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Abstract
Background: Vibrio parahaemolyticus is abundant in the aquatic environment particularly in
warmer waters and is the leading cause of seafood borne gastroenteritis worldwide. Prior to 1995,
numerous V. parahaemolyticus serogroups were associated with disease, however, in that year an
O3:K6 serogroup emerged in Southeast Asia causing large outbreaks and rapid hospitalizations.
This new highly virulent strain is now globally disseminated.

Results: We performed a four-way BLAST analysis on the genome sequence of V. parahaemolyticus
RIMD2210633, an O3:K6 isolate from Japan recovered in 1996, versus the genomes of four
published Vibrio species and constructed genome BLAST atlases. We identified 24 regions, gaps in
the genome atlas, of greater than 10 kb that were unique to RIMD2210633. These 24 regions
included an integron, f237 phage, 2 type III secretion systems (T3SS), a type VI secretion system
(T6SS) and 7 Vibrio parahaemolyticus genomic islands (VPaI-1 to VPaI-7). Comparative genomic
analysis of our fifth genome, V. parahaemolyticus AQ3810, an O3:K6 isolate recovered in 1983,
identified four regions unique to each V. parahaemolyticus strain. Interestingly, AQ3810 did not
encode 8 of the 24 regions unique to RMID, including a T6SS, which suggests an additional virulence
mechanism in RIMD2210633. The distribution of only the VPaI regions was highly variable among
a collection of 42 isolates and phylogenetic analysis of these isolates show that these regions are
confined to a pathogenic clade.

Conclusion: Our data show that there is considerable genomic flux in this species and that the
new highly virulent clone arose from an O3:K6 isolate that acquired at least seven novel regions,
which included both a T3SS and a T6SS.
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Background
Vibrio parahaemolyticus is a Gram-negative halophilic, aer-
obic bacterium that is distributed in marine and estuarine
environments worldwide [1]. In the 1950s, Fujino dem-
onstrated that V. parahaemolyticus was the etiological
agent responsible for a gastroenteritis outbreak in Osaka,
Japan. Presently, in Taiwan, Japan and other South East
Asian countries, V. parahaemolyticus cause over half of all
food poisoning outbreaks of bacterial origin [2,3]. Baross
and Liston in the late 1960s identified V. parahaemolyticus
in seawater, sediments and shellfish in the United States
[4,5]. Today, V. parahaemolyticus is the leading cause of
seafood-associated bacterial gastroenteritis in the United
States. V. parahaemolyticus can also cause serious wound
infections resulting in necrotizing fasciitis when wounds
are exposed to V. parahaemolyticus contaminated water [6-
8]. Although less common, V. parahaemolyticus can cause
fatal septicemia in immune compromised hosts [6,7].
Most isolates of V. parahaemolyticus are non-pathogenic
and only a small number can cause infections in humans
[1]. Clinical isolates of V. parahaemolyticus produce beta
type hemolysis on blood agar (Wagatsuma agar) called
the Kanagawa-phenomenon (KP), which is linked to the
production of a thermostable direct hemolysin (TDH) [9-
11]. TDH damages eukaryotic cells by acting as a pore
forming toxin that alters the ion balance of cells [12]. The
presence of the tdh gene, which encodes TDH is often used
as a diagnostic tool to identify pathogenic isolates of V.
parahaemolyticus. Five sequence variants of tdh (named
tdh1 to tdh5) have been identified, however only tdh2
appears to have a high-level of transcription [13,14]. In
the 1980s, several cases of gastroenteritis caused by hemo-
lytic KP-negative TDH-negative V. parahaemolyticus iso-
lates were reported [11]. These isolates contained a TDH-
related hemolysin (TRH) encoded by trh, which showed
69% sequence similarity with tdh [11]. TDH and TRH are
considered the main virulence factors of V. parahaemolyti-
cus and strains can contain either TDH or TRH or both
[15-19]. Although isolates that do not contain tdh or those
that have a deletion in tdh are still cytotoxic to cells.
Hence, the overall mechanism involved in the organism's
pathogenesis remains unclear.

Analysis of the complete genome sequence of V. para-
haemolyticus RIMD2210633, a clinical isolate recovered in
Japan in 1996, identified a type III secretion system
(T3SS) on each chromosome designated T3SS-1 and
T3SS-2 [20]. Subsequently, the functional significance of
both T3SSs was determined using deletion mutants [21].
The T3SS-1 deletion mutants had significantly decreased
cytotoxic activity compared with that of the wild type
[21]. The T3SS-2 deletion mutants showed diminished
intestinal fluid accumulation, in an enterotoxicity assay
using the rabbit ileal loop test, whereas T3SS-1 mutants
were similar to the wild type [21]. In addition, a number

of effector proteins for these T3SSs have been identified
[22-24]. T3SS-1 is present in both clinical and environ-
mental isolates and has a percent G+C content similar to
the rest of the genome indicating that this region is ances-
tral to the species [20]. Henke and Bassler [25] found that
unlike other T3SSs in pathogenic E. coli, which are acti-
vated by quorum sensing, T3SS-1 in V. parahaemolyticus is
repressed at high cell densities.

Associated with T3SS-2 encoded on chromosome 2 are
Tdh1 and Tdh2, as well as a cytotoxic necrotizing factor,
an exoenzyme T, and at least five transposases [20]. The
presence of transposases and a G+C content of 40% (less
than the overall genome), suggests that T3SS-2 may be a
integrative element similar to pathogenicity islands iden-
tified in pathogenic E. coli, S. enterica, and V. cholerae,
which we named Vibrio parahaemolyticus island-7 (VPaI-7)
[20,26]. T3SS-2 is present predominantly in the V. para-
haemolyticus O3:K6 highly virulent strains recovered after
1995, whereas most clinical isolates recovered before
1995 do not encode T3SS-2 indicating that the region is
not essential for virulence, but may enhance virulence
when present [20].

