paths (i.e., all nodes in the path) were upregulated
in one or more of the drugs, indicating the correlation of
the identified paths with the observed expression profiles.
A path from FabG4 (Rv0242c) → KasA (Rv2245) → RecA
(Rv2737c), appears to be such a path, where all nodes are
upregulated, making the flow of information from source
to sink that of high propensity. Another interesting path is
from DesA1 (Rv0824c) → Rv0823c → RecA (Rv2737c),
which also has an alternate sub-path to RecA through
RuvA (Rv2593c). In this path, besides RecA, Rv0823c is
also upregulated (Fig. 3). Considering the individual
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functions of these molecules, it is easy to comprehend
that the transcriptional regulator (Rv0823c) influenced by
DesA1 (Rv0824c), triggers the activation of RecA
(Rv2737c), which while itself a sink, also activates many
proteins such as DnaE1 (Rv1547), important for DNA
synthesis. All these proteins are upregulated in response to
one or more of the MAP inhibitors. DesA1 was earlier

identified as a potential anti-tubercular drug target [10],
by virtue of its critical role in mycolic acid biosynthesis
[17]. From the above observations, it is clear that targeting
RecA or DnaE1 or Rv0823c together with DesA1 will be a
good strategy to counter emergence of drug resistance.
Thus, identification of these proteins opens up new possi-

Table 2: Top paths in the MAP-RES network

Path Score

SOS

Rv0242c (FabG4) -(276)→Rv2245 (KasA) -(596)→Rv2737c (RecA) 0.0102
Rv0242c -(276)→Rv2245 -(596)→Rv2737c -(44)→Rv2720 (LexA) 0.0727
Rv0904c (AccD3) -(241)→Rv1547 (DnaE1) 0.1000
Rv0824c (DesA1) -(162)→Rv0823c -(247)→Rv2737c 0.1344
Rv0242c -(276)→Rv2245 -(596)→Rv2737c -(96)→Rv2593c (RuvA) 0.1352
Rv2246 (KasB) -(400)→Rv1131 (GltA1) -(526)→Rv1629 (PolA) 0.1389

CYTOCHROMES

Rv2243 (FabD) -(200)→Rv3546 (FadA5) -(395)→Rv3545c (Cyp125) 0.0174
Rv0242c -(436)→Rv2243 -(200)→Rv3546 -(395)→Rv3545c 0.0203
Rv1350 (FabG2) -(205)→Rv2243 -(200)→Rv3546 -(395)→Rv3545c 0.0230
Rv1483 (FabG1) -(121)→Rv2243 -(200)→Rv3546 -(395)→Rv3545c 0.0352
Rv2243 -(257)→Rv0769 -(558)→Rv0766c (Cyp123) 0.0643
Rv0242c -(436)→Rv2243 -(559)→Rv2782c (PepR) -(513)→Rv1622c (CydB) 0.0655
Rv0242c -(436)→Rv2243 -(257)→Rv0769 -(558)→Rv0766c (Cyp123) 0.0673
Rv0242c -(436)→Rv2243 -(559)→Rv2782c -(578)→Rv2193 (CtaE) 0.0738
Rv0643c (MmaA3) -(350)→Rv0892 -(350)→Rv0568 (Cyp135B1) 0.0956
Rv0643c -(350)→Rv0892 -(350)→Rv3059 (Cyp136) 0.0956

ANTIBIOTIC EFFLUX PUMPS

Rv2245 -(565)→Rv0340 -(447)→Rv0342 (IniA) 0.0526
Rv0242c -(276)→Rv2245 -(565)→Rv0340 -(447)→Rv0342 0.0580
Rv2243 -(356)→Rv2238c (AhpE) -(569)→Rv2687c 0.0901
Rv2243 -(2)→Rv2245 -(565)→Rv0340 -(447)→Rv0342 0.1151
Rv0642c (MmaA4) -(350)→Rv3248c (sahH) -(486)→Rv3240c -(323)→Rv3239c 0.1365
Rv0642c -(350)→Rv3248c -(350)→Rv1988 0.1385
Rv1350 -(90)→Rv2245 -(596)→Rv2737c -(429)→Rv2882c (Frr) -(584)→Rv0783c (EmrB) 0.3169
Rv2245 -(369)→Rv1908c (KatG) -(350)→Rv1988 0.3833
Rv0242c -(276)→Rv2245 -(369)→Rv1908c -(350)→Rv1988 0.3888

