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Abstract
Background: Cyanopeptolins are nonribosomally produced heptapetides showing a highly
variable composition. The cyanopeptolin synthetase operon has previously been investigated in
three strains from the genera Microcystis, Planktothrix and Anabaena. Cyanopeptolins are displaying
protease inhibitor activity, but the biological function(s) is (are) unknown. Cyanopeptolin gene
cluster variability and biological functions of the peptide variants are likely to be interconnected.

Results: We have investigated two cyanopeptolin gene clusters from highly similar, but
geographically remote strains of the same genus. Sequencing of a nonribosomal peptide synthetase
(NRPS) cyanopeptolin gene cluster from the Japanese strain Planktothrix NIES 205 (205-oci), showed
the 30 kb gene cluster to be highly similar to the oci gene cluster previously described in Planktothrix
NIVA CYA 116, isolated in Norway. Both operons contained seven NRPS modules, a
sulfotransferase (S) and a glyceric acid loading (GA)-domain. Sequence analyses showed a high
degree of conservation, except for the presence of an epimerase domain in NIES 205 and the
regions around the epimerase, showing high substitution rates and Ka/Ks values above 1. The two
strains produce almost identical cyanopeptolins, cyanopeptolin-1138 and oscillapeptin E
respectively, but with slight differences regarding the production of minor cyanopeptolin variants.
These variants may be the result of relaxed adenylation (A)-domain specificity in the nonribosomal
enzyme complex. Other genetic markers (16S rRNA, ntcA and the phycocyanin cpcBA spacer)
were identical, supporting that these geographically separated Planktothrix strains are closely
related.

Conclusion: A horizontal gene transfer event resulting in exchange of a whole module-encoding
region was observed. Nucleotide statistics indicate that both purifying selection and positive
selection forces are operating on the gene cluster. The positive selection forces are acting within
and around the epimerase insertion while purifying selection conserves the remaining (major) part
of the gene cluster. The presence of an epimerase in the gene cluster is in line with the D-
configuration of Htyr, determined experimentally in oscillapeptin E in a previous study.
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Background
Cyanopeptolins are nonribosomally produced peptides
with highly variable composition. The general structure of
the cyanopeptolin peptide family encompasses 7 amino
acids, including the residue 3-amino-6-hydroxy-2-piperi-
done (Ahp), where the six C-terminal amino acids form a
ring [1,2] and the N-terminal amino acid frequently is N-
modified. The N-terminal amino acid and all positions in
the ring except position 2 (threonine) and position 4
(Ahp) can be occupied by variable amino acids, giving rise
to a large number of cyanopeptolin variants [3].

The succession of the modules [4,5] and specificity of A-
domain binding pockets in nonribosomal peptide syn-
thetases (NRPSs) [6,7] can give a good prediction of pep-
tide composition and structure. NRPSs do not always
perform stringent substrate selection and incorporation
[7], thus, relaxed substrate specificity is common in NRPS
[6,8,9]. In addition to the common module domains
including the adenylation (A)-, condensation (C)- and
thiolation (T)-domains, several tailoring domains have
been found associated with cyanopeptolin synthetases.
Methyltransferases are present in three cyanopeptolin
gene clusters from Anabaena, Microcystis and Planktothrix
(apd, mcn and oci). Halogenases are found in apd and mcn,
while the tailoring domains responsible for side chain
modification of the N-terminal amino acid are unique for
each strain (i.e.; formyl transferase in apd, sulfotransferase
and glyceric acid (GA) transferase in oci, absent in mcn).

So far, only cyanopeptolin gene clusters derived from the
genera Anabaena [10], Microcystis [11] and Planktothrix
[12] have been characterized. They share the same basic
domain structure but possess unique tailoring genes and
A-domain substrate binding pockets, indicating inde-
pendent evolution of cyanopeptolin genes within each
lineage. Sequence identity is high (approximately 80% in
the NRPS module coding regions) between Microcystis
(mcn) and Planktothrix (oci) cyanopeptolin gene clusters.
The more thoroughly investigated microcystin gene clus-
ters show higher sequence identity within a genus than
between genera. The same is likely to be the case also for
the cyanopeptolin genes.