Serotyping of V. parahaemolyticus isolates has identified
more than 13 O antigen groups and 71 K antigen types
[27]. Up until 1995, V. parahaemolyticus associated gastro-
enteritis was caused by many different serogroups,
although in some geographic regions specific serogroups
predominated. For example, in the United States a pre-
dominance of the O4 serogroup among clinical isolates
was apparent [28-32]. In 1995, an outbreak of V. para-
haemolyticus infections occurred in Calcutta, India, which
caused rapid hospitalization of those infected and were
caused by a single serotype, a new O3:K6 highly virulent
strain [33]. Since 1995, a global dissemination of this V.
parahaemolyticus new highly virulent strain is evident since
it has now been isolated throughout Asia, America, Africa,
and Europe [3,29,34-40]. For example, in 1998, the new
highly virulent strain was responsible for a large outbreak
of gastroenteritis in Galveston Bay, Texas [29]. Later on
that year, the highly virulent strain was responsible for
large gastroenteritis outbreaks in Long Island Sound-Con-
necticut, New York, and New Jersey [41]. In 2005, the
highly virulent strain caused a major outbreak in Chile
with over 1,000 cases [3]. Non-O3:K6 pathogenic isolates
recovered since 1995, including O4:K68, O1:KUT, and
O1:K25 serotypes, have been shown to be closely related
to the new highly virulent O3:K6 strain based on molecu-
lar typing schemes and phylogenetic approaches
[29,30,37-39,42-44].

Previously, it was thought that V. parahaemolyticus was
confined to tropical climates, however recent studies
report the recovery of O3:K6 isolates from the water in
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Southern Chile and Alaska, that up until now were con-
sidered too cold to support the growth of this organism
[35,45,46]. These recent discoveries suggest a change in
the organism's ability to adapt and survive in colder envi-
ronments. Indeed the ability of V. parahaemolyticus to sur-
vive and proliferates in its environmental niches, in
shellfish and in the human intestine may have resulted
from the acquisition of regions encoding novel traits
which are differentially regulated in different niches.
Additionally, the spread of the organism is another indi-
cation of global warming, which is likely to play a role in
increasing V. parahaemolyticus distribution and occur-
rence.

First, we used a two step genomic approach to elucidate
the genomic changes that may have resulted in the emer-
gence of the new highly virulent O3:K6 and related
strains. We performed in silico whole genome compari-
sons of V. parahaemolyticus RIMD2210633 versus the
genome sequences of V. cholerae N16961, V. vulnificus
YJ016 and CMCP6, and V. fischeri ES114. We constructed
genome BLAST atlases of each species to determine
regions unique to V. parahaemolyticus. We uncovered 24
regions greater than 10 kb that were unique to
RIMD2210633 and absent from the other Vibrio species
examined. These included functionally distinct regions
such as the class 1 integron, f237-like phages, Vibrio para-
haemolyticus genomic island regions (VPaI-1 to VPaI-7), a
lipopolysaccaride (LPS)/capsule polysaccharide (CPS)
region, two osmotic stress response clusters, two T3SSs
and a T6SS. Next, we compared the RIMD2210633
genome sequence to that of AQ3810, an O3:K6 strain iso-
lated in 1983, to elucidate the steps involved in the emer-
gence of the globally disseminated O3:K6 highly virulent
strain. This analysis identified several regions unique to
one isolate or the other. Molecular analysis of the distri-
bution of regions unique to RIMD2210633 among 42
natural isolates revealed that only regions encoding inte-
grase or transposase genes (7 island regions) were variably
present. We reconstructed the phylogeny of the 42 isolates
based on multilocus sequence analysis, and mapped the
distribution of the 7 island regions, which showed that
these regions were acquired by the new O3:K6 highly vir-
ulent strain and predominant in one clade.

Results and Discussion
Comparative genome analysis of V. parahaemolyticus 
RIMD2210633 versus V. cholerae N16961, V. vulnificus 
YJ016 and CMCP6, and V. fischeri ES114
Systematic BLAST analysis was carried out for each of the
ORFs of V. parahaemolyticus RIMD2210633 compared
with each of the ORFs from the genome sequences of V.
cholerae N16961, V. vulnificus YJ016 and CMCP6, and V.
fischeri ES114. This four-way BLAST analysis was used to
construct genome BLAST atlases of chromosome 1 and 2

of the four Vibrio species with V. parahaemolyticus
RIMD2210633 as a reference (Fig. 1). The four outer cir-
cles of solid color represent conserved proteins of the
BLASTed genomes for both chromosome 1 and 2. The
outer most circle represents the V. fischeri ES114 genome
(purple circle), the next two circles represents V. vulnificus
YJ016 and CMCP6 (navy and green circles), followed by
the fourth circle (brown circle), which represents V. chol-
erae N16961. The innermost circles show DNA structure
features, repeat sequences and base composition proper-
ties of the reference V. parahaemolyticus RIMD2210633
(Fig. 1). It is of interest to note that chromosome 1 shows
a higher level of overall conservation among the species
examined than chromosome 2 indicating that a lot of spe-
cies specific genes lie on chromosome 2. There are approx-
imately 44 gap regions (greater than 1 kb) on
chromosome 1 and 29 gap regions (greater than 1 kb) on
chromosome 2, common to all four outer circles and
these gaps represent regions of the V. parahaemolyticus
RIMD2210633 chromosomes that are unique being
absent from all other isolates examined. Differences in
these regions in their DNA structural features such as
intrinsic curvature, stacking energy and position prefer-
ence correlate with some of the gap regions and represent
phages, integrons and genomic islands, that is signatures
of foreign DNA acquired by horizontal transfer (Fig. 1).

