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Abstract
Background: Aggregatibacter actinomycetemcomitans is an oral bacterium associated with
aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and
cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study
investigated the pathogenic potential of free-soluble surface material, released from live planktonic
and biofilm A. actinomycetemcomitans cells.

Results: By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the
A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form,
released free-soluble surface material independent of outer membrane vesicles. This material
clearly enhanced the production of several proinflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8,
MIP-1β) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-
enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR
indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in
which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only
partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent
with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-
soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and
leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced
by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans
a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released
free-soluble surface material with proinflammatory activity.

Conclusion: A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble
surface material independent of outer membrane vesicles, which induces proinflammatory
responses in human whole blood. Our findings therefore suggest that release of surface
components from live bacterial cells could constitute a mechanism for systemic stimulation and be
of particular importance in chronic localized infections, such as periodontitis.
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Background
Periodontitis is one of the most common chronic infec-
tions in humans, in which overgrowth of subgingival
Gram-negative bacteria leads to chronic inflammation
and gradual degradation of tooth-supporting tissues. The
Gram-negative bacterium Aggregatibacter (Actinobacillus)
actinomycetemcomitans is implicated in aggressive forms of
periodontitis [1,2]. The oral cavity is its natural habitat,
but the bacterium can also translocate from the oral cavity
into the blood circulation, as evidenced by the occurrence
of severe non-oral A. actinomycetemcomitans infections [3].

Increasing evidence points to a link between periodontitis
and cardiovascular diseases [4-7]. However, the patho-
genic mechanisms that would render periodontitis
patients to increased cardiovascular risk are still poorly
understood. Previous experimental studies on the back-
ground of the association between periodontitis and car-
diovascular diseases have mainly worked on the basis of
the infection hypothesis that suggests that chronic low-
grade bacterial and/or viral infections have a causal role in
the development of atherosclerosis and its sequels, such
as myocardial infarction and stroke [8,9]. It is believed
that infections raise systemic inflammatory status, as evi-
denced by elevated circulating levels of proinflammatory
cytokines and acute phase reactants, which in turn may
promote endothelial dysfunction and proatherogenic and
proinflammatory phenomena in arterial walls [10,11].

Living bacteria can extend their pathogenicity by active
extracellular release of surface components. A major route
for the release of outer membrane components from
Gram-negative bacteria is via shedding of outer mem-
brane vesicles (OMV), which also allow the delivery of
pathogenic effector proteins to eukaryotic target cells
[12,13]. In addition, secretion of free-soluble outer mem-
brane proteins (OMP) from bacterial cultures of e.g. Aci-
netobacter radioresistens and Escherichia coli could be
suggested from previous studies [14-16], although the
dependence of vesicles was not elucidated. Recently, we
addressed the question whether live periodontal patho-
gens release free-soluble surface components, which
could serve as an additional mechanism for spreading
bacterial material from periodontal pockets to blood cir-
culation. Interestingly, our results from an in vitro insert
model, designed to control for bacterial viability and
OMV, demonstrated release of peptidoglycan-associated
lipoprotein (PAL) and lipopolysaccharide (LPS) in addi-
tion to unidentified material from live planktonic A. actin-
omycetemcomitans cells, independent of OMV [17].

In periodontal pockets, bacteria grow on tooth surfaces as
biofilms. Whether the biofilm bacteria also have the capa-
bility to release free-soluble surface material to the sur-
rounding environment is not known. As A.

actinomycetemcomitans PAL in purified form provoked
proinflammatory responses in human whole blood ex vivo
[17] we hypothesize that the extracellular release of free-
soluble surface material from live A. actinomycetemcomi-
tans cells could constitute a novel pathogenic mechanism
that may be of particular importance in chronic localized
infections, such as periodontitis. The present study was
undertaken as, except for secretion via specialized secre-
tory systems [18], there is limited knowledge of the proin-
flammatory effects of free-soluble surface material
released from live Gram-negative bacteria. Our aim was to
investigate in an ex vivo model the pathogenic potential of
the pool of components released in free-soluble form by
live planktonic and biofilm A. actinomycetemcomitans cells,
and to make an attempt to delineate the identity of the
secreted components.

Results
Free-soluble material released by A. 
actinomycetemcomitans induces proinflammatory 
responses in whole blood
To study the pathogenic potential of free-soluble material
released by A. actinomycetemcomitans cells, we imple-
mented our cell culture plate insert model for stimulation
of human whole blood as described in Methods. Similarly
to our previous studies using the insert model [17], the
absence of A. actinomycetemcomitans cell lysis in the wells
during the experiments was confirmed by immunoblot
analysis of samples taken from the wells outside the
inserts (filtrates), using an antiserum raised against the
cytoplasmic protein cyclic AMP receptor protein (CRP)
(data not shown). In addition, plating revealed no appar-
ent death of A. actinomycetemcomitans cells, or contamina-
tion in the wells (data not shown).

