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Abstract

Background: Thiamine triphosphate (ThTP) exists in most organisms and might play a role in
cellular stress responses. In E. coli, ThTP is accumulated in response to amino acid starvation but
the mechanism of its synthesis is still a matter of controversy. It has been suggested that ThTP is
synthesized by an ATP-dependent specific thiamine diphosphate kinase. However, it is also known
that vertebrate adenylate kinase | catalyzes ThTP synthesis at a very low rate and it has been
postulated that this enzyme is responsible for ThTP synthesis in vivo.

Results: Here we show that bacterial, as vertebrate adenylate kinases are able to catalyze ThTP
synthesis, but at a rate more than 10¢-fold lower than ATP synthesis. This activity is too low to
explain the high rate of ThTP accumulation observed in E. coli during amino acid starvation.
Moreover, bacteria from the heat-sensitive CV2 strain accumulate high amounts of ThTP (>50% of
total thiamine) at 37°C despite complete inactivation of adenylate kinase and a subsequent drop in
cellular ATP.

Conclusion: These results clearly demonstrate that adenylate kinase is not responsible for ThTP
synthesis in vivo. Furthermore, they show that E. coli accumulate large amounts of ThTP under
severe energy stress when ATP levels are very low, an observation not in favor of an ATP-
dependent mechanisms for ThTP synthesis.

Background

Thiamine (vitamin B1) is an essential compound for all
known life forms. The well-known cofactor thiamine
diphosphate (ThDP) [1] is the major form of thiamine in
most cell types. Thiamine monophosphate (ThMP) and
free thiamine, which have no known physiological func-
tion, account for only a few percent of the total thiamine
content. Thiamine triphosphate (ThTP) is generally a

minor component but it has been found in most organ-
isms, from prokaryotes to mammals [2]. In vertebrates,
ThTP has been found to activate a large conductance
anion channel [3] and to phosphorylate certain proteins
[4], suggesting that it may be involved in a new cellular
signaling pathway.
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In animal tissues, cellular concentrations of ThTP gener-
ally remain relatively constant and low (0.1 to 1 uM). In
contrast, in the enterobacterium E. coli, ThTP content
strongly depends on environmental conditions. ThTP is
nearly undetectable in rich LB medium, but in minimal
medium devoid of amino acids, the addition of a carbon
source such as glucose or pyruvate induces a rapid accu-
mulation of ThTP and its intracellular concentration may
transiently exceed 10 uM [5]. Overexpression in E. coli of
a specific soluble mammalian thiamine triphosphatase
(ThTPase), that we previously characterized [6-8], pre-
vented ThTP accumulation and induced the appearance of
an intermediate plateau in bacterial growth [5]. This sug-
gested that ThTP may be required for the rapid adaptation
of bacteria to amino acid starvation. On the other hand,
when the bacteria were incubated in minimal medium
devoid of any carbon source, we noticed the appearance
of a new compound that was identified as adenosine thi-
amine triphosphate (AThTP) [9]. Interestingly, ThTP and
AThTP never accumulate simultaneously in high
amounts, suggesting that the two compounds may act as
specific alarmones, responding to different conditions of
cellular stress.

While AThTP is synthesized according to the recently
established reaction ThDP + ADP (ATP) < AThTP + P;
(PP;) [10], the enzymatic mechanism of ThTP synthesis
remains unclear. It has been shown that vertebrate ade-
nylate kinase 1 (AK1, myokinase, EC 2.7.4.3) catalyzes the
synthesis of ThTP at a low rate according to the reaction
ThDP + ADP < ThTP + AMP [11]. Although, the in vivo
synthesis of ThTP by AK1 was shown to occur in chicken
skeletal muscle [12], we have found that AK1 knockout
mice have normal ThTP levels (even in skeletal muscle).
This suggests that ThTP synthesis by AK1 is not of physio-
logical relevance in mammals [13], which does not rule
out that other mammalian AK isoforms [14] may be
responsible for ThTP synthesis. Here we show that two
bacterial AKs are able to catalyze ThTP synthesis at a low
rate but our data strongly suggest that this enzyme is not
responsible for the in vivo accumulation of ThTP in E. coli
in response to amino acid starvation.