Of the 73 gap regions, our analysis uncovered 24 regions
greater than 10 kb that are present in RIMD2210633 and
absent from the other species examined, that is the gap
regions in the four outer circles in Figure 1 (Table 1). Of
the 24 regions identified, 11 regions encoded an integrase
or transposase, 9 regions had aberrant GC content (45 ±
3%), 7 regions of which had lower G+C content com-
pared to the rest of the genome suggesting that these
regions were acquired by horizontal gene transfer (Table
1). The 24 regions included 14 previously identified:
lipopolysaccharide and capsule polysaccharide gene clus-
ters, a class 1 integron, 2 f237 phage regions, 2 osmotic
stress response gene clusters, 2 T3SSs, and the Vibrio para-
haemolyticus island (VPaI) regions (Table 1) [20,26,47].
The 10 additional regions unique to V. parahaemolyticus
RIMD2210633 included 2 regions encoded on chromo-
some 1 and 8 regions encoded on chromosome 2 (Table
1). On chromosome 1, region VP0081 to VP0092 encodes
mainly hypothetical proteins of unknown function;
VP0081 encodes a homologue of a hyper osmotic shock
protection protein. Region VP1386 to VP1420 encodes
hemo utilization/adhesion proteins, OmpA, a ClpA/B
type protease, a BfdA homologue, a putative IcmF-related
protein and related type VI secretion system (T6SS) pro-
teins (VP1401 to VP1409), which is predicted to be
involved in intracellular trafficking, secretion, and vesicu-
lar transport in other Gram-negative pathogens. On chro-
mosome 2, region VPA0434 to VPA0458 encodes a large
Page 3 of 14
(page number not for citation purposes)



BMC Microbiology 2008, 8:110 http://www.biomedcentral.com/1471-2180/8/110

Page 4 of 14
(page number not for citation purposes)

Genome BLAST Atlas of V. parahaemolyticus RIMD2210633 as reference strain (inner most circle) versus V. fischeri ES114 (outer most circle purple), V. vulnificus strains YJ016 and CMCP6 (2nd navy and 3rd green circles) and V. cholerae N16961 (4th circle brown) for chromosome 1 (a) and chromosome 2 (b) [60]Figure 1
Genome BLAST Atlas of V. parahaemolyticus RIMD2210633 as reference strain (inner most circle) versus V. 
fischeri ES114 (outer most circle purple), V. vulnificus strains YJ016 and CMCP6 (2nd navy and 3rd green cir-
cles) and V. cholerae N16961 (4th circle brown) for chromosome 1 (a) and chromosome 2 (b)60[60]. The gaps or 
holes in the outer four circles represent regions present in V. parahaemolyticus strain RIMD2210633 that are absent from the 
other three species. The innermost circles show DNA structure features, DNA intrinsic curvature (circle 5), DNA stacking 
energy (circle 6), DNA position preference (circle 7), positive and negative coding strands are indicated by dark blue and red 
circle. Global direct and global inverted repeats are represented by circles 9 and 10, respectively and the two inner most cir-
cles represent GC shew and AT content, respectively.
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number of homologues of genes involved in degradation
processes. Region VPA887 to VPA0914 encode proteins
that show homology to phage f237 on chromosome 1.
Within region VPA0950 to VPA0962 are homologues of
biofilm associated proteins among others. Region
VPA0989 to VPA0999 contains homologues of a number
of peptidase, lipase and amylase genes, and region
VPA1440 to VPA1444 encode a type I secretion system
(Table 1). Region VPA1503 to VPA1513 contained a type
1 pilin homologue similar to Pap pilin identified in Bur-
kholderia pseudomallie, Pseudomonas spp and Yersinia spp.
Region VPA1559 to VPA1583 encodes a number of pro-
teins with a possible role in antibiotic resistance and
region VPA1652 to VPA1679 contains a ferric uptake sys-
tem.

We also constructed genome BLAST atlases of all 28
genomes available for members of the family Vibrionaceae
in the database, this included eight additional species of
the Vibrionaceae family. V. parahaemolyticus
RIMD2210633 as reference strain (inner most circle) ver-
sus V. parahaemolyticus AQ3810, V. cholerae 1587, AM-
19226, MAK757, MO10, MZO-2, MZO-3, B33,

NCTC8457, RC385, O395, V51, V52, 623–39, and 2740–
80, V. harveyi ATCC BAA116, V. alginolyticus 12G01, Vibrio
sp. Ex25, V. vulnificus CMCP6 and YJ016, V. splendidus
12B01, Vibrio sp. MED222, V. fischeri ES114, V. salmonic-
ida LF1238, V. angustum S14, P. profundum SS9 and 3TCK
for chromosome 1 (a) and chromosome 2 (b), in which
each gap region can be zoomed in on to examine in detail
(see Additional file 1 &2) [48].

Most of the 24 gap regions remained unique to V. para-
haemolyticus, exceptions were noted (see Additional file 1
and 2). For example, on chromosome 1 region VP0081 to
VP0092 is present in V. alginolyticus 12G01 and Vibrio sp.
Ex25, the osmotolerance gene clusters are partially present
in V. alginolyticus 12G01, V. harveyi ATCC BAA116 and
Vibrio sp. Ex25, and the T3SS-1 and T6SS (VP1388 to
VP1414) are present in V. alginolyticus, V. harveyi and
Vibrio sp. Ex25 (see Additional file 1 and 2). On chromo-
some 2, region VPA0950 to VPA0962 was present in Vibrio
sp. Ex25, homology to VPaI-7 within the T3SS-2 region
(VPA1332 to VPA1355 and VPA1358 to VPA1370) is
present in V. cholerae strains 1587, AM-19226, V51 and
623–39. Region VPA1440 to VPA1442 is present in Vibrio

Table 1: Chromosomal regions unique to V. parahaemolyticus strains RIMD2210633 and AQ3810