According to our findings from the cytokine antibody
array analysis, used to screen for the cytokine responses in
human whole blood, the free-soluble material released by
strain D7S (rough-colony wild type), grown in planktonic
form, caused clearly enhanced production of the inter-
leukins IL-6 and IL-8, and of macrophage inflammatory
protein (MIP-1β), relative to no bacteria controls (Fig.
1A–B). The same was observed when whole human blood
was stimulated with free-soluble material released from A.
actinomycetemcomitans strain D7SS (smooth-colony vari-
ant) (Fig. 1C–D). In addition, very similar results were
obtained when whole blood from another donor was
used (data not shown), indicating no apparent inter-indi-
vidual differences. Interestingly, production of IL-6, IL-8
and MIP-1β was also induced when D7S cells grown in
biofilm were used (Fig. 1E–F). This suggests that A. actin-
omycetemcomitans cell populations growing in biofilms
also release free-soluble material with proinflammatory
activity to the surrounding environment. Taken together,
we concluded that the free-soluble components released
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Cytokine induction in human whole blood by free-soluble material released by live A. actinomycetemcomitans cellsFigure 1
Cytokine induction in human whole blood by free-soluble material released by live A. actinomycetemcomitans 
cells. A cytokine antibody array was used to detect cytokines produced by human whole blood after stimulation for 6 h with 
free-soluble material released from A. actinomycetemcomitans as follows: planktonic D7S (panel a), and a corresponding negative 
control (panel b); planktonic D7SS (panel c), and a corresponding negative control (panel d); biofilm D7S (panel e), and a corre-
sponding negative control (panel f); planktonic D7S Δcdt/ltx in the absence (panel g) and in the presence (panel h) of polymyxin 
B (PMB). Serum (50% in PBS) containing no bacteria served as negative controls. The locations of cytokine antibodies and pos-
itive (pos) and negative (neg) controls on the array are indicated (panel i).
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by live A. actinomycetemcomitans cells, grown either plank-
tonic or in biofilm, could indeed induce proinflammatory
effects in whole blood.

Free-soluble material released by A. 
actinomycetemcomitans stimulates TNF-α and IL-1β 
production in whole blood
According to the above-described cytokine analyses (Fig.
1) the free-soluble material released from the test strains
appeared to have no effect on the production of TNF-α
and IL-1β. As a previous report indicated increased pro-
duction of these cytokines in human whole blood, stimu-
lated with A. actinomycetemcomitans LPS [19], the levels of
TNF-α and IL-1β were also quantified using a highly sen-
sitive approach (Dissociation enhanced lanthanide fluo-
rescence immuno assay; DELFIA [see Methods]). As
shown in Fig. 2, a significant increase in both TNF-α
(10.3-fold) and IL-1β (4.2-fold) production was detected
when whole human blood was stimulated with free-solu-
ble material released from planktonic D7S cells in the cell
culture model (see Methods), relative to no bacteria con-

trols. Why this was not seen using the cytokine array (Fig.
1) is unclear. According to our findings (Fig. 2), the
increase in TNF-α and IL-1β production was less pro-
nounced in the presence of polymyxin B (PMB), which
blocks LPS activity [20]. However, there was still a clear
upregulation (4.1-fold and 1.7-fold, respectively), indica-
tive of an LPS-independent effect on TNF-α and IL-1β pro-
duction. Thus, we concluded that in addition to IL-6, IL-8
and MIP-1β, the production of TNF-α and IL-1β in whole
blood was also enhanced by the free-soluble material
released by D7S.

Free-soluble material released by A. 
actinomycetemcomitans enhances cytokine gene 
transcription in whole blood
To confirm our observations of increased production of
the above proinflammatory cytokines and chemokines in
stimulated whole blood (Fig. 1 and Fig. 2, the amount of
transcript of each gene was quantified using quantitative
real-time PCR (qRT-PCR). As indicated in Fig. 3, there was
up to 1000-fold increased transcription of each cytokine
gene when human blood was stimulated with free-soluble
material released from planktonic D7S cells relative to no
bacteria controls. Although the increase in cytokine gene
transcription was less intensive (up to 100-fold) when the
whole blood stimulation was done in the presence of
PMB (Fig. 3), each gene was still clearly upregulated, indi-
cating that this effect was also LPS-independent. We could
therefore conclude that transcription of IL-6, IL-8, MIP-
1β, TNF-α and IL-1β in whole blood was enhanced by the
free-soluble material released by D7S.