Sequence variation in microcystin synthetase clusters has
been investigated within strains of the genera Microcystis
[13,14] and Planktothrix [15]. Modifications and reorgan-
izations due to several recombination events have been
reported [14-16], and together with differences in sub-
strate specificity between equivalent A-domains [17-19]
are the reason for the different peptide variants.

Planktothrix NIVA CYA 116 (NIVA CYA 116), isolated
from a Norwegian lake, produces cyanopeptolin-1138
[12] for which the amino acids configurations are

unknown. This peptide was found to be highly similar to
oscillapeptin E produced by Planktothrix NIES 205 (NIES
205), isolated in Japan [20]. Both peptides have the same
molecular mass, but slightly different polarities [12]. A
different content of L-/D-amino acids in the peptides was
suggested as a possible reason for the observed difference
[12]. To investigate the genetic basis of the differences
between the peptides, we have cloned and sequenced the
NIES 205 cyanopeptolin gene cluster and compared it to
the previously characterized NIVA CYA 116 gene cluster.
This has allowed us to explore NRPS evolution and
genetic variations in closely related strains and to investi-
gate to what extent selectional forces operate on these
gene clusters.

Results
NIVA CYA 116 and NIES 205 have similar but not identical 
peptide profiles
The major peptides in the two strains consist of HO3SO-
CH2-CH(OMe)-CO-HTyr-Thr-HTyr-Ahp-Ile-Phe(Me)-Ile
([Table 1, Additional file 1 figure 1] and Rounge et al
[12]). However, spiking experiments (data not shown)
revealed a slight difference in polarity between cyanopep-
tolin-1138 from NIVA CYA 116 [12] and oscillapeptin E
from NIES 205 [20]. In contrast to NIVA CYA 116 produc-
ing only cyanopeptolins, screening of NIES 205 shows
production of additional peptide from other peptide-
classes (data not shown).

Several cyanopeptolin variants were also detected in both
strains. LC-MS-MS data identified minute amounts of
seven cyanopeptolins in NIVA CYA 116, with variation in
the first, third, fifth and/or seventh positions compared to
cyanopeptolin-1138/oscillapeptin E [Additional file 1 fig-
ure 2]. An earlier study has shown that NIES 205 produce
oscillapeptin C, D and E, based on spectroscopic analyses
including 2D NMR [20]. Our LC-MS-MS analysis of NIES
205 confirmed the production of oscillapeptin D and E,
but also identified a cyanopeptolin with the mass 1074,
which is found in NIVA CYA 116 as well [Table 1 and
Additional file 1 figure 3].

NIVA CYA 116 and NIES 205 produced similar – but not
identical – cyanopeptolin variants. The identified NIVA
CYA 116 cyanopeptolins were mainly combinations of
Hty/Ile/Leu in positions AA1 and AA3 and Ile/Leu/Val in
positions AA5 and AA7. Other unidentified apolar amino
acid-like residues were detected in position AA3. In con-
trast, the only variations observed in the NIES 205 pep-
tides were Hty, Ile/Leu and HcAla in position AA3 (Table
1).

Comparison of the 205-oci and 116-oci gene clusters
Anticipating that two strains producing almost identical
cyanopeptolins also should contain similar gene clusters,
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Table 1: Oci A-domains binding pockets and peptide profiles

Binding pockets OciA-A1 OciA-A2 OciB-A3 OciB-A4 OciB-A5 OciB-A6 OciC-A7

NIVA CYA 116 DLGFTGAVCK DFWNIGMVHK DAQSMGAIIK DVENAGVVTK DAFFLGVTFK DAWTIAGVCK DAFFLGVTFK
NIES 205 DLGFTGAVCK DFWNIGMVHK DAEGMGAIIK DVENAGVVTK DAFFLGVTFK DAWTIAGVCK DAFFLGVTFK