HORIZONTAL GENE TRANSFER

Rv0644c (MmaA2) -(350)→Rv3248c -(486)→Rv3240c (SecA1) 0.0812
Rv2243 -(202)→Rv2925c (Rnc) -(378)→Rv3659c 0.0913
Rv2243 -(202)→Rv2925c -(378)→Rv3659c -(63)→Rv3660c 0.1538
Rv2245 -(596)→Rv2737c -(514)→Rv2890c (RpsB) -(187)→Rv3240c 0.3715
Rv2524c (Fas) -(464)→Rv2918c (GlnD) -(380)→Rv2890c -(187)→Rv3240c 0.4833

The weighted score for each path is shown. The nodes upregulated by MAP drugs are indicated in bold typeface, while those that are upregulated 
by other drugs are underlined. The figures in parentheses indicate the edge weight; a lower edge weight indicates a higher confidence in the 
interaction. The edge weights range from 1 to 999. Lower edge weights are better. STRING scores range from 1 to 999. However, since edge 
weights are conventionally represented such that lower weights indicate better paths, the edge weights have been computed as 1000-
STRING_score.
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bilities, illustrating a new concept to prevent drug resist-
ance.

Co-targets as a new concept
To describe such proteins, we propose the term 'co-tar-
gets'. Co-targets refer to those proteins, which when inhib-
ited simultaneously with a corresponding primary target,
will help in reducing the emergence of resistance to the
drug binding to that primary target. Co-targets should not
be confused with ancillary or secondary targets, although

there is no standard definition for the latter two terms.
The concept is illustrated in Fig. 4. Ancillary targets have
been referred to describe proteins through which a drug
exerts additional beneficial effects, perhaps through auxil-
iary pharmacodynamic effects, such as that of benzodi-
azepines in bipolar disorders [18], whereas the term
'secondary target' (and a corresponding secondary drug)
has been used to describe those proteins that aid in allevi-
ating the side effects caused by a primary drug [19]. The
term has also been used to refer to those targets that help

Top scoring paths from MAP to each of the four resistance classesFigure 3
Top scoring paths from MAP to each of the four resistance classes. Nodes are labelled by their Rv IDs, as obtained 
from TubercuList. Nodes correspond to the individual proteins in the network while the edges indicate interactions between 
them. Each class of nodes is coloured differently as indicated. Grey nodes indicate those that do not belong to any of the 
marked classes. The nodes are sized in proportion to the number of MAP drugs that induce its upregulation. The thickness of 
an edge is proportional to the number of times a shortest path is traversed through that edge. The dotted edge is not a high-
scoring path but is of significance, as discussed in the text.
Page 8 of 13
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in improving the bio-availability of the drug, albeit with-
out any explicit consideration of drug resistance.

A co-target should always be considered as one of the two
components forming a pair, where the other is a primary
target. This is irrespective of the function of the protein
when considered individually, since some co-targets
could be primary targets themselves, but also turn out to
be important in mediating resistance for another target.

Thus, co-targets could have diverse functions, could be
either essential or non-essential to the microbe, but neces-
sarily have a strong influence in the network, to mediate
information flow from a given target. The determining
feature to be called a co-target is its ability to counter
resistance for drugs modifying the corresponding primary
target. Ancillary or secondary targets, on the other hand,
usually refer to those proteins, which by themselves are
not essential and do not have a critical physiological func-

Schematic diagram depicting the concept of 'co-targets'Figure 4
Schematic diagram depicting the concept of 'co-targets'. A schematic diagram depicting the concept of 'co-targets'. A 
bacterium upon infection under suitable conditions, leads to bacterial growth. Upon drug treatment however, the intended tar-
get of the drug, referred to as the 'primary target' is inhibited and bacteria are either killed or their growth arrested substan-
tially. Over a course of time however, the remnant bacteria develop resistance to the administered drug, resulting in bacterial 
growth once again. Drug resistance develops by triggering the resistance machinery upon drug exposure. Communication to 
the resistance machinery from the drug target is established through channels (pathways identified in this study) in the protein-
protein interaction network. Proteins important for mediating such communication are termed 'co-targets' and their simulta-
neous inhibition by suitable drug combinations along with the primary target, will help in preventing emergence of drug resist-
ance, thus rendering the primary drugs useful again. (1) and (2) refer to the primary target and the co-target respectively, which 
should be considered as a pair (details in text).
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tion for the survival of the cell in question, but help in
modifying the properties of the drug intended for a given
target. They have not been viewed in the context of drug
resistance so far.