LPS-independent cytokine stimulation in whole blood: 
possible involvement of additional factors released in free-
soluble form
As the free-soluble material released by strain D7S pro-
voked proinflammatory responses in human whole blood
also independently of LPS, we investigated the possibility
that this was due to release of leukotoxin A (LtxA) and/or
cytolethal distending toxin (CDT). These immunomodu-
latory toxins were earlier shown to be extracellularly
secreted by A. actinomycetemcomitans [21,22]. To test the
contribution of LtxA and CDT we constructed a derivative
of strain D7S having both the ltxA and cdtABC gene loci
deleted (see Methods). The abolished production of LtxA
was confirmed by immunoblotting, using specific anti-
bodies (Fig. 4). According to our findings using the ex vivo
insert model for stimulation of whole blood, inactivation
of cdtABC and ltxA had no major effect. Instead, the free-
soluble material released by the D7S double mutant,
grown in planktonic form, induced a proinflammatory
response in whole blood similar to that of the parental
strain, D7S (Fig. 1A–B), i.e. production of IL-6, IL-8, and
MIP-1β was clearly enhanced (Fig. 1G) relative to no bac-
teria controls (Fig. 1F). When this experiment was carried

Induction of IL-1β and TNF-α production in human whole blood by free-soluble material released by live A. actinomyce-temcomitans cellsFigure 2
Induction of IL-1β and TNF-α production in human 
whole blood by free-soluble material released by live 
A. actinomycetemcomitans cells. DELFIA was used to 
quantify the levels of IL-1β and TNF-α in human whole blood 
after stimulation with planktonic A. actinomycetemcomitans 
strain D7S for 6 h. Serum (50% in PBS) containing no bacteria 
served as negative controls. The stimulation was done in the 
presence (+PMB) and in the absence (-PMB) of polymyxin B. 
Shown are the means and standard deviations from three 
independent experiments (P < 0.05).
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Induction of cytokine gene transcription in human whole blood by free-soluble material released by live A. actinomycetemcomi-tans cellsFigure 3
Induction of cytokine gene transcription in human whole blood by free-soluble material released by live A. 
actinomycetemcomitans cells. qRT-PCR was used to quantify the levels of IL-1β, IL-6, IL-8, MIP-1β, and TNF-α mRNA in 
human whole blood after stimulation with planktonic A. actinomycetemcomitans strain D7S for 6 h. The stimulation was done in 
the presence (+PMB) and in the absence (-PMB) of polymyxin B. Shown is the increase (fold change) of each cytokine mRNA in 
whole blood stimulated with strain D7S relative to no bacteria controls (50% serum in PBS) from two separate experiments (P 
< 0.05).
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out in the presence of PMB (Fig. 1H) to inhibit LPS activ-
ity, the production of these cytokines was still induced rel-
ative to no bacterial controls (Fig. 1F), again indicating
LPS-independent stimulation. However, the cytokine
stimulation was less intensive, compared to when PMB
was absent (Fig. 1G). Lack of contribution of LtxA and
CDT to cytokine stimulation in human whole blood is
consistent with the absence of these toxins in the filtrates
released by strain D7S to PBS, which was also confirmed
by immunoblotting (Fig. 4 and data not shown).

As PAL was identified in the free-soluble material released
by both D7S and D7SS [17](Fig. 4), a pal mutant deriva-
tive (D7SS-p) was subsequently tested in the ex vivo
model. According to our results, the free-soluble material
released by planktonic D7SS-p induced a cytokine

response in whole blood very similar to that of the paren-
tal strain, D7SS (data not shown). These findings together
suggest that other factor(s) released in free-soluble form
by A. actinomycetemcomitans may be involved in the induc-
tion of proinflammatory responses in whole blood.

GroEL-like protein is a major protein released in free-
soluble form by A. actinomycetemcomitans D7S
To obtain more information about the free-soluble pro-
teins secreted by A. actinomycetemcomitans, we used the
cell culture insert model with PBS instead of serum/whole
blood (see Methods). Plating revealed no apparent death
of A. actinomycetemcomitans cells, or contamination in the
wells (data not shown). As in our previous studies using
the insert model [17], the absence of A. actinomycetemcom-
itans cell lysis in the wells during the experiments was con-
firmed by immunoblot analysis of filtrates, using an
antiserum raised against the cytoplasmic protein, CRP
(Fig. 4). SDS-PAGE analysis of filtrates from D7S and
D7SS, grown both planktonic and in biofilm form (Fig.
5A), revealed several bands after Silver staining. Finding
similar band profiles of material released through the 20
nm pores of the inserts from both D7S and D7SS is in
accordance with the cytokine induction by these strains as
determined by the present antibody array (Fig. 1).

Since our results hitherto obtained with D7S and D7SS
were very similar with each other, we continued our anal-
yses mainly using filtrates from D7S. As shown in Fig. 5B,
two major protein bands could be detected in filtrates
from D7S, by using Coomassie staining. These bands rep-
resented proteins of approximate molecular masses of 60
and 15 kDa, respectively. Bands of these sizes (Fig. 5C and
data not shown) were also obtained with immunoblot
analysis of the D7S filtrates, using an antiserum raised
against whole-cell antigen of A. actinomycetemcomitans
serotype a. Our previous results show that this antiserum
reacts to multiple epitopes in A. actinomycetemcomitans
[23]. Our current findings (Fig. 5C) therefore suggest that
the 60 and 15 kDa-proteins are the two major protein
antigens released in free-soluble form under the present
conditions. As the 15 kDa-protein band was not detected
in filtrates from the pal-deficient strain D7S-p (Fig. 5B), we
concluded that this protein band represents PAL. This was
consistent with immunoblotting (Fig. 4 and data not
shown).