NIVA CYA 116

Mass Da Side chain AA 1 AA2 AA3 AA4 AA5 AA6 AA7

1138 HO3-SO-CH2-
CH(OMe)-COH

HTyr Thr HTyr Ahp Ile Phe(Me) Ile

1124 HO3-SO-CH2-
CH(OMe)-COH

HTyr Thr HTyr Ahp Val Phe(Me) Ile

1124 HO3-SO-CH2-
CH(OMe)-COH

HTyr Thr HTyr Ahp Ile Phe(Me) Val

1074 HO3-SO-CH2-
CH(OMe)-COH

HTyr Thr Ile/Leu Ahp Ile Phe(Me) Ile

1010 HO3-SO-CH2-
CH(OMe)-COH

Ile/Leu Thr Ile/Leu Ahp Ile Phe(Me) Ile

1088 HO3-SO-CH2-
CH(OMe)-COH

HTyr Thr X Ahp Ile Phe(Me) Ile

1122 HO3-SO-CH2-
CH(OMe)-COH

HTyr Thr Y Ahp Ile Phe(Me) Ile

NIES 205

Mass Da Side chain AA 1 AA2 AA3 AA4 AA5 AA6 AA7

1138* HO3-SO-CH2-
CH(OMe)-COH

Htyr Thr Htyr Ahp Ile Phe(Me) Ile

1074 HO3-SO-CH2-
CH(OMe)-COH

Htyr Thr Ile/Leu Ahp Ile Phe(Me) Ile

1128** HO3-SO-CH2-
CH(OMe)-COH

Htyr Thr HcAla Ahp Ile Phe(Me) Ile

The binding pocket residues of the NIVA CYA 116 and NIES 205 A-domains were identified by comparison to the GrsA-Phe A-domain (Residue 235, 236, 239, 278, 299, 301, 322, 330, 331, 517). 
The Oci-A3 binding pockets are different (in grey) between the two strains, and the divergent amino acids are shown in bold. The composition of cyanopeptolins produced by NIVA CYA 116 
and NIES 205 and their molecular weights (M+H+) are shown with amino acids correlated with the putative binding pockets. HcAla is 3-(4'-hydroxy-2'-cyclohexenyl) alanine, and X and Y is 
unidentified amino acid derivates. Mutual peptides in NIVA CYA 116 and NIES 205 are highlighted in dark grey and light grey. See [Additional file 1 figure 1, 2 and 3 for the peptide structure and 
more details on MS data.* peptide named oscillapeptin E and **peptide named oscillapeptin D
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we sequenced a cyanopeptolin gene cluster in NIES 205
(205-oci) using primers designed for the cyanopeptolin
(oci) gene cluster in NIVA CYA 116 (116-oci) [12]. The two
gene clusters, including the ABC transporter genes and the
intergenic spacers, were highly similar (93% identity
between the nucleotide sequences), and the domain struc-
tures of the encoded synthetases were almost identical;
except that 205-oci contained an epimerase encoding (E)-
domain between T2 and C2 (Figure 1). The position of the
E-domain corresponds to the Htyr in D-configuration in
oscillapeptin E determined by Itou et al [20]. Both gene
clusters included a GA-domain and a sulfotransferase
domain. Comparison with cyanopeptolin gene clusters
characterized in Microcystis (mcn) [11] and Anabaena (apd)
[10] (Figure 1) showed a higher degree of similarity
within the Planktothrix genus than between genera (70%
identity between OciB and AdpB with the additional
methyltransferase excluded and 77% identity between
OciC and AdpD). A-domains and A-domain binding
pockets signatures were identified from the gene clusters
and aligned. The binding pocket signatures in 116-Oci
and the corresponding 205-oci signatures were identical,
except for 116-OciB-A3 (DAQSMGAIIK) and 205-OciB-
A3 (DAEGMGAIIK) (Table 1). Corresponding pairs of

205-Oci and 116-Oci A-domains clustered together in
phylogenetic analyses that included A-domains from
cyanopeptolin [10-12], microcystin [17,21,22] nostocy-
clopeptide [23] and nostopeptolide [24] synthetases
[Additional file 1 figure 4].

E-domains are common in cyanobacterial NRPS, found in
microcystin, aeruginosin and nostocyclopeptide syn-
thetases, notably, E-domains have until now not been
found in cyanopeptolin synthetases. The E-domain pro-
duces the D-isomer of the amino acid activated by the
upstream A-domain and is also involved in the stereospe-
cific selection of the D-isomer for incorporation in the
peptide product. Most E-domains are flanked by T (TE)-
and C-domains with special motives [25,26], and this was
the case also in 205-Oci – as shown by the phylogenetic
analyses (see Figure 2).