ORFs Region type Size % GC Int AQ3810 Reference

Chromosome I

VP0081 – VP0092 NK 10 48 - Present This study
VP0218 – VP0234 LPS 46 40 - Present This study
VP0380 – VP0403 VPaI-1 24 42 Int Absent [26]
VP0634 – VP0643 VPaI-2 10 45 Int Absent [26]
VP1071 – VP1095 VPaI-3 32 42 Int Partial [26]
VP1386 – VP1420 T6SS 57 43 - Absent This study
VP1549 – VP1590 phage f237 25 46 Int Absent [33]
VP1658 – VP1702 T3SS-1 35 47 - Present [26]
VP1719 – VP1728 Osmotolerance 12 46 - Present [47]
VP1787 – VP1865 Integron class-1 48 40 Int Absent This study
VP2131 – VP2144 VPaI-4 17 39 Int Absent [26]
VP2900 – VP2910 VPaI-5 12 38 Int Absent [26]

Chromosome II

VPA0434 – VPA0458 Degradative 29 46 Int Partial This study
VPA0887 – VPA0914 phage f237-like 16 47 Int Present This study
VPA0950 – VPA0962 Biofilm 22 47 Present This study
VPA0989 – VPA0999 Gametolysin 18 45 Present This study
VPA1102 – VPA1115 Osmotolerance 17 46 Present [47]
VPA1253 – VPA1270 VPaI-6 27 43 Int Absent [26]
VPA1312 – VPA1395 VPaI-7 (T3SS-2) 81 39 Tnp Present [26]
VPA1403 – VPA1412 CPS 13 47 Present This study
VPA1440 – VPA1444 Type I secretion 20 47 Present This study
VPA1503 – VPA1521 Type I pilus 20 45 Present This study
VPA1559 – VPA1583 Multidrug efflux 22 46 Present This study
VPA1652 – VPA1679 Ferric uptake 25 50 Present This study
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sp. Ex25. Region VPA1503 to VPA1521, which encodes a
type I pilin is present in V. alginolyticus, V. harveyi and
Vibrio sp. Ex25 (see Additional file 1 and 2).

Genome sequence of V. parahaemolyticus AQ3810
The previously published V. parahaemolyticus genome
sequence is from RIMD2210633 a tdh positive, trh and
urease negative O3:K6 clinical isolate of the highly viru-
lent clone recovered in Japan in 1996. In order to unravel
events at the genome level that may have lead to the emer-
gence and dissemination of the new highly virulent strain,
we sequenced the genome of AQ3810, a tdh positive, trh
and urease negative O3:K6 isolate recovered in Japan in
1983 for comparison. The complete genome sequence of
AQ3810 is 5.8 Mb and 5509 proteins have been anno-
tated within its genome compared with the 5.2 Mb
genome of RIMD2210633, which has 4832 annotated
proteins. There is extensive sequence homology between
the two sequences, however genomic differences were
noted. As had been found within other Vibrio species, the
gene capture system, the -integron encoded in
RIMD2210633 and AQ3810 do not share any significant
sequence similarity.

We examined the genome of AQ3810 for the presence of
the 24 regions identified as unique to RIMD2210633
from our species comparisons (Table 1). Of the 24
regions, 8 regions were absent from AQ3810, 5 genomic
islands (VPa-1, VPaI-2, VPaI-4, VPaI-5 and VPaI-6), ORFs
VP1386 to VP1420, which encodes T6SS, the class 1 inte-
gron, and phage f237 encoded on chromosome 1 (Table
1). These data confirm our previous result that VPaI-1,
VPaI-4, VPaI-5 and VPaI-6 are unique to the new highly
virulent strain recovered after 1995 [26]. For example, two
of the missing regions, VPaI-1 and VPaI-4, integrate at a
tRNA-met (VP0404.1) and tRNA-ser locus (VP2130.1),
respectively in RIMD2210633, however, in AQ3810, both
of these tRNA sites are empty (see Additional file 3). The
other two missing regions VPaI-5 and VPaI-6 regions are
located between core chromosomal ORFs VP2889 and
VP2911, and VPA1252 and VPA1271, respectively in
RIMD2210633, while in AQ3810, the homologues of
these genes are contiguous indicating that these sites are
empty (see Additional file 3).

Two VPaIs were rearranged. One, the VPaI-2 region
(VP0634 to VP0643), is present at the tmRNA gene (ssrA)
in RIMD2210633, a gene that encodes both tRNA and
mRNA properties. In AQ3810, at this same locus, the first
three genes of this region are present (VP0634 to
VP0636), which encode homologues of a nitrilase/cya-
nide hydratase, OmpA and LysR, but the remaining genes
are replaced by a novel region encoding an integrase (see
Additional file 4). A second island region, VPaI-3
(VP1071 to VP1095) present at a second tRNA-ser locus

(VP1070.1) in both RIMD2210633 and AQ3810 has 21
genes in common (ORFs VP1074 to VP1095) and 6 genes,
two novel integrases and four hypothetical proteins, are
adjacent to the tRNA-ser locus in AQ3810 (see Additional
file 4).

Two additional regions named VPaI-8 and VPaI-9 were
identified in AQ3810 (see Additional file 4). VPaI-8 is a
17 kb region located between homologues of VP3057 and
VP3058 and contains ORFs A79_5175 to A79_5191,
which encode a number of hypothetical proteins, homo-
logues of SMF and KAP proteins, and two integrases sepa-
rated by a single ORF (see Additional file 4). VPaI-9 is a 22
kb region integrated between homologues of VP0006 and
VP0007. VPaI-9 encodes an integrase, an excisionase, a
helicase and a type I restriction modification system.

ORFs VP1386 to VP1420 are absent from AQ3810. This
regions encodes T6SS (ORFs VP1401 to VP1409) and a
range of proteins that could be translocated by this sys-
tem; hemo utilization/adhesion proteins, OmpA, a ClpA/
B type protease, a BfdA homologue, a putative IcmF-
related protein. This suggests the presence of an addi-
tional virulence mechanism in the highly virulent O3:K6
clone. T6SSs have been identified in a range of Gram-neg-
ative pathogens including pathogenic V. cholerae and in
that species T6SS translocates a bacterial host protein into
host cells that cross link actin [49].