To determine the identity of the 60 kDa protein we used
MALDI-TOF-MS, which identified A. actinomycetemcomi-
tans GroEL-like protein (Hsp60; Cpn60) (Swiss-Prot entry
P46398). The release of GroEL-like protein in free-soluble
form to PBS by both planktonic and biofilm D7S was con-
firmed using immunoblotting and an antiserum raised
against E. coli GroEL (Fig. 4). According to SDS-PAGE (Fig.
5), the pal-deficient strain D7S-p released a higher amount

Immunoblot detection of proteins released in free-soluble form by biofilm and planktonic A. actinomycetemcomitans strains, using polyclonal antisera raised against LtxA, PAL, GroEL, and CRP (lysis marker), respectivelyFigure 4
Immunoblot detection of proteins released in free-
soluble form by biofilm and planktonic A. actinomyce-
temcomitans strains, using polyclonal antisera raised 
against LtxA, PAL, GroEL, and CRP (lysis marker), 
respectively. Proteins released from strain D7S to PBS 
through the 20 nm filters of the inserts were collected after 
6 h of incubation and a concentrated sample (denoted 1) 
equal to 0.75 ml filtrate was applied on the gels where indi-
cated. The following whole cell preparation samples (10 μg 
protein each) were loaded as controls where indicated: 2. 
D7S, 3. D7S ΔcdtABC/ltxA, and 4. JP2 (high producer of LtxA 
[56]). The sizes of the proteins (kDa) in the prestained 
molecular weight marker (M) are indicated. The reactive 
band corresponding to each protein is indicated with an 
arrow.
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of GroEL-like protein than the parental strain. This obser-
vation is consistent with the role of the Tol-Pal complex in
maintaining outer membrane integrity [24,25]. Taken
together, we could conclude that GroEL-like protein is a
major protein released in free-soluble form by A. actino-
mycetemcomitans D7S.

Release of free-soluble material with proinflammatory 
effect by E. coli O18
To assess the specificity of our present findings to A. actin-
omycetemcomitans, the ex vivo culture insert model (Meth-

ods), controlled as above (Fig. 6 and data not shown), was
used to stimulate human whole blood with free-soluble
material released from planktonic E. coli strain IHE3034
(serotype O18:K1:H7). As shown in Fig. 7A–C, there was
a clear stimulation of IL-6, IL-8, and MIP-1β relative to no
bacterial controls, indicative of a proinflammatory effect
in whole blood caused by the E. coli free-soluble material.
This observation is in accordance with previous studies
using E. coli strains J5 and 789 (serotypes O18:K1:H7 and
O78, respectively) [14,15], which demonstrated the
release of Outer Membrane Protein A (OmpA), a prime
target of the host immune system [26,27]. The release of
OmpA in free-soluble form to PBS by planktonic IHE3034
was confirmed using immunoblotting and an antiserum
against OmpA (Fig. 6). OMV-independent secretion of

SDS-PAGE analysis of proteins released in free-soluble form by biofilm and planktonic A. actinomycetemcomitans D7S, its isogenic pal mutant (D7S-p), or D7SS, detected by Silver-staining (panel A), by Coomassie blue-staining (panel B), and by immunoblotting using an antiserum raised against whole cell antigen of A. actinomycetemcomitans serotype a (panel C)Figure 5
SDS-PAGE analysis of proteins released in free-solu-
ble form by biofilm and planktonic A. actinomycetem-
comitans D7S, its isogenic pal mutant (D7S-p), or 
D7SS, detected by Silver-staining (panel A), by 
Coomassie blue-staining (panel B), and by immunob-
lotting using an antiserum raised against whole cell 
antigen of A. actinomycetemcomitans serotype a 
(panel C). Proteins released to PBS through the 20 nm fil-
ters of the inserts were collected after 6 h of incubation. 
Concentrated samples equal to 1.5 ml filtrate were applied in 
each well for Silver- and Coomassie blue-staining, and equal 
to 0.75 ml for immunoblotting. Protein bands corresponding 
to GroEL and PAL are indicated with arrows. The sizes of 
the proteins (kDa) in the prestained molecular weight 
marker (M) are indicated.

Immunoblot detection of proteins released in free-soluble form by planktonic E. coli strain IHE3034, using polyclonal antisera raised against OmpA, GroEL, and CRP (lysis marker), respectivelyFigure 6
Immunoblot detection of proteins released in free-
soluble form by planktonic E. coli strain IHE3034, 
using polyclonal antisera raised against OmpA, 
GroEL, and CRP (lysis marker), respectively. Proteins 
released to PBS through the 20 nm filters of the inserts were 
collected after 6 h of incubation and a concentrated sample 
(denoted 1) equal to 0.75 ml filtrate was applied on the gels 
where indicated. Whole cell preparation samples (denoted 2; 
10 μg protein each) of strain IHE3034 were loaded as con-
trols where indicated. The sizes of the proteins (kDa) in the 
prestained molecular weight marker (M) are indicated. The 
reactive band corresponding to each protein is indicated with 
an arrow.
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OmpA by E. coli is consistent with subcellular localization
studies, finding OmpA in the fraction of soluble secreted
proteins in addition to vesicles [14]. In contrast to OmpA,
GroEL was absent from these filtrates (Fig. 6). This is in
agreement with the cytoplasmic localization of GroEL and
its presence in OMVs released by E. coli [28]. Our results
therefore show that release of free-soluble surface material
with proinflammatory effects in human whole blood is
not restricted to A. actinomycetemcomitans.