The NIES 205-E-domain is localized downstream of 205-
A1 and T2. A phylogenetic analysis of E-domains (Figure
2), including E-domains from microcystin synthetase
(McyA-E) and nostocyclopeptide synthetase (NcpA-E),
showed a close relationship between NcpA-E and 205-

Comparison of the known cyanopeptolin operonsFigure 1
Comparison of the known cyanopeptolin operons. The overall structure of cyanopeptolin operons oci from Planktothrix 
NIES 205 [GenBank: EU109504] and NIVA CYA 116 [GenBank: DQ837301], mcn from Microcystis [GenBank: DQ075244] and 
apd from Anabaena [GenBank: AJ269505]. Gene names, transcription directions and approximate sizes are indicated above 
each gene cluster. Adenylation (red), condensation (green), thiolation (yellow), epimerization (turquoise), methyltransferase 
(blue) sulfotransferase (pink), halogenisation (purple) and termination domains (grey) are shown with their abbreviations. The 
putative activated amino acids are indicated for each A-domain. Amino acids detected in smaller amounts are beneath the 
major amino acid. Equivalent modules are depicted in light blue and light orange. The ABC transporter is transcribed in the 
opposite direction in the oci and mcn operons, and an ABC transporter is predicted downstream of the apd operon.
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OciA-E (72% identity on the DNA and 67% similarity on
the protein level).

Phylogenetic analyses of the C-domains (Figure 3),
including domains from cyanopeptolin [10-12], micro-
cystin [17,21,22] nostocyclopeptide [23] and nostopep-
tolide [24] synthetases, clustered according to presence or
absence of an upstream E-domain. The 205-Oci-C2-
domain grouped with D-amino acid-specific C-domains,
while the other 205-Oci-C domains formed a clade with
the corresponding 116-Oci-C-domains.

The specialized TE-domains associated with E-domains,
show major differences within the core T motif compared
to standard T-domains [25]. Comparisons of regular T-
domains and TE-domains, including 205-Oci-TE2, McnA-
T1 and NcpA-TE1-domain, showed an H/D and L/I differ-
ence in addition to a gap in the TE-domain motif [Addi-
tional file 1 figure 5]. N-terminal T-domains, including
both 116-T1 and 205-T1, could also be distinguished
from TE-domains and regular T-domains [Additional file
1 figure 5].

Other genomic regions confirm a close relationship 
between the Planktothrix strains
Several markers were sequenced to further study the rela-
tionship between Planktothrix NIVA CYA 116 and NIES
205. The DNA sequences (16S rDNA (1357 bp), a part of
ntcA (384 bp), a global transcriptional regulator of nitro-

gen assimilation in cyanobacteria, and the phycocyanin
spacer cpcBA) displayed 100% identity between the two
strains.

Variation in substitution rates throughout the 
cyanopeptolin gene clusters
Investigation of the substitution rates within the 30 kb
116- and 205-oci gene cluster alignment can identify both
putative recombination events and regions under specific
selection pressure. The region containing the epimeriza-
tion domain (T2, E, C2) was excluded due to too large
overall differences to produce a reliable alignment. Figure
4 shows segregating sites (black lines) and nonsynony-
mous vs. synonymous substitution rates (red lines) in a
sliding window analysis of the alignment. Only a few scat-
tered substitutions can be seen in the first part, containing
the ABC transporter, GA, T1, S and C1 domains, and in
the last part, containing A6, M, T7, C7, A7, T8 and TE
domains. However, the C3 and A3 domains contained
several substitutions and the rate of mutations in nonsyn-
onymous sites compared with synonymous sites (Ka/Ks)
exceeded 1 – a putative sign of positive selection. A high
substitution rate was also observed in a small region in C6
and the last part of A1, but the Ka/Ks ratios did not exceed
1.

Discussion
Correlation between cyanopeptolin gene clusters and 
peptides
The presence of two highly similar NRPS gene clusters
(oci) in NIVA CYA 116 and NIES 205, and the production
of nearly identical peptides by the two strains corroborate
the association between the oci gene cluster and cyan-
opeptolin-1138 proposed by Rounge et al [12]. This asso-
ciation is further substantiated by high degree of similarity
to the cyanopeptolin gene cluster in Anabaena (apd),
where the functional relationship between genes and pep-
tides has been confirmed by a gene knock-out study [10]
– as well as similarity to the Microcystis cyanopeptolin
gene cluster (mcn) [11].