Distribution of VPaI-2, VPaI-3 and VPaI-7
Previously, we examined the distribution of VPaI-1, VPaI-
4, VPaI-5 and VPaI-6 among a worldwide collection of V.
parahaemolyticus isolates and found that these regions are
unique to 24 isolates of the highly virulent O3:K6 clone
[26]. We determined the distribution of VPaI-2, VPaI-3
and VPaI-7 using primer pairs described in Table 2. Of the
42 V. parahaemolyticus isolates examined by PCR assays
using two primer pairs encompassingVPaI-2, 27 isolates
gave positive PCR bands. These isolates were recovered
post-1995 and include the 24 isolates that were previously
shown to contain VPaI-1, VPaI-4 to -6 (Fig. 2). VPaI-2 was
also present in isolates UCMV586 and 1324, O8:K22 and
O4:K6 isolates recovered after 1995, and ATCC43996, an
O3:K4 clinical isolate from recovered in the UK in 1970
(Fig. 2). The presence of VPaI-2 in ATCC43996 indicates
that this region was present in isolates before 1995, prior
to its acquisition by the new highly virulent strain. VPaI-2
encodes an integrase, a resolvase, hypothetical proteins, a
ribonuclease HI, an aminohydrolase, transcriptional reg-
ulators and a lipase.

Molecular analysis of the distribution of VPaI-3 found
that the region is present in 25 V. parahaemolyticus isolates,
which included the same set of isolates that contain VPaI-
1, VPaI-2, and VPaI-4 to VPaI-6 (O3:K6 and related iso-
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Table 2: Primers used in this study

Primer Designation Primer sequence 5' – 3' Ta (°C) Product size (bp)

VPaI-2

VP0634F GGGGGAAATAAATGTCTGAAGG 52.1 1363
VP0634R AACACGCCAAGACTCTC
VP0637F GGAATAACTCAGAGCTTCG 52.8 1848
VP0640R TAGGCAGTCGTAATTCG
VP0643F ATACGCCTGATTGCTTC 52.0 1558
VP0643R TGGTACTATCAACGCCG
VP0644F CGTGCTTTTTCTCTTGC 51.1 970
VP0644R CCATATTGCTAGTTAGCTCG

VPaI-3

VP1069F TAGGGTCGGTGGTGTACTTG 52.8 2041
VP1069R GACTCCACTATTGGTTTA GC
VP1072F AGAGTCAGAGGAAAGGGAGG 50.3 2275
VP1073R GTAAATGTTGTGGGTGC
VP1079F CTGTCTTCATGCCTTTG 51.0 1691
VP1079R CGCCATTGCTAAACGTC
VP1083F CTTACTTATTGGAGGCTGG 52.1 2127
VP1083R GGTGGGTATAAAGGTAACG
VP1095F TCTGGTTCGGTATTTGG 52.7 1166
VP1096R CGCAGCATTTCTTGAAG

VPaI-7

VPA1308F TTAGAACGCATGAGCACCG 53.1 1844
VPA1309R CCACCAAAGTGTTTGTGAG
VPA1312F CTACTATCATCACGACGTG 49.4 1487
VPA1314R CGTGCTTATAGCCAGAC
VPA1317F GACAGACAGAGATACGCTG 50.9 1366
VPA1320R TTCAGAGGTGTCGCACTTCG
VPA1321F CGTGGTGGTTAGTGAATC 49.1 886
VPA1321R AGAGTTGGTTTCGCAGG
VPA1321F GACCACTATATTGTTCTCCG 49.4 1480
VPA1323R CTCAGGGATAAATAGGGATG
VPA1331F CCAATAATCACCCTCCG 49.9 1857
VPA1334R CTCAGGGATAAATAGGGATG
VPA1340F GTCCTTGATTACACCATTGG 51.8 1618
VPA1343R GCACGTAACATCTAAGTTCGTG
VPA1350F TGCATCGTCATTTCTCC 50.4 2630
VPA1354R CGTAGATTTCATGGCAG
VPA1363F TTTCACTAATGCTGCGG 51.1 2308
VPA1365R GGTCAATATGGCACTATGC
VPA1380F TTAGGGGTGTTATGCCG 48.5 816
VPA1380R TTACTGTCTCTGTTGCAGG
VPA1390F CCACAACACAAACTGTCC 50.9 2606
VPA1393R AATCCAAGGGGAGTGAC
VPA1394F AACGCCGAATTAACCGC 53.2 2356
VPA1395R TCACCCCAATGTACCGTCTG
VPA1397F GCGGAGCTGTAATGAAATG 52.9 793
VPA1398R CAACCAACGTATTGTAGCAG
VPA1400F ATAGGTCTGTGTAACCCG 52.3 1964
VPA1401R GGTAAAGCTGCGATGAC
VP0085F TGCTCGCTGCTATCTAC 53.0 1160
VP0085R CGTTAAATACGCCAGTTGC
VP0220F CCCTCAAGTGATTGATCC 53.0 1878
VP0220R AAGATAGCCCCTTGTGG
VP1399F CATCTCTTGCTCTTGGAG 51.0 1312
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lates recovered after 1995) (Fig. 2). One exception was
noted, KE10462, an O3:K6 isolate recovered in Japan in
1986. In addition, in two O3:K6 pre-1995 isolates,
KE9967 and U-5474, the VPaI-3 region was found to be
partially present, suggesting that this region is unstable
and has been deleted from these isolates. VPaI-3 contains
several transcriptional regulators, hypothetical proteins
and a methyl accepting chemotaxis protein.