Discussion
Our present findings using an experimental setup (cell
culture insert model) designed to exclude the presence of
OMV and bacterial death or lysis in the samples, demon-
strated that A. actinomycetemcomitans biofilms can release

free-soluble surface material. This is consistent with our
previous results showing extracellular release of free-solu-
ble surface material (LPS and various proteins) from live
planktonic A. actinomycetemcomitans cells [17]. This appar-
ently novel, yet uncharacterized mechanism to release sol-
uble material from biofilm to the surrounding
environment could be of significance in periodontal
pockets, where the biofilm life-form provides persistent
bacterial colonization on tooth surfaces. Our present
results on E. coli show (Fig. 6, 7), however, that release of
free-soluble surface material is not restricted to A. actino-
mycetemcomitans, but may differ between bacteria.

By employing the cell culture insert model, we also
showed that the released free-soluble material not only
from planktonic but also from biofilm A. actinomycetem-
comitans promoted proinflammatory responses in blood,
i.e. IL-1β, IL-6, IL-8, MIP-1β and TNF-α (Fig. 1, 2, 3). This
is in agreement with our previous results showing that in
addition to elevated serum antibody response to perio-
dontal pathogens in periodontitis patients [29,30], puri-
fied A. actinomycetemcomitans components induced
proatherogenic (foam cells) and/or proinflammatory
(cytokines) responses from murine macrophages [31] as
well as production of proinflammatory cytokines and
chemokines (IL-6, IL-8, and MIP-1β) from human whole
blood [17].

The number of live bacteria (1–4 × 108/ml serum) in the
present ex vivo model exceeded the expected blood con-
centrations of cultivable bacteria in chronic infections. In
serious acute infections the circulating bacterial concen-
trations appear to be substantially higher by DNA-based
than by culture methods as exemplified by a study on
meningitis: Neisseria meningitidis genome copy density in
blood samples ranged from 104 to 108/ml in patients'
blood, although it is likely that these figures also con-
tained dead bacteria [32]. On the other hand, in biofilms
bacteria can grow in numbers comparable to our test inoc-
ulum [33] and they may release free-soluble material to
surrounding tissues or circulation on long-term basis.

Although a substantial stimulatory effect on the produc-
tion of proinflammatory cytokines in blood was due to
LPS, there also was a marked LPS-independent stimula-
tion, which prompted us to also survey the contents of the
released free-soluble material. A. actinomycetemcomitans
has previously been shown to extracellularly secrete two
toxins with immunomodulatory activity, leukotoxin A
(LtxA) and cytolethal distending toxin (CDT) [21,22]. To
assess the contribution of these toxins to cytokine stimu-
lation in whole blood we constructed and tested a novel
ltxA cdtABC double-deletion mutant derived from a clini-
cal isolate, A. actinomycetemcomitans strain D7S. However,
as the free-soluble material released from the double

Cytokine induction in human whole blood by free-soluble material released by live E. coliFigure 7
Cytokine induction in human whole blood by free-
soluble material released by live E. coli. A cytokine anti-
body array was used to detect cytokines produced by human 
whole blood after stimulation for 6 h with free-soluble mate-
rial released from planktonic E. coli IHE3034 (panel a), com-
pared with a corresponding negative control (serum [50% in 
PBS] containing no bacteria) (panel b). The experiment was 
carried out in the presence of polymyxin B (PMB). The loca-
tions of cytokine antibodies and positive (pos) and negative 
(neg) controls on the array are indicated (panel c).
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mutant had a stimulatory activity, very similar to that
secreted from the wildtype strain (Fig. 1), we concluded
that released components other than these toxins are
likely to be of greater significance. This observation is con-
sistent with our present immunoblot analyses suggesting
the absence of LtxA and CDT from D7S filtrates (released
to PBS). The lack of LtxA in the filtrates could be a com-
bined result of low levels of leukotoxin produced by D7S
under the experimental conditions used (Fig. 4), and of
the association of leukotoxin with OMV [34]. It is possible
that this could be the case also for CDT, analogous with
its association with OMV in E. coli [28]. In line with our
previous findings using planktonic A. actinomycetemcomi-
tans [17], the outer membrane lipoprotein, PAL, was also
released in free-soluble form from biofilms (Fig. 4). How-
ever, similarly to LtxA and CDT, we did not see a contribu-
tion of PAL to cytokine stimulation by using cytokine
antibody arrays, i.e. inactivation of pal had no apparent
effect in this experimental setup. This is in contrast to our
previous findings that purified PAL stimulated proinflam-
matory cytokines in whole blood [17]. This discrepancy
from the present whole-cell experiment might be a result
of enhanced release of LPS in the pal deficient mutant
strain [17].