Global dispersal and distribution of cyanopeptolin genes
Based on the genomic regions studied here, two Plank-
tothrix strains, NIVA CYA 116 and NIES 205, appear to be
closely related despite the geographical separation. This is
in accordance with the sequence comparison of 16S rDNA
[27] identifying identical 16S rDNA sequences in Japan,
China, The Netherlands, UK, Finland, Sweden and Nor-
way, and thus may indicate a global distribution of closely
related Planktothrix strains. Since Lake Årungen in Norway
host international rowing competitions, a co-transport of
this Planktothrix genotype with rowing equipment may be
feasible. The data presented here do not allow any conclu-
sions about global distribution without a more thorough
analysis. The highly specific differences observed in the oci

Phylogenetic analyses of E-domainsFigure 2
Phylogenetic analyses of E-domains. The E-domain phy-
logenetic tree was constructed utilizing MrBayes 3.1., Wag 
protein substitution model and gamma-shaped distribution. 
In addition, the bootstrap obtained for NJ (MEGA 3.1) at 
default settings and ML (RAxML) trees are indicated. Only 
posterior probability values and bootstrap replica values 
above 50% (out of 1000 (NJ) and 100 (ML) trees) are shown.
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Phylogenetic analyses of C-domains showing groups according to gene cluster and position/functionFigure 3
Phylogenetic analyses of C-domains showing groups according to gene cluster and position/function. The C-
domain phylogeny was constructed using Bayesian inference with gamma distribution, 4 mill generations tree sampling every 
100 generations and removal of the first 3000. The topologies generated using NJ (MEGA 3.1) and ML (RAxML) analyses show 
near identical branching patterns-only minor differences are seen within the Apd group. Bayesian posterior probability, NJ 
(1000 bootstrap values) and ML (100 trees) above 50% are shown. CpRev protein substitution model was used in the Bayesian 
and ML analyses. Genus origin is shown with first letter abbreviations (P = Planktothrix, M = Microcystis, A = Anabaena and N = 
Nostoc), and the C-domains are labeled in numerical order according to direction of transcription (i.e. seven oci, seven mcn and 
six apd C-domains). Corresponding Oci C domains group together, except for C2 situated downstream of the 205-E-domain. 
C1–C4 apd, nos and ncp C-domains do not group according to function
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gene clusters are, independently of geographic distribu-
tions, intriguing. Our analyses indicate that the differ-
ences to some extent are due to positive selection at
specific amino acid positions.

Variation in peptide content due to lack of specificity in 
the A-domains?
Previous studies have shown that lack of specificity in A-
domains leads to activation of several amino acids with
similar properties, thus giving rise to the synthesis of a
series of related peptides from a single NRPS system [28].
Ile/Leu/Val activating A-domains have been reported in
lichenysin biosynthesis [8], and fengycin synthetase [29]
among others. It is likely that the 116-Oci-A5- and A7-
domains can activate Leu, Ile and Val and that the 116-
Oci-A1- and A3-domains, that mainly activates Htyr, also
can activate Ile and Leu. Consequently, 116-Oci is respon-
sible for production of all seven cyanopeptolin detected in
NIVA CYA 116 in this study. Likewise, 205-Oci probably
is responsible for all oscillapeptin variants. The biological
significance of a single NRPS complex giving rise to sev-
eral peptide variants is yet to be determined.

Six of the seven binding pockets signatures of correspond-
ing A-domains in NIES 205 and NIVA CYA 116 are iden-
tical (Table 1). If the different peptide profiles observed in
the two strains are due to genetic differences in the NRPS
genes, they are likely to be due to differences not involving
the amino acids constituting the binding pocket signa-
tures. LC-MS-MS-analyses were performed on strains cul-
tivated on the same media, but we cannot completely
exclude substrate availability as a contributory cause of
variable peptide amount and peptide profile in the strain.