http://www.biomedcentral.com/1471-2180/8/16

Results and Discussion

We have previously reported [5] that when E. coli cells are
transferred to a minimal medium containing glucose,
they accumulate ThTP at a high rate (about 100 pmol per
mg protein in 10 min). As AK is a possible candidate for
catalyzing ThTP synthesis, it is important to determine
whether bacterial AKs are able to catalyze this reaction
and, if they do, to know whether the specific activity of, in
particular, E. coli AK is sufficient to account for the rela-
tively high rate of ThTP production measured in vivo in
this organism.

We first tested the ability of commercially available AK
from B. stearothermophilus to synthesize ThTP from
ThDP and ADP. The enzyme was indeed able to catalyze
this reaction at a rate of 0.2 pmol ThTP formed per min
per mg protein under our assay conditions. For the physi-
ological reaction 2 ADP < ATP + AMP, we found 1.8
pmol min! mg!. Thus, ThTP synthesis by this enzyme is
107 times slower than ATP synthesis (Table 1).

E. coli has only one AK isoform [15]. We overexpressed
this protein in E. coli BL21 ADE3 under the control of the
lac operon. As shown in Fig. 1A, the transformed bacteria
produced high amounts of AK after induction by IPTG. At
the same time, the ATP-synthesizing activity of E. coli AK
was increased about 1000-fold (from 67 nmol min-! mg!
to over 50 umol min-! mg1!) in cell-free extracts. We also
observed that these bacteria began to accumulate ThTP
shortly after addition of IPTG (Fig. 1B), suggesting that
ThTP synthesis is a direct consequence of AK overexpres-
sion. After 3 hours, the [ThTP]/[ThDP] ratio reached a rel-
atively high value around 0.55.

However, it is important to emphasize that in contrast to
the normal BL21 strain, which accumulates ThTP only in
the presence of glucose in amino acid-depleted medium,
E. coli overexpressing AK accumulated ThTP in rich LB
medium and glucose was not required. Furthermore,
IPTG did not induce ThTP synthesis in control bacteria
carrying an empty plasmid (not shown). These results sug-
gest that E. coli AK constitutively synthesizes ThTP and
that there is no physiological control of this reaction. The
present results are very similar to those of Shioda et al.

Table I: Comparison of ThTP- and ATP-synthesizing activity of adenylate kinases from various sources.

Sources ThTP synthesis (pmol min-! mg-!) ATP synthesis (pmol min-! mg ') Ratio ATP/ThTP
AK B. stearothermophilus? 0.2 (pH 6.5) 1.8 x 106 9 x |08
AK E. colid 35 137 x 106 3.9 x 106
AK pig skeletal muscleb 570 1055 x 106 1.8 x 106
AK chicken skeletal musclec 60 155 x 106 2.6 x 106
Ibid. 265 (pH 10) I55 x 108 0.6 x 106

ThTP synthesis was measured at pH 7.5, except when indicated, as described in the Methods section. The assays for ATP synthesis were done at pH

7.5. 2, this study; b, [ 1]; <, [16]
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Overexpression of E. coli AK induces cellular ThTP accumulation. Overexpression of E. coli AK induces cellular
ThTP accumulation. Strain BL21 ADE3 bacteria carrying pET-21a(+) with the E. coli AK cDNA were grown ovenight in LB
medium in the presence of ampicillin (I mg/ml). The cultures were diluted until Ay, = 0.6 — 0.8 and the bacteria were grown in
the absence or presence of IPTG (I mM) for 3 h (37°C, 250 rpm). The bacteria were sonicated, centrifuged and the superna-
tant was used for electrophoresis (A) and ThTP estimation (B). (A) The presence of a band corresponding to AK was checked
on a 12% SDS-PAGE followed by Coomassie blue staining (a, lanes 2, 3 without IPTG and lanes 4, 5 with IPTG). Lanes | and 6
contain the molecular weight markers (Prestained Protein Ladder, Invitrogen). Overexpessed protein migrated at M, 25 000
(arrowhead) for a theoretical molecular mass of 23559 based on amino acid composition [|5]. (B) Effect of E. coli AK overex-
pression on the intracellular [ThTP])/[ThDP] ratio. Aliquots were taken at various times for the determination of thiamine
derivatives. The results are expressed as mean *+ SD for 3 experiments. At the same time ATP synthesizing activity of AK