In addition to having a crucial role in protein-folding,
vital for cell survival during stress [35,36], GroEL (Hsp60;
Cpn60)-like proteins from several bacteria, including A.
actinomycetemcomitans, can activate a plethora of mamma-
lian cells, including macrophages, keratinocytes and peri-
odontal ligament epithelial cells [37-41]. Interestingly,
our MALDI-TOF-MS and immunoblot results (Fig. 4, 5)
revealed that both bacterial phenotypes, biofilm-form
and planktonic A. actinomycetemcomitans, released signifi-
cant amounts of GroEL-like protein in free-soluble form.
This observation is consistent with previous studies in
which GroEL-like protein was localized to the surface of A.
actinomycetemcomitans [37,42], as in several other bacteria,
e.g. Borrelia burgdorferi, Helicobacter pylori, Haemophilus
ducreyi, and Legionella pneumophila [43-48]. This supports
the previously postulated hypothesis that bacterial GroEL-
like proteins may act as direct cell-to-cell virulence factors
for host cells [49], albeit the release mechanism is not yet
understood. Furthermore, due to the molecular mimicry,
the immune response to bacterial GroEL could crossreact
with human Hsp60 expressed on endothelial cells, lead-
ing to inflammatory reactions. This is supported by find-
ing bacterial GroEL within atherosclerotic lesions in close
association with activated inflammatory cells [50], adding
further evidence to the involvement of persistent infec-
tions such as periodontitis, with atherosclerosis. However,
the specific contribution of GroEL to the proinflamma-
tory responses induced in human whole blood would be
difficult to assess as this protein is essential for bacterial
growth [51]. It also appears to copurify with LPS, suggest-

ing a physical association between these two molecules
[52,53]. Analogous to this, it was recently demonstrated
that human Hsp60 bound bacterial LPS and synergisti-
cally enhanced LPS-induced innate and adaptive immune
responses [54]. Thus, the exact nature of the released
material that lead to the LPS-independent proinflamma-
tory effects in whole blood is yet to be identified.

Taken together, our present data support that, if entered
into the blood circulation, the free-soluble material
released from A. actinomycetemcomitans has potential to
induce proinflammatory responses that are considered
important in atherogenesis and used as biomarkers of an
elevated risk of cardiovascular events [55]. Within the lim-
itations of our single-species biofilm experiments, we sug-
gest that the release of free-soluble bacterial material from
live subgingival biofilms may be a crucial mechanism
how chronic inflammation in tooth-supporting tissues is
perpetuated and systemic dissemination and immunos-
timulation are sustained. After entering the parenteral
space through the ulcerated periodontal pocket epithe-
lium, free-soluble material may readily gain access into
the abundant blood/lymph vascular network immedi-
ately under the epithelium, which then opens the route
for systemic spread. The hypothesis of the release of free-
soluble surface material by live biofilm bacteria, inde-
pendent of OMV, is new, and although not restricted to
oral microorganisms (Fig. 6, 7), it may help extending the
knowledge of mechanisms for the host's exposure to path-
ogenic material originating from the bacterial biofilm in
this unique nonparenteral ecological habitat. The next
step involves testing the hypothesis in in vivo models due
to the obvious restrictions in simulating responses to cir-
culating bacterial material by using blood without knowl-
edge of other immunoinflammatory responses of the
challenged host.

Conclusion
Our present study demonstrates that A. actinomycetemcom-
itans, grown in biofilm and planktonic form, releases free-
soluble surface material independent of outer membrane
vesicles, and that this material induces proinflammatory
responses in human whole blood. Our findings therefore
suggest that release of surface components from live bac-
terial cells could constitute a mechanism for systemic
stimulation and be of particular importance in chronic
localized infections, such as periodontitis.

Methods
Bacterial strains and culturing conditions
A. actinomycetemcomitans serotype a strains D7S (rough
colony type) and D7SS (smooth colony type), their corre-
sponding PAL-deficient mutants, D7SS-p [23] and D7S-p
[17], strain D7S Δltx/cdt (this work), and the leukotoxin
highly producing strain, JP2 [56], were all cultured on
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blood agar plates (5% defibrinated horse blood, 5 mg
hemin/l, 10 mg Vitamin K/l, Columbia agar base) incu-
bated in air supplemented with 5% CO2, at 37°C for 3 d
as previously described [17]. Escherichia coli IHE3034
(serotype O18:K1:H7) isolated from meningitis [57] was
cultivated 16–18 h on blood agar as described above. For
biofilm growth, 2 × 108 bacterial cells were inoculated in
2 ml tryptic soy broth (Difco) in 24-well cell culture plates
(Nunc), which were incubated in static culture in air sup-
plemented with 5% CO2, at 37°C for 3 d. Biofilms were
stained with crystal violet as previously described [58] and
the amount of bound dye, which is proportional to the
biofilm mass was quantitated by measuring its absorb-
ance at 590 nm.