Module exchange and amino acid configuration
Over a stretch of total of 30 kb including the ABC trans-
porter, the 116-oci and 205-oci gene clusters are remarka-
ble similar, except for the modules encoding the T2-(E)-
C2 domains. Too low sequence similarity is found
between the whole T2-(E)-C2 modules in NIVA CYA 116
and NIES 205 to make a reliable alignment, suggesting
that in one of these strains an entire module may have
been exchanged through recombination. The E-domain
trees (Figure 2) show a close relationship between cyano-
bacterial E-domains.

Sequence similarity to other E-domains and the distinc-
tive flanking C (Figure 3) and T [Additional file 1 figure 5]
domains observed by phylogenetic analysis indicate that
the Oci-E-domain is an active epimerase, and are respon-
sible for epimerization of Htyr to D-configuration. The
configuration of the amino acids in cyanopeptolin-1138
were not determined however, a D-Htyr in oscillapeptin E
and a putative L-Htyr in cyanopeptolin-1138 might
explain the small difference between the oligopeptides
with regard to polarity observed by HPLC analysis, as
reported by Rounge et al. [12].

Interestingly, in the corresponding region of the Mcn
cyanopeptolin synthetase in Microcystis the McnA-T1 and
McnB-C2 include motifs suggesting association with an E-
domain [11]. In this case, however, no E-domain is
present.

Sequence conservation and selection within cyanopeptolin 
modules
The two cyanopeptolin gene clusters (205-oci and 116-oci)
are highly similar also at the third codon position. The
first part (ABC-transporter, the spacer, GA-, T1-, S-, and
C1-domains) and last part (C4-, A4-, T5-, C5-, A5-, T6-,
C6-, M-, T7-, C7-, A7-, T8- and TE domains) of the Plank-
tothrix cyanopeptolin gene cluster are nearly identical,
despite the geographical distance separating the strains.
Mechanisms for such sequence conservation may be fre-
quent homology-driven genetic exchange within a geno-
type, leading to homogenization – in line with the general
models suggested by Rudi et al. [30], Gogarten et al.[31]
and Papke et al. [32]. Or alternatively sequence conserva-

Distribution of segregating sites and Ka/Ks ratios in the oci gene clusterFigure 4
Distribution of segregating sites and Ka/Ks ratios in 
the oci gene cluster. The ratios are displayed using the 
program DnaSP and sliding windows analysis on the align-
ment of 205-oci and 116-oci. Window length was 50 bp and 
step size 10 bp. The distribution of segregation sites (red) 
and Ka/Ks (black) ratios are shown in correlation with the 
domain alignment. Module 2 (T2-(E)-C2) has been excluded 
from the analyses.
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tion may be due to low evolutionary rates caused by puri-
fying selection or very short time of independent
evolution.

Analysis of segregating sites and rates of nonsynonymous
and synonymous nucleotide substitutions (Ka/Ks) indi-
cate that module 3 (T3-, C3- and A3-domains) is different
from the remaining domains by displaying higher substi-
tution rates and signs of positive selection at several sites
(Ka/Ks higher than 1). This is the module responsible for
incorporation of the amino acid at position AA3 in the
peptide.

According to data from Itou et al [20], a single amino acid
replacement in the AA3 position of oscillapeptin E and F
alters the protease inhibitory profile, indicating that this
position could be pivotal for the inhibitory activity of
cyanopeptolins. Positive selection in the third module
could thus be expected to increase the adaptability of the
inhibitory- or other putative functions of cyanopeptolin.

Conclusion
The Planktothrix strains of Japan and Norway harbor
almost identical cyanopeptolin gene clusters and display
very similar (but not identical) cyanopeptolin profiles.
The notable gene cluster difference is the presence of an
epimerase in NIES 205 corresponding to a D-Htyr in ocil-
lapeptin E. Within a single gene cluster we have demon-
strated both positive selection and purifying selection, the
first promoting new gene cluster variants following
recombination, the latter maintaining a high degree of
conservation of the major parts of the gene cluster.

Methods
Bacterial cultures
Planktothrix agardhii NIVA CYA 116 was isolated in 1983
from Lake Årungen, Norway, and maintained in the NIVA
culture collection of Algae. Planktothrix agardhii NIES 205
was isolated from Lake Kasumigaura/Ibaraki, Japan in
1982, and maintained in the NIES culture collection [20].
Both strains were cultured in Z8 [33] media at ~20°C with
12 hour illumination at about 15 μmol m-2 s-1 in Sanyo
versatile environmental test chamber (FG-4P 36–40).