increased by a factor 1000 in cell-free extracts (not shown).

[16] who overexpressed chicken AK1 in E. coli and also
observed an important accumulation of ThTP after induc-
tion by IPTG in rich LB medium. We measured the ThTP-
synthesizing activity of the overexpressed bacterial AK in
vitro, in the supernatant obtained after sonication and
centrifugation of the bacteria. Under our assay conditions
the rate was 35 pmol min! mg!, while the rate of ATP syn-
thesis was 137 pmol min-! mg!. Thus, ThTP synthesis cat-
alyzed by E. coli AK is over 6 orders of magnitude slower
than ATP synthesis (Table 1). A similar ratio between
ThTP and ATP synthesis was also previously reported for
porcine [11] and chicken AK1 [16] and for B. stearother-
mophilus AK (this study).

We conclude that the three types of AK investigated (AK1
from vertebrates, AK from B. stearothermophilus and AK
from E. coli) are able to catalyze ThTP synthesis from
ThDP and ADP, but the reaction is over 10° times slower
than ATP synthesis. It is thus possible that the catalysis of
ThTP synthesis is a general property of AKs, but this reac-
tion is not likely to be of physiological importance.

It is interesting to compare the rate of ThTP synthesis by
AKs in vitro with the maximum rate observed in vivo. The
latter is about 10 pmol min! mg! [5] for normal BL21
bacteria in minimal medium containing 10 mM glucose.

In cell-free extracts from BL21 bacteria, we found that the
specific activity for AK-catalyzed ATP synthesis was 67
nmol min-! mg!. Assuming that the rate of ThTP synthesis
is 10¢ times lower, it would be about 0.05 - 0.10 pmol
min! mg!, two orders of magnitude lower than the accu-
mulation measured in vivo. But after induction by IPTG,
AK expression is increased about 1000-fold (Fig. 1A),
largely enough to account for the observed ThTP accumu-
lation (Fig 1B). However, the ThTP-forming activity of
bacterial AK appears to be constitutive and to escape phys-
iological control. Nevertheless, it could still be argued that
bacterial AK is responsible for ThTP synthesis in vivo if
one assumes that the enzyme can be activated (>100-fold)
by some unknown factor(s).

The following experiment strongly suggests that a differ-
ent, AK-independent mechanism is responsible for ThTP
synthesis in E. coli. We used the CV2 strain [15,17] con-
taining a heat-sensitive AK. CV2 E. coli grow normally at
the permissive temperature (25 - 30°C) but shifting them
to 37°C leads to a rapid inactivation of AK and the subse-
quent drop in energy charge (from 0.9 to 0.2, [18]), caus-
ing a progressive decrease in the number of viable cells. As
shown in Fig. 2A, CV2 bacteria grown at 25°C respond
normally by producing ThTP when they are transferred to
minimal medium containing glucose. However, high
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Figure 2

Effect of AK inactivation in the heat-sensitive E. coli
strain CV2 on the intracellular ThTP and ThDP con-
centrations. Effect of AK inactivation in the heat-sensitive
E. coli strain CV2 on the intracellular ThTP and ThDP con-
centrations. The bacteria were grown at 25°C in LB medium,
suspended in minimal M9 medium and preincubated for four
hours either at 25°C (A) or at 37°C (B). After 60 min at
37°C, no significant AK activity was detectable, while it
remained high at 25°C (not shown). Then glucose was added
at 25 and 37°C (zero time) and aliquots were taken after var-
ious time intervals for the determination of thiamine deriva-
tives. The results are expressed as mean = SD (n = 3).