Construction of markerless mutations
The D7S ltxA cdtABC markerless double-deletion mutant
was constructed using the Cre/loxP recombination system,
as described previously [59]. In brief, two DNA fragments
flanking the target deletion site were generated by PCR
and cloned into upstream and downstream loxP sites of
the vector pLox2-Spe [59], which carries a Spe-resistance
(SpeR) cassette flanked by loxP sites. The recombinant
plasmid was subsequently introduced into strain D7S,
using natural transformation [60], selecting for spectino-
mycin-resistant transformants. The replacement of the tar-
get gene with loxP-Spe cassette-loxP was confirmed by PCR
sequencing. The Spe cassette in the transformants was
then removed by introducing the plasmid pAT-Cre [61],
carrying the Cre recombinase. The removal of the Spe cas-
sette was also confirmed by DNA sequence analysis. The
resultant mutants had the cdtABC operon replaced by a
loxP site spacer AGATCTGC, and the ltxA gene replaced by
a loxP site with spacer ATGTATAC. This double-deletion
strain construct was confirmed by PCR analysis, using the
primer pairs CDT1 (5'-GGAGGCGATAACTCTACAT-
CAGG-3') and CDT2 (5'-GTGTCACGTCGT-
CAAGCCGATG-3'), and LTX1 (5'-
CTACTACGGGACCTGTCGCAGG-3') and LTX2 (5'-CCG-
GCTTTAGTAGCATTACGACCG-3'), respectively.

Whole blood stimulation
All procedures were conducted in accordance with the
guidelines of the local ethics committee at the Medical
Faculty of Umeå University, which are in compliance with
the Declaration of Helsinki (59th WMA General Assembly,
Seoul, October 2008). Blood was drawn from a healthy
volunteer, after informed consent, from antecubital vein
into blood collection tubes containing heparin (BD Bio-
sciences). A cell culture insert model, described previously
[17], was then used to expose the whole blood to free-sol-
uble components released by live A. actinomycetemcomi-
tans and E. coli cells. For whole blood stimulation using
planktonic bacteria, bacterial cells (final concentration 1
× 108 CFU/ml) were suspended in serum (50% in PBS),

separated from the same whole blood. The bacterial sus-
pension (500 μl) was then added to cell culture inserts of
pore size 20 nm (Nunc). The inserts were placed into the
wells of a 24-well cell culture plate (Nunc), containing
500 μl whole blood. Serum (50% in PBS) containing no
bacteria served as a negative control. The cell culture plate
was subsequently incubated for 6 h at 37°C in air supple-
mented with 5% CO2.

For whole blood stimulation using biofilm bacteria, A.
actinomycetemcomitans biofilms (grown 3 d in 24-well cell
culture plates; approximately 2 × 108 CFU) were gently
washed with PBS and then 500 μl serum (50% in PBS)
was added to the wells. Human blood (500 μl) was then
added to cell culture inserts of pore size 20 nm (Nunc),
which were placed into the wells with biofilm. The cell
culture plate was subsequently incubated as above. When
indicated, experiments were performed with PMB (final
concentration: 30 μg/ml), an inhibitor of LPS activity
[20], to roughly estimate the extent of LPS-independent
cytokine stimulation. Similarly to other authors [62], we
did not use heat treatment of samples as this has been
shown to reduce the cytokine-inducing activity of LPS [63-
65].

For RNA isolation from stimulated whole blood, 100 μl
blood was removed from the wells after 6 h of incubation
and processed as described below. The remaining volume
(400 μl) of stimulated whole blood was centrifuged 5 min
at 5000 × g. Supernatants were stored at -80°C until
cytokine analysis and profiling (see below).

The cell culture insert model was controlled for viability of
the bacteria, absence of bacterial lysis, and the absence of
bacterial contamination of the material released through
the insert filters (filtrates) as described previously [17]. In
brief, aliquots from within and outside the inserts were
plated on blood agar plates, which were incubated as
above for 3 d. Filtrates were also analyzed with immuno-
blotting, using an antiserum raised against the cytoplas-
mic protein cyclic AMP receptor protein (CRP). Biofilm
integrity was confirmed by crystal violet staining as
described previously [66] and also by plating aliquots
taken from above the biofilms on blood agar.

Analysis of free soluble proteins released by live A. 
actinomycetemcomitans and E. coli cells
For this, the cell culture insert model was employed and
controlled as described above, however with the excep-
tion that PBS was used instead of serum or blood. After 6
h of incubation at 37°C in air supplemented with 5%
CO2, filtrates were collected and precipitated with acetone
(80% final concentration) prior to SDS-PAGE analysis.
Selected protein bands after Coomassie blue staining were
subject to MALDI-TOF-MS analysis at the Umeå Protein
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Analysis Facility, Department of Chemistry, Umeå Uni-
versity.