VPaI-7, an 81 kb region present on chromosome 2,
encodes T3SS-2, two copies of the tdh gene, a cytotoxic
necrotizing factor, an exoenzyme T gene and five trans-
posase genes [20]. T3SS-2 in V. parahaemolyticus showed
similarity to a T3SS present in several pathogenic V. chol-
erae non-O1 and non-O139 isolates [50,51]. To deter-
mine the distribution of VPaI-7, we used 12 primer pairs
spanning the 81 kb region (Table 2). Of the 42 V. para-
haemolyticus isolates examined, 30 isolates were found to
contain the entire VPaI-7 region. Similar to the VPaI-2 and
VPaI-3 regions, the 30 VPaI-7-positive isolates included
all 24 highly virulent isolates as well as 3 O3:K6 strains
isolated pre-1995, strains KE9967, U-5474, and
ATCC43996 (Fig. 2). The region was present in three O4
serogroup isolates, 1324, an O4:K6, and two Spanish iso-
lates, 30824 and 428/00 (Fig. 2). Although, T3SS-2 was
previously reported to be present only in the highly viru-
lent strain, this appears not to be the case as others have

found [52]. This region was partially present in 6 isolates
(Fig. 2). A primer pair designed within VPA1308/
VPA1309, and a primer pair within and VPA1400/
VPA1401 all gave a positive PCR product with all strains
examined indicating that these genes represent core chro-
mosomal flanking genes.

We examined 11 additional regions that were unique to V.
parahaemolyticus for their distribution among our collec-
tion of isolates, all 11 regions were present in all the
highly virulent isolates, in fact 3 regions were present in
all strains examined (see Additional file 5). Five regions
were absent from 1 to 3 isolates, which included the
region that encodes T6SS that is absent from two pre-1995
O3:K6 strains. Three regions were absent from five isolates
(see Additional file 5).

Evolutionary genetic relationships
To understand the evolutionary significance of the distri-
bution of the VPaI regions among our collection of iso-
lates, a phylogenetic frame work was constructed by
multilocus sequence (MLS) analysis of an initial analysis
of three housekeeping genes. MLS analysis was demon-
strated in numerous studies to be a powerful method to
both discriminate and determine the phylogenetic rela-
tionships among bacterial isolates including Vibrio species
[53-55]. We found similar to others that V. parahaemolyti-

VP1400R TGAGGTCTACAATGAGTCAG
VP1415F CGCAATTAAAGGCAGTACG 51.0 2274
VP1416R GACTGAATAAGAGTGCTCG
VP1556F TCCCGATTGTAAGTTGC 53.0 1957
VP1558R AGCTAATGCGAATGAGC
VPA0446F ACGTTCTTTTGGGATGG 53.0 2376
VPA0447R ACCGAAGCCTTAACACG
VPA0450F AATGCGAAAGAAGGCGATAC 60.0 1337
VPA0450R TGCGCTTGTAGATGAGTTGG
VPA0891F GTCGCTCTTTATGTTGC 50.5 615
VPA0891R GAAGCCTGTATCAACTGTC
VPA0894F TAATGGTCGATGCACTG 54.0 1215
VPA0894R GGATGAGCAAGTCAGTAGC
VPA0952F CGAGTGATCCAGTTTTACAC 52.0 2720
VPA0953R AACTACCAGCTAGAAGTGG
VPA0992F CCGACATAAAGGGATACTC 52.0 1926
VPA0992R GAAGAAGCACTTGCTCTC
VPA1443F CAATCAGCAGCCAGTCGTTA 60.0 1233
VPA1443R CCGGATGTCAAACGGTACTT
VPA1503F GTTCGACAATGGCATGTGAG 60.0 801
VPA1503R CGCCAGTATCGACATCACTC
VPA1655F CCGTTTTGCTGATGCTACTG 60.0 816
VPA1655R ATGACCACAGTTCCGGAGAG
VPGyrBF GTA CTG AAG GGT CTG GAT GC 54.6 742
VPGyrBR ACT GCA TTG CCA CTT CTA CC
VPmdhF TGAAAGTAGCCGTTATTGG 54.0 901
VPmdhR CCATTTAGCGTTTCTAGCATTC
VPGroEL1F TTTCGGTGCTCCAACCATC 55.4 737
VPGroEL1R GCATTGCTTTACGACGGTC

Table 2: Primers used in this study (Continued)
Page 8 of 14
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Evolutionary relationships of V. parahaemolyticus isolates based on the concatenated housekeeping gene treeFigure 2
Evolutionary relationships of V. parahaemolyticus isolates based on the concatenated housekeeping gene tree. 
Phylogenetic trees were constructed using the neighbor-joining method based on the based on Kimura 2-parameter distance 
using MEGA-3. The plus and minus signs represent the presence and absence of VPaIs among our collection of isolates.
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cus isolates are highly related sharing substantial sequence
similarity at the three loci we examined [37,42] (Fig. 2).
Within the 1854 bps examined among the 42 isolates,
there were a total of 39 polymorphic sites of which 21
sites were phylogenetically informative and 12 sequence
types (ST) were found. For the purposes of this study, a
phylogenetic tree was constructed by the neighbor-joining
method using Kimura 2-parameter, which clustered the
strains into two closely related but distinct groups named
A and B (Fig. 2). The first group contains all highly viru-
lent isolates whereas group B is comprised of mainly envi-
ronmental isolates recovered in Spain in the early 2000s.
Within group A are 25 isolates that are identical at all three
loci examined; these isolates include 22 O3:K6 isolates
with worldwide distribution recovered pre-1995 and
post-1995, and 3 O1 serogroup isolates (O1:K25 and
O1:KUT) recovered post-1995. O3:K6 and O1:K25 iso-
lates recovered post-1995, and O3:K6 isolates recovered
pre-1995 shared identical sequence profiles (Fig. 2). These
data support the hypothesis that O1:K25 and O1:KUT
serogroups arose from the O3:K6 highly virulent strain by
acquisition of novel O and K antigens similar to the emer-
gence of the pathogenic V. cholerae O139 serogroup strain
from an O1 El Tor isolate. Acquisition of novel O and K
antigens would be evolutionary advantageous since it
may play a role in host immune avoidance in V. para-
haemolyticus infection. Clustering with these O3:K6,
O1:K25, O1:KUT isolates are four identical O4 serogroup
isolates and KE10464, a divergent O3:K6 pre-1995 (Fig.
2). Thus, it appears that acquisition of novel O antigens is
frequent in this species and more recent data suggests this
is an ongoing event [3]. Also found within group A are
several divergent O3:K6 pre-1995 and post-1995 isolates,
and a single divergent O4:K8 post-1995, 1324 (Fig. 2).
Group B consists of 5 isolates, with various serotype des-
ignations but all were recovered in Spain post-1995 (Fig.
2). Three of the strains were recovered from mollusks and
sea sediment, and two strains 30824 and 428/00, which
shared an identical ST, were from clinical sources. Overall,
the phylogenetic tree constructed from concatenated
sequences of three housekeeping genes indicates that
pathogenic V. parahaemolyticus isolates are highly homol-
ogous as others have previously shown [42].