As many as 19 cytochrome proteins were found to be
present in a tight cluster (Fig. 2), seven of them upregu-
lated, connected to MAP through Rv0892, which is anno-
tated as a probable monooxygenase. Some noteworthy
pathways across the four classes are: (i) Rv2243 (FabD) →
Rv3546 (FadA5) → Rv3545c (Cyp125) (cytochrome); (ii)
Rv2524c (Fas) → Rv2918c (GlnD) → Rv2890c (RpsB) →
Rv3240c, the latter a translocase implicated in HGT; (iii)
Rv2245 (KasA) → Rv1908c (KatG) → Rv1988 (a methyl-
transferase annotated as an efflux pump); (iv) Rv2245
(KasA) → Rv2737c (RecA), Rv0904c (AccD3) → Rv1547
(DnaE1), both important for homologous recombination
and DNA synthesis.

In fact, RecA (Rv2737c) and a few other proteins such as
SecA1 (Rv3240c), SahH (Rv3248c), Rv0892 and MetK
(Rv1392) occur in multiple resistance mechanisms, mak-
ing their roles even more prominent in the emergence of
resistance. Some of the MAP proteins such as KasA
(Rv2245), FabD (Rv2243), which are upregulated, also
appear to mediate multiple pathways across different
resistance mechanisms. Proteins important for multiple
resistance pathways could form ideal 'co-targets'. Of the
top node and edge hubs in MAP-RES, it is of interest to
note that nodes Rv0892 and Rv2243 are also among the
top hubs in the entire STRING network, indicating their
critical role in the M. tuberculosis interactome. The nodes
and edges in the STRING, ranked based on their between-
ness, are provided as supplementary material [see Addi-
tional File 5].

Table 2 also indicates shortest paths containing proteins
upregulated in response to one or more of the four non-
MAP drugs, used for obtaining the microarray data, along
with the three MAP drugs discussed so far. It was observed
that while paths to SOS still topped the list, many paths to
cytochromes, pumps and HGT were found and contained
a number of upregulated proteins, indicating that propen-
sities for traversal of a path could vary from drug to drug.

Paths to resistance from other mycobacterial drug targets
Besides drugs such as isoniazid and ethionamide that tar-
get the MAP, several other drugs are also used for the treat-
ment of TB. The best examples of these are rifampicin and
ciprofloxacin. The known target of rifampicin is the B sub-
unit of RNA polymerase (RpoB, Rv0667), while DNA
gyrase (GyrA, Rv0006) is the target of ciprofloxacin and
other members of the fluoroquinolone series. Other
known targets of anti-tubercular drugs are cell wall bio-
synthesis proteins such as Alr (Rv3423c), DdlA

(Rv2981c), Rv3792, EmbA (Rv3794) and EmbB (Rv3795)
for cycloserine. Each of these targets and their parent path-
ways where possible, were individually considered as
'source' nodes and new sub-networks derived in each case,
by computing the shortest paths to the previously defined
set of 'sink' proteins.

Short high-scoring paths were observed from all targets
examined, to the SOS response, involving many common
nodes (e.g. DnaE1 (Rv1547), RecA (Rv2737)), whereas
paths to other resistance mechanisms differed from target
to target. Some edges in the SOS response (e.g. Rv2158c –
Rv0631c) were common to paths from cell wall proteins
and gyrase. From gyrase, SOS was the only predominant
path, whereas from RpoB, paths to HGT and cytochromes
were also among the top paths. For RpoB, many of the
paths to SOS were mediated through Dcd (Rv0321), a
DCTP deaminase. From cell wall proteins, paths to HGT
and SOS top the list of high-scoring paths again, although
there are also several paths to cytochromes. Paths to
pumps were relatively fewer in number, in all cases. Of
interest, however was a path to EfpA (Rv2846c), a trans-
porter known to confer resistance to fluoroquinolones
(Rv0006 → Rv0524 → Rv3065 → Rv2846c), rifampicin
and isoniazid [6]. A higher scoring path to IniA (Rv0342)
was observed through Rv0340 (conserved hypothetical
protein), again agreeing well with previous reports based
on transcription studies [20]. We also analysed paths from
proteins KatG (Rv1908c), EthA (Rv3854c) and PncA
(Rv2043c), all known to transform pro-drugs to the active
drug species to the sink. It was interesting to observe that
while EthA and PncA did not appear to have short paths
to any of the resistance mechanisms, KatG had a direct
interaction with an efflux pump (Rv1988, a probable
methyltransferase, homologue of Erm37) and also several
paths of two or fewer edges to all resistance mechanisms.
In fact, studies on clinical isolates have shown mecha-
nisms such as mutations in KatG, leading to loss of cata-
lase activity, mutations in the promoter region of inhA,
leading to its over-expression and mutations in InhA,
leading to loss of affinity for isoniazid [3]. Paths to differ-
ent resistance mechanisms for different drugs observed
here, suggest that a given target may have a higher propen-
sity for eliciting a specific mechanism of resistance, which
when understood can be utilised to identify appropriate
co-targets, to prevent the emergence of resistance.