PCR and sequencing
DNA from NIES 205 was isolated utilizing Dynabeads
(Invitrogen, Carlsbad, USA) [34]. Combinations of PCR
primers designed for the cyanopeptolin (oci) gene cluster
in NIVA CYA 116 [12] were used to amplify regions of a
cyanopeptolin gene cluster in NIES 205. These PCR prod-
ucts were sequenced using primer walking. Additional
PCR primers were designed to amplify regions between
already obtained PCR products. BD Advantage 2 (BD Bio-
sciences, Mountain View, USA) was utilized as polymer-
ase in all PCR amplifications. The PCR products were

sequenced using an ABI 3730 sequencer and v3.1 Big Dye
solution.

Sequence analysis and phylogeny
Open reading frames were identified and translated using
Vector NTI (Invitrogen, Carlsbad, USA). Domains and
their boundaries were identified using the NRPS database
http://www.nii.res.in/nrps-pks.html[35], A-domain bind-
ing pocket residues identified by aligning the sequences
with the GrsA-Phe A-domain [6] and substrate specificity
predicted utilizing the NRPS database http://
www.nii.res.in/nrps-pks.html and phylogenetic analysis.
A-, C-, T- and E- domain protein sequences were aligned
using MEGA 3.1 and Neighbor-Joining (NJ) trees were
constructed using MEGA 3.1 at default settings (Poisson
correction as the amino acid substitution model) [36].
Optimal protein evolution model was found by ProtTest
[37]. Trees were constructed utilizing MrBayes [38] 3.0
and 3.1 [39] on the UiO Bioportal http://www.biopor
tal.uio.no[40] with an optimal protein substitution
model. Variable substitution rates across sites were
accounted for by gamma distribution. The MCMC chains
were carried out for 4 million generations and trees were
sampled every 100 generations, removing 3000 trees
before the MCMC chain reached convergence. In addi-
tion, maximum likelihood inferences with RAxML [41]
were performed on the E- and C- domain alignments.
Similarity calculations were done in Vector NTI. DnaSP
[42] was used to calculate Ka/Ks ratio and segregating sites
with a sliding window with window length of 50 bp and
step size 10 bp.

Mass spectrometry
Freeze-dried material of NIVA-CYA116 and NIES 205 was
extracted with 50% MeOH (MeOH:water, v/v) and the
extracts were subjected to a screening for cyanopeptolins
by LC-MS. The instrument included a Waters Acquity
UPLC system equipped with an Atlantis column (C18 2.1
× 150 mm, 5 μm particle size) and set to run a linear gra-
dient starting with 80% solvent A (10 mM ammonium
acetate, 0.1% acetic acid) and ending with 60% solvent A
after 15 min. Solvent B was MeOH with 0.1% acetic acid.
The flow rate was 0.2 ml min-1. The LC system was con-
nected to a Waters Quattro Premier XE tandem quad-
ropole mass spectrometer equipped with an electrospray
probe. The detector was run in the positive ion mode at a
cone voltage of 50 V. A total ion scan from 600 to 1400
Da was performed during the entire length of the LC gra-
dient.

The structures of putative cyanopeptolins were analyzed
by MS fragmentation studies. MS fragments hold valuable
structural information and have been successfully used
before to identify and structurally elucidate cyanobacte-
rial oligopeptides including cyanopeptolins [43-45]. Frag-
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mentation experiments were carried out with the
hardware configuration described above. The mass spec-
trometer was run in daughter ion scanning mode and all
settings were automatically optimized for fragmentation
at 30 eV. Fragments were recorded during the entire length
of the LC gradient. The identification of fragments was
assisted by the HighChemMassFrontier software version
3.0. This software predicts MS fragmentation patterns on
the basis of a putative structure. Comparing predicted and
actual fragmentation patterns was used to assess the accu-
racy of a putative structure. Further hints to the structure
were obtained from the occurrence of typical diagnostic
ions such as immonium ions and from predictions on the
amino acid occurrence made by the genetic analyses.
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