We mapped the distribution of each of the VPaI genomic
islands onto the phylogenetic tree to elucidate the possi-
ble steps involved in the emergence of the globally distrib-
uted V. parahaemolyticus new highly virulent strain. We
found that similar to VPaI-1, VPaI-4, VPaI-5 and VPaI-6,
VPaI-2 and VPaI-3 are predominately present among the
highly virulent isolates recovered after 1995 with only one
exception noted for VPaI-2, strain ATCC43996 recovered
in the UK in 1970, an O3:K4 serogroup (Fig. 2). The VPaI-
3 region was present in two pre-1995 O3:K6 isolates,
KE9967 and U5474 that have an identical sequence type,

and in KE10462, which shows an identical sequence type
to five additional pre-1995 and 16 post-1995 O3:K6 iso-
lates. KE10462 also appears to have contained the VPaI-7
regions since it is partially present in this isolate (Fig. 2).
KE10462 has been shown to be positive for group specific
PCR (GS-PCR), which is based on the toxRS nucleotide
sequence, that has previously been shown to differentiate
post-1995 pandemic strains from non-pandemic and pre-
1995 isolates [26,39].

In conclusion, the most parsimonious scenario for the
evolution of the new highly virulent O3:K6 clone suggests
that a pre-1995 O3:K6 strain obtained regions VPaI-1 to
VPI-7, and a T6SS encoded within ORFs VP1386–VP1420,
this secretion systems along with T3SS-2 may explain the
highly virulent nature of the O3:K6 virulent clone. It
appears that V. parahaemolyticus isolates have the ability to
acquire large regions of DNA and that this is an ongoing
process among pathogenic isolates. For example, the O1
and K antigens, which are encoded in the same genomic
region, are undergoing frequent change among closely
related strains and this may be a mechanism to avoid the
host immune system.

The possible origins of the V. parahaemolyticus variable
regions appear to be quite diverse. Blast analysis of the
VPaI-1 encoded proteins found 7 ORFs highly homolo-
gous to a 22 Kb island present in V. cholerae strain 623–39
at the same tRNA-met insertion site, whereas a similar
analysis of VPaI-3 showed high sequence similarity to a
region in V. harveyi HY01 (AIQ_705 to AIQ_762). VPaI-2
encoded several ORFs with high similarity to ORFs identi-
fied in Vibrio sp Ex25. Most of VPaI-5 showed homology
to ORFs from Shewanella woodyi and Shewanella sp, and
similarly several ORFs of VPaI-6 were homologous to a
region in Shewanella sp ANA-3. The T3SS-2 region
encoded on island VPaI-2 is most closely related to a T3SS
recently identified in V. cholerae V51, a non-O1 serogroup
isolate [56]. Region VP1386 to VP1420, which encodes a
T6SS as well as a Rhs element, showed extensive homol-
ogy to a region in V. harveyi ATCC BAA-1116.

Methods
Bacterial isolates
A total of 42 V. parahaemolyticus isolates were examined in
this study as previously described [26]. The 42 isolates
were temporally (1970 to 2003) and geographically wide-
spread (Asia, Europe and South America) and encom-
passed 10 different serotypes. All V. parahaemolyticus
isolates were grown in Luria-Bertani broth (LB) supple-
mented with 3% NaCl and stored at -70°C in LB broth
with 20% (v/v) glycerol.
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Comparative bioinformatics analysis
We performed four-way BLAST analysis of V. parahaemo-
lyticus RIMD2210633, an O3:K6 isolated in 1996, versus
V. vulnificus YJ016, V. vulnificus CMCP6, V. cholerae
N16961 and V. fischeri ES114 to identify regions that
were unique to V. parahaemolyticus. Complete nucleotide
sequences and annotations for the V. parahaemolyticus
RIMD2210633, V. vulnificus YJ016, V. vulnificus CMCP6,
V. cholerae N16961 and V. fischeri ES114 were retrieved
and downloaded from NCBI [20,57-59]. These were
used to construct a genome atlas of the complete
genome sequence of all five isolates. The genome atlas
plot maps DNA structure features, repeats, and base
composition properties of V. parahaemolyticus as well as
each gene present in RIMD2210633, and their homo-
logues in all four additional species oriented at the
ori[60]. In addition, we constructed a zoomable genome
atlas of the complete genome sequences of all 27 mem-
bers of the family Vibrionaceae available in the database.
This data can be interactively examined for chromosome
1 and for chromosome 2 on the web [48]. We compared
the genome of V. parahaemolyticus RIMD2210633 to the
genome of V. parahaemolyticus AQ3810, an O3:K6 iso-
lated in 1983, using the Artemis comparison tool (ACT)
program [61].