Upon analysis of the network formed only by the upregu-
lated proteins [see Additional File 6], for each of the seven
drugs, we observe that the network density is much
higher, over an order of magnitude in most cases, than
that of the whole interactome. This indicates that the
upregulated genes have a higher influence on each other
and more importantly, their inter-relatedness is perhaps
for a specific purpose. Such a purpose, if present, is non-
Page 10 of 13
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obvious by their functional classes or by a common anal-
ysis (such as co-expression) of the microarray data, except
in a few cases. However, when viewed in the context of the
interaction networks, it becomes possible to analyse the
outcome of such inter-relatedness. It is important to bear
in mind that studies on a theoretically derived network
such as this may have some limitations, due to missing
out some important interactions not identified by any of
the computational methods used or due to false positives
that may be present in the network. However, with the
care taken during the construction and the analysis, and
the experimental support available in the literature for
protein-protein interaction prediction [21,22], we believe
that such errors if present may not be many and the used
network still captures the interactions in the mycobacte-
rial cell well. This study also serves as a framework to
design experiments to verify the role of identified edge-
hubs and co-targets. The new formulation of the problem
of drug resistance in this study also serves as a starting
point to understand the structural, biochemical and ther-
modynamic basis in detail, by which such communica-
tion is facilitated.

Support from experimental evidence as proof-of-concept
Reports in literature indicate that the main strategies for
adaptation by the bacillus in response to these drugs are
mutations [23], to reduce the binding of these drugs to the
MAP target(s). This inherently implies that the MAP pro-
teins have a streamlined mechanism to pass on the infor-
mation of drug inhibition (or lack of mycolic acid
production) to the SOS proteins involved in recombina-
tion and DNA biosynthesis. A time course microarray data
over a period of a few weeks, from clinical samples, would
ideally have been required to see the expression patterns
where resistance has emerged. Nevertheless, the existing
data provides a first glimpse of the possible routes that
might lead to resistance.

The SOS regulon that includes RecA and LexA has been
implicated in the response of other organisms to drugs
that target cell wall metabolism [24]. The disruption of
the SOS polymerases or prevention of LexA autoproteoly-
sis have been suggested previously to be useful in limiting
evolution of resistance [25]. Available experimental evi-
dence also suggest that the inhibition of RecA might be a
possible strategy to limit mycobacterial genomic evolu-
tion [26], also confirmed by the genomic stability of a nat-
ural recA mutant [27]. Wigle and Singleton have studied
inhibitors for RecA, and propose that such inhibitors may
be developed into novel adjuvants for antibiotic chemo-
therapy that moderate the development and transmission
of antibiotic resistance genes [28].

Conclusion
The analysis reported here has led to the identification of
most probable routes that may be utilised to bring about
resistance to a given drug. Identification of pathways to
resistance is novel, providing another example of the
remarkable usefulness of a systems-level analysis. Another
interesting observation was that different targets seemed
to have different propensities for drug resistance mecha-
nisms. This strongly suggests that certain targets and there-
fore, drugs acting through those target proteins, will have
a higher chance of the microbe developing resistance
against them as compared to some others. This leads to
the possibility of developing a new concept to assess the
druggability of a target. To our knowledge, such informa-
tion has not been used earlier in the identification or eval-
uation of drug targets.