ThTP levels were maintained for at least 2 hours, while in
BL21 bacteria incubated at 37°C, ThTP accumulation was
transient [5]. When the CV2 bacteria were shifted to 37°C,
they lost all detectable AK activity after less than 2 hours
as previously reported [18]. However, addition of glucose
under these conditions led to an unexpectedly high pro-
duction of ThTP. As shown in Fig. 2B, the cellular ThTP
content after 2 hours even exceeded ThDP content while
the total amount of phosphorylated thiamine, i.e. [ThDP]
+ [ThTP], remained roughly constant.

http://www.biomedcentral.com/1471-2180/8/16

These results show that high amounts of ThTP (60% of
total thiamine) can be synthesized from ThDP in the
absence of AK activity. The phosphate donor is therefore
unlikely to be ADP. Another obvious candidate is ATP.
However, when we incubate CV2 bacteria at 37°C we find
that, even in the presence of glucose, the cellular ATP con-
centration is less than 10% of the one found in normal
BL21 bacteria or CV2 bacteria at 25°C (data not shown)
as previously observed [18]. This is not in favor of the
hypothesis that ATP is the phosphate donor except if the
putative ThDP kinase catalyzing this reaction has a very
high affinity for ATP.

Actually, there is so far no evidence that E. coli contains a
ThDP kinase. In cell-free bacterial extracts, we attempted
to measure ThTP formation from ThDP and ATP under
various conditions but we were unable to detect any net
synthesis of ThTP. It thus appears that the phosphate
donor for ThDP phosphorylation may be neither ADP nor
ATP, at least in E. coli. In eukaryotic organisms, it has long
been thought that ThTP is synthesized by a soluble ThDP
kinase: this enzyme was supposed to exist in mammals
[19-22] and in yeast [23,24]. The enzyme was obtained in
pure form from yeast [23] but, like other preparations of
ThDP kinase, it had a very low specific activity (k. about
1 min'!). Moreover, it is not certain that the reaction prod-
uct was authentic ThTP. Indeed, it could well be that the
compound synthesized was in fact AThTP which can be
synthesized from ThDP and ATP or ADP by a soluble
enzyme complex [10]. Thus, there is no conclusive evi-
dence that ThTP can be synthesized from ThDP + ATP,
either in animals or in microorganisms. Also, it is proba-
ble that in skeletal muscle where AK1 activity is very high,
the latter may contribute to a significant synthesis of
cytosolic ThTP, especially in those species where soluble
ThTPase activity is absent such as in electric organ [25,26],
chicken [12] and pig skeletal muscle [27]. Indeed, electric
organs and bird tissues contain no soluble ThTPase and
pig tissues express a catalytically inefficient ThTPase [28].

Conclusion

In conclusion, the present results show that, in the heat-
sensitive CV2 strain as in normal E. coli, ThTP accumula-
tion occurs through an adenylate kinase-independent
mechanism. The bacteria produce ThTP when they are
transferred to minimal medium devoid of amino acids
but containing glucose. The requirement for glucose does
not appear to be related to its ability to generate ATP.
Indeed, we find the highest accumulation of ThTP in CV2
cells at 37°C when the energy charge is very low. It is
remarkable that under such stressful conditions, the cells
still devote a large part of their ThDP (an indispensable
cofactor for oxidative metabolism) and a significant
amount of free energy to produce ThTP. At present, we
cannot exclude that ThTP and possibly AThTP are inactive
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storage forms of ThDP. This hypothesis is however not
very plausible as ThTP and AThTP accumulate under dif-
ferent and often opposing metabolic conditions. This
would imply that ThDP could be stored under a different
form dependent on the kind of stress involved. Therefore,
it is more appealing to imagine that both compounds are
some kind of alarmones or signalling molecules produced
in response to different conditions of cellular stress.