Molecular analysis
Chromosomal DNA was extracted from each V. para-
haemolyticus isolate using the G-nome DNA isolation kit
from Bio 101. To determine the distribution of regions
unique to V. parahaemolyticus among our collection of 41
isolates, PCR assays were performed. Primer pairs were
designed to target within the regions of interest as well as
flanking the regions (Table 2). PCR was performed in a 25
μl reaction mixture with the following cycles: an initial
denaturation step at 96°C for 3 min followed by 30 cycles
of denaturation at 94°C for 30s, 30s of primer pair
annealing at the respective temperature, an extension step
at 72°C for 1–4 min (depending on expected PCR prod-
uct size). PCR primers to amplify three chromosomal
housekeeping genes, gyrase subunit B (gyrB, VP0014),
malate dehydrogenase (mdh, VP0325), and chaperonin
(groEL-1, VP2851), were designed based on the sequence
of V. parahaemolyticus RIMD2210633 (Table 1). The
housekeeping genes were PCR amplified from chromo-
somal DNA isolated from all V. parahaemolyticus isolates
and PCR products were purified using Jetquick PCR puri-
fication Kit (GENOMED). The mdh, gyrB and groEL-1
sequences were determined by MWG-Biotech based on
the dye deoxy terminator method and the reaction prod-
ucts were separated and detected on an ABI PRISM 3100
genetic analyzer.

Phylogenetic analysis
The multiple sequence alignment program ClustalW was
used to align nucleotide sequences for each housekeeping
gene [62]. Rates of synonymous substitutions/synony-
mous site (KS) were calculated by the methods of Nei and
Gojobori and Nei and Lin [63,64]. To analyze the evolu-
tionary relationships among V. parahaemolyticus isolates,
the concatenated sequence of all three housekeeping
genes was used to construct a Neighbour-Joining phyloge-
netic tree based on Kimura 2-parameter distance using
MEGA-3 [65].

Nucleotide sequence accession no
The sequences of mdh, gyrB and groEL-1 were submitted to
GenBank and given the accession numbers GenBank
EU629305–EU629345.
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Additional file 1
Fig. S1.  Genome BLAST Atlas of V. parahaemolyticus RIMD2210633 
as reference strain (inner most circle) versus 27 genomes of members of 
the family Vibrionaceae for chromosome 1. V. parahaemolyticus 
RIMD2210633 as reference strain (inner most circle) versus V. para-
haemolyticus AQ3810, V. cholerae 1587, AM-19226, MAK757, 
MO10, MZO-2, MZO-3, B33, NCTC8457, RC385, O395, V51, V52, 
623-39, and 2740-80, V. harveyi ATCCBAA116, V. alginolyticus 
12G01, Vibrio sp. Ex25, V. vulnificus CMCP6 and YJ016, V. splen-
didus 12B01, Vibrio sp. MED222, V. fischeri ES114, V. salmonicida 
LF1238, V. angustum S14, P. profundum SS9 and 3TCK for chromo-
some 1.  The gaps or holes in the outer four circles represent regions present 
in V. parahaemolyticus strain RIMD2210633 that are absent from the 
other species.  The innermost circles show DNA structure features, DNA 
stacking energy, DNA position preference, positive and negative coding 
strands are indicated by dark blue and red circle. Global direct and global 
inverted repeats are represented and the two inner most circles represent 
GC shew and AT content, respectively.
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[http://www.biomedcentral.com/content/supplementary/1471-
2180-8-110-S1.pdf]
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Additional file 2
Fig. S2.  Genome BLAST Atlas of V. parahaemolyticus RIMD2210633 
as reference strain (inner most circle) versus 27 genomes of members of 
the family Vibrionaceae for chromosome 2. V. parahaemolyticus 
RIMD2210633 as reference strain (inner most circle) versus V. para-
haemolyticus AQ3810, V. cholerae 1587, AM-19226, MAK757, 
MO10, MZO-2, MZO-3, B33, NCTC8457, RC385, O395, V51, V52, 
623-39, and 2740-80, V. harveyi ATCCBAA116, V. alginolyticus 
12G01, Vibrio sp. Ex25, V. vulnificus CMCP6 and YJ016, V. splen-
didus 12B01, Vibrio sp. MED222, V. fischeri ES114, V. salmonicida 
LF1238, V. angustum S14, P. profundum SS9 and 3TCK for chromo-
some 2.  The gaps or holes in the outer four circles represent regions present 
in V. parahaemolyticus strain RIMD2210633 that are absent from the 
other species.  The innermost circles show DNA structure features, DNA 
stacking energy, DNA position preference, positive and negative coding 
strands are indicated by dark blue and red circle. Global direct and global 
inverted repeats are represented and the two inner most circles represent 
GC shew and AT content, respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2180-8-110-S2.pdf]

Additional file 3
Fig. S3.  Linear comparison of V. parahaemolyticus RIMD2210633 
and AQ3810 created using ACT (Artemis Comparison Tool) at the inser-
tion sites of (A) VPaI-1 and VPaI-4, and (B) VPaI-5 and VPaI-6.  A 
homologous block of genomic sequence (BLASTN matches) is indicated by 
red lines between the chromosomal regions examined.  The location of the 
genomic islands (GIs) identified in RIMD2210633 are illustrated above, 
and in AQ3810 below the genome comparison.  Horizontal arrows repre-
sent annotated genes, striped arrows represent integrases, and the direc-
tion of the arrow indicates gene orientation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2180-8-110-S3.ppt]

Additional file 4
Fig. S4.  Linear comparison of V. parahaemolyticus strain 
RIMD2210633 and strain AQ3810 created using ACT [59] at the inser-
tion sites of (A) VPaI-2 and VPaI-3, and (B) VPaI-9 and  VPaI-10.  A 
homologous block of genomic sequence (BLASTN matches) is indicated by 
red and blue lines between the chromosomes; blue lines indicate chromo-
somal inversion events.  The location of Vibrio parahaemolyticus islands 
(VPaIs) identified is illustrated above for RIMD2210633 and below for 
AQ3810 the region examined. Horizontal arrows represent annotated 
genes, striped arrows represent integrases, and the direction of the arrow 
indicates gene orientation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2180-8-110-S4.ppt]

Additional file 5
Table S1. PCR assays of the distribution of 11 regions unique to V. para-
haemolyticus.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2180-8-110-S5.doc]
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