We introduce the concept of 'co-targets', which forms a
new rational strategy for combating drug resistance. A set
of target-co-target pairs in M. tuberculosis have been iden-
tified. Given the rapid accumulation of various types of
'omics' data, including comprehensive views of protein-
protein interactions, this type of analyses is becoming fea-
sible for many pathogenic organisms. Our approach is
also inherently generic, lending itself to be utilised in
many drug discovery programmes.

Methods
Interactome network derivation
A proteome-scale interaction network of proteins in M.
tuberculosis was derived from the STRING database, using
only the 'high-confidence' and 'medium-confidence' data.
The individual interactions as well as their confidence
scores are provided as supplementary material [see Addi-
tional File 1].

Curation of resistance genes
We curated a list of 74 genes in the M. tuberculosis genome
based on resistance mechanisms from published litera-
ture [6,7,29-32] (Table 1). Available biological literature
was scanned to obtain information about associations of
individual proteins with drug resistance and assignments
to Rv numbers in the M. tuberculosis H37Rv proteome
were manually verified before including in the list.

Betweenness
Betweenness is a centrality measure of a vertex within a
graph [33]. For a graph G(V, E), with n vertices, the
betweenness CB(υ) of a vertex υ is defined as

where σst is the number of shortest paths from s to t, and
σst(υ) is the number of shortest paths from s to t that pass

C v st v

st
B

s v t V

( )
( )=

≠ ≠ ∈
∑ s

s

Page 11 of 13
(page number not for citation purposes)



BMC Microbiology 2008, 8:234 http://www.biomedcentral.com/1471-2180/8/234
through a vertex υ. A similar definition for 'edge between-
ness' was given by Girvan and Newman [16]. Betweenness
was calculated for all nodes and edges in STRING, ranking
them to obtain a list of hubs [see Additional File 5]. Essen-
tially, betweenness is an indicator of how many shortest
paths in the network a node or an edge is a part of. The
computed betweenness is thus an absolute value, which
depends upon number of shortest paths in the network
and the frequency of occurrence of a given node/edge in
the list of shortest paths from any node to any other node.
Higher the betweenness, more important is the node/edge
in the context of the network, since it forms a part of more
shortest paths.

Network analysis
Shortest paths from source to the curated set of resistance
proteins (sink) were computed using Dijkstra's algorithm
implemented in the MATLAB-Boost Graph Library (David
Gleich; http://www.stanford.edu/~dgleich/programs/
matlab_bgl/). The algorithm is used to compute the dis-
tance (number of hops, in this case) and the predecessor
(node in the path) for each of the vertices along the short-
est path, from a particular vertex to every other vertex in
the graph. Only those shortest paths that begin from a
source node and terminate at a sink node were then
obtained, to construct the MAP-RES network.

Scoring of paths
We added a weighting scheme to account for the fre-
quency of an edge in the network, as well as to incorporate
the upregulation information of the nodes forming a
given edge. The weight of an edge ST is given as

where fst corresponds to the frequency of the edge between
s and t, which is the number of times a given edge occurs
in the set of paths, Ns and Nt refer to number of drugs
(only drugs that target MAP are considered) for which
node s and node t are upregulated respectively. Thus, the
maximum possible score for an edge is unity, when the
edge appears only once in the set of chosen paths and nei-
ther of the nodes forming the edge is upregulated. A path
score was computed as the sum of the weighted scores for
the edges in a path, from which the least scoring path cor-
responded to the highest rank. Path scores, consequently,
vary from values close to zero (all edges have low scores),
to values equal to path length (all edges have a score of
unity). For the present network, path scores vary from
0.0048 to 4.0. The path score can also be thought of as the
'cost' of taking that particular path; lower the cost, more
likely the path. Cytoscape [34] was used for network visu-
alisations.
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STRING network links. These data, from the STRING database, form 
the basis for the network constructed in this study.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Additional File 2
MAP-RES network. High-resolution image of the MAP-RES network, a 
portion of which has been indicated in Figure 2.
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Additional File 3
Ranked MAP-RES paths. This is a complete list of the paths that have 
been shown in Table 2.
Click here for file
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Additional File 4
MAP-RES edge hubs. A list of all the edges in MAP-RES, ordered by the 
number of times they appear in the network.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Additional File 5
STRING node and edge hubs. Node and edge hubs in the interactome, 
constructed from STRING.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2180-8-234-S5.xls]

Additional File 6
Genes upregulated on drug treatment. A comparison of the network 
parameters, for the sub-networks of upregulated proteins.
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