Methods

Materials

B. stearothermophilus AK was from Sigma-Aldrich (St-
Louis, MO, USA). The heat-sensitive E. coli strain CV2
(CGSC strain # 4682) [17] was obtained from the E. coli
Genetic Resource Center (Yale University, New Haven,
CT, U.S.A.) through N. Whitehead. It was grown at 25°C
in LB medium (250 rpm).

Growth and processing of bacteria

The bacteria (E. coli BL21 strain) were grown overnight
(37°C, 250 rpm) in 50-100 ml LB medium (tryptone, 10
g/l; yeast extract, 5 g/l; NaCl, 10 g/l at pH 7.0). Then the
bacteria were centrifuged (5 min; 5000 x g) and sus-
pended in the initial volume of fresh LB medium or in M9
minimal medium (Na,HPO,, 6 g/I; KH,PO,, 3 g/l; NaCl,
0.5 g/1; NH,CI, 1 g/l; CaCl,, 3 mg/l; MgSO,, 1 mM, pH
7.0) either in the presence or the absence of 10 mM glu-
cose at 37°C with shaking (250 rpm). After incubation,
the bacteria were sedimented as above, the pellet was sus-
pended in 12% trichloroacetic acid, the precipitated pro-
teins were spun down (15 min, 15 000 x g) and the pellet
was dissolved in 0.8 N NaOH for protein determination
by the method of Peterson [29]. The supernatant was
treated with diethyl ether and analyzed by HPLC for thia-
mine compounds [30]. ATP was determined using the
ATP Bioluminescent Assay Kit from Sigma-Aldrich.

Cloning and overexpression of E. coli adenylate kinase
Genomic DNA was isolated from E. coli (BL21) and the
coding sequence for adenylate kinase was amplified using
Taq DNA polymerase and 40 cycles of denaturation
(95°C, 30 s), annealing (58°C, 30 s) and elongation
(72°C, 60 s) using forward (5'-CACATATGCGTATCAT-
TCTGCITGGCGCT-3') and reverse (5'-CAAAGCT-
TAGCCGATTTTTTCCAGATCAGCG-3') primers. The PCR
fragment was inserted into pGEM-T (Promega Corpora-
tion, Madison, WI, U.S.A.) by TA cloning. After sequenc-
ing, the AK coding sequence was recovered and ligated
into the Ndel/HindIIl sited of pET-21a(+) (Novagen,
Madison, WI, U.S.A). The strain E. coli BL21 ADE3 was
used for overexpression of E. coli adenylate kinase.

Determination of adenylate kinase activity
The culture medium containing the bacteria (1 ml) was
centrifuged (5000 x g, 15 min, 4°C) and the pellet was
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suspended in 500 pl Hepes-Na buffer (50 mM, pH 7.5)
containing 1 mM EDTA. The samples were sonicated 3 x
1 min on ice (100 kHz) and centrifuged (5000 x g, 10
min, 4°C). The supernatant was used as enzyme prepara-
tion. The incubation medium contained 50 mM Tris/HCI
buffer (pH 7.5), 5 mM MgCl,, 5 mM ADP and the enzyme
preparation at an appropriate dilution in a total volume of
100 pl. After 5 min at 37°C, the reaction was stopped by
addition of 100 pl trichloroacetic acid (20%). After extrac-
tion with diethyl ether, ATP was determined by biolumi-
nescence. For the determination of the ThTP-synthesizing
activity of adenylate kinase, the substrates were ADP (1
mM) and ThDP (0.1 mM) in Tris/HCI buffer (pH 7.5) for
E. coli AK and Tris-maleate buffer (pH 6.5) for B. stearo-
thermophilus AK. The samples were incubated up to 24
hours and the ThTP synthesized was determined by HPLC
[30].
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