SDS-PAGE and Western immunoblotting
The procedures employed for SDS-PAGE and immunob-
lot analysis have been described previously [23]. For
immunoblots we used the following polyclonal antibod-
ies raised in rabbits against A. actinomycetemcomitans LtxA
[67] and PAL [68], E. coli GroEL (Sigma-Aldrich), E. coli
OmpA [69], H. ducreyi Cdt [70], V. cholerae CRP [71], and
against whole cells of A. actinomycetemcomitans serotype a
[72]. Antisera were used at final dilutions of 1:1000,
except for the antisera raised against GroEL (1:8000), PAL
(1:10000), and OmpA (1:10000). Horseradish peroxi-
dase-conjugated anti-rabbit secondary antibodies were
used at a final dilution of 1:10000. Immunoreactive
bands were visualized using SuperSignal® (Pierce, Rock-
ford, IL, USA).

Quantification of cytokine production
To obtain a profile of the cytokines produced by human
whole blood after stimulation with released free-soluble
bacterial material, a cytokine antibody array (TranSignal™
Human Cytokine Antibody Array 1.0; Panomics, Red-
wood City, CA, USA), allowing simultaneous detection of
the levels of 18 cytokines, was used according to instruc-
tions from the manufacturer. Dissociation enhanced lan-
thanide fluorescence immuno assay [73] was used for the
quantification of the amounts of IL-1β and TNF-α pro-
duced by human whole blood. For this, 96-well microtiter
plate wells were coated with capture-antibodies against
human IL-1β and TNF-α (200 ng/well) and incubated
overnight at 4°C with shaking. The wells were washed
with DELFIA wash buffer twice and saturated with 1.5%
BSA in water for 6 h at RT. The wells were then washed
twice with 0.9 M NaCl and stabilized at RT for 15 h. Sam-
ples and the standards (recombinant IL-1β and TNF-α, e-
Bioscience), each in triplicates, were added to the wells
and incubated at RT for 1 h. After washing as above twice,

detection antibodies against human IL-1β (Europium-
labelled) and TNF-α (Samarium-labelled) were added to
the wells (200 ng/well) and incubated at RT for 1 h. The
wells were subsequently washed six times as above, and
then 200 μl DELFIA enhancement solution was added to
each well and the plates were incubated at RT on a shaker
for 15 min. Europium and Samarium signals were meas-
ured using a multilabel reader (Victor3, Perkin Elmer).

Quantitative real-time PCR analysis
Total RNA from whole blood was isolated from two sepa-
rate stimulation experiments, using the RiboPure™-Blood
kit (Ambion Inc.) according to instructions of the manu-
facturer. Quantitative real-time PCR was performed using
the 7900HT Real-time PCR system (Applied Biosystems).
Concentration of RNA was determined by measuring the
absorbance at 260 nm. One μg of total RNA was converted
to cDNA using Transcriptor First Strand cDNA Synthesis
Kit (Roche) according to instructions from the manufac-
turer. Each qRT-PCR reaction (final volume 5 μl) was run
in triplicates, containing 1× SYBR® Green PCR Master Mix
(Applied Biosystems), and with the cDNA diluted 100×
(1000× in addition to assess PCR efficiency). The
sequences and final concentrations of the forward and
reverse oligonucleotide primers used in qRT-PCR are indi-
cated in Table 1. The qRT-PCR data were normalized to an
endogenous control (β-actin).

Statistical analysis
Unless otherwise stated all experiments were repeated
three times. Mann-Whitney U test was used to assess the
statistical significance of differences between experimen-
tal and control treatment of whole blood, observed using
DELFIA and qRT-PCR. P-values of less than 0.05 were
regarded as statistically significant.
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PCR setup, research supervision, data analysis and inter-

Table 1: Oligonucleotides used in the qRT-PCR reactions

mRNA target Oligonucleotide (F: forward; R: reverse) Final concentration (nM) Amplicon length (bp) Source

β-actin F: 5'-GGATGCAGAAGGAGATCACTG-3' 300 90 [74]
R: 5'-CGATCCACACGGAGTACTTG-3' 300

IL-1β F: 5'-ACAGATGAAGTGCTCCTTCCA-3' 300 73 [74]
R: 5'-GTCGGAGATTCGTAGCTGGAT-3' 300

IL-6 F: 5'-ACAGCCACTCACCTCTTCAG-3' 300 120 This work
R: 5'-GTGCCTCTTTGCTGCTTTCAC-3' 300

IL-8 F: 5'-GAACTGAGAGTGATTGAGAGTGGA-3' 900 134 [75]
R: 5'-CTCTTCAAAAACTTCTCCACAACC-3' 300

MIP-1β F: 5'-CCAAACCAAAAGAAGCAAGC-3' 900 311 [76]
R: 5'-AGAAACAGTGACAGTGGACC-3' 300

TNF-α F: 5'-CCCAGGGACCTCTCTCTAATC-3' 300 84 [74]
R: 5'-ATGGGCTACAGGCTTGTCACT-3' 300
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