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Abstract

Background: Salmonella can reside in healthy animals without the manifestation of any adverse
effects on the carrier. If raw products of animal origin are not handled properly during processing
or cooked to a proper temperature during preparation, salmonellosis can occur. In this research,
we developed bioluminescent Salmonella strains that can be used for real-time monitoring of the
pathogen's growth on food products. To accomplish this, twelve Salmonella strains from the broiler
production continuum were transformed with the broad host range plasmid pAKluxl, and a
chicken skin attachment model was developed.

Results: Salmonella strains carrying pAKlux| constitutively expressed the luxCDABE operon and
were therefore detectable using bioluminescence. Strains were characterized in terms of
bioluminescence properties and plasmid stability. To assess the usefulness of bioluminescent
Salmonella strains in food safety studies, we developed an attachment model using chicken skin. The
effect of washing on attachment of Salmonella strains to chicken skin was tested using
bioluminescent strains, which revealed the attachment properties of each strain.

Conclusion: This study demonstrated that bioluminescence is a sensitive and effective tool to
detect Salmonella on food products in real-time. Bioluminescence imaging is a promising technology
that can be utilized to evaluate new food safety measures for reducing Salmonella contamination on
food products.

Background

Salmonella enterica, with over 2000 different serovars, is
indigenous to the gastrointestinal tracts of many mam-
mals, birds, and reptiles, usually in low levels. Salmonella
can be pathogenic in these animals if it reaches certain
numbers in vivo. However, moribund animals are usually
culled before they reach slaughter. Therefore, the food

safety problem relative to humans is that Salmonella can
be carried into the processing plant in healthy asympto-
matic animals. If cross-contamination occurs during the
slaughter process, Salmonella can then be transferred to
carcasses that were previously uncontaminated. A signifi-
cant increase in the number of Salmonella positive broilers
between exiting the scalding water immersion tank and
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exiting the crop extractor demonstrates how in-plant
cross-contamination can occur [1,2]. When carcasses were
sampled at 6 points in processing, an increase occurred in
the presence of Salmonella from 19% pre-scald to 36.9 %
post-chill (after exiting the immersion chill tank).

Regardless of whether the source of contamination was
pre-harvest or during processing, Salmonella is difficult to
remove from carcasses due to its ability to adhere to
chicken skin and endure the stages of processing [3]. Lab-
oratory research, as well as in-plant trials, has demon-
strated this relationship [4-7]. Therefore, persistence of
Salmonella within the processing plant may be partially
explained by interactions between chicken skin and Sal-
monella. Chemical treatments have been developed and
shown to be effective under controlled conditions in the
reduction of Salmonella levels on broiler carcasses or skin
[8-11]. In spite of these efforts, Salmonella is yet to be elim-
inated from the process.

When testing the efficacy of different antimicrobial com-
pounds, conventional cultural techniques are typically
used. The product is sampled, microbiological culturing
protocols are followed, and 48 to 72 hours later the results
are known. Bioluminescence imaging (BLI) is a technique
that can be used for real-time quantification and tracking
of live bacteria in hosts [12-15]. To enable BLI, bacteria
are tagged with bacterial luciferase, which catalyzes the
oxidation of a long-chain aldehyde and FMNH, to cause
emission of visible light [16-19]. Salmonella strains consti-
tutively expressing bacterial luciferase have no significant
alterations in phenotype, including growth kinetics
[20,21] or biochemical, serological, or structural pheno-
types [20,22]. Advantages of the bacterial luciferase
reporter system include negligible background [23], no
toxic or phenotypic effects from accumulation of signal
[24], real-time detection, and no need for addition of an
exogenous substrate. In addition, bioluminescence from
bacterial luciferase correlates well with the amount of luci-
ferase protein and lux mRNA [25,26], bacterial plate
counts [20,27], and intracellular numbers of bacteria in
cell culture [28].

In this research, our aim was to develop twelve biolumi-
nescent Salmonella enterica strains that can be used for
real-time monitoring of the pathogen's growth on food
products. Our study is unique in that it includes multiple
Salmonella field strains isolated from the broiler produc-
tion continuum, including post hatchery, prior to harvest,
arrival at the plant, pre-chill tank, and post-chill tank.

Results and discussion

Bioluminescent Salmonella strains

pAKlux1 was transferred to twelve Salmonella strains that
we isolated in a study on the poultry production and
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processing continuum. The strains represented the twelve
most commonly isolated serovars from our study. This
result compared favorably with a previous report where
transformation of a lux plasmid into Salmonella isolates
from a poultry processing plant was only successful for
one isolate out of seven attempted [20]. Expression of the
luxCDABE operon, which encodes bacterial luciferase, was
driven by the lacZ promoter on pAKilux1. Because Salmo-
nella does not have lacld in its chromosome, it constitu-
tively expresses the lacZ promoter on pAKlux1 and hence
produces continuous light while it is alive and metaboli-
cally active.

We showed that bacteria numbers and bioluminescence
correlated well (R2= 0.99) in all strains used (Figure 1).
The minimum detectable numbers for all twelve strains
was less than 1500 CFU/ml, and it was less than 300 CFU/
ml for a majority of strains (S. Alachua, 334 CFU/ml; S.
Braenderup, 217 CFU/ml; S. Enteritidis, 175 CFU/ml; S.
Heidelberg, 169 CFU/ml; S. Kentucky, 229 CFU/ml; S.
Mbandaka, 248 CFU/ml; S. Montevideo, 209 CFU/ml; S.
Newport, 125 CFU/ml; S. Schwarzengrund, 1470 CFU/
ml; S. Seftenberg, 1386 CFU/ml; S. Thompson, 1044
CFU/ml; and S. Typhimurium, 202 CFU/ml). This result
was comparable to previous studies [13,15,29,30].

The average theoretical light intensity per CFU was calcu-
lated for each strain and revealed a greater than 10-fold
difference between some serovars (Figure 2). This differ-
ence was not due to lack of viability; bacterial plate counts
showed that all the strains were viable at this stage and
that viable bacterial densities for all the serovars were
within a 3 fold range. The difference in luminescence
could reflect a difference between serovars in efficiency of
luxCDABE expression from the lacZ promoter, or it could
reflect a difference between serovars in the activity of bac-
terial luciferase within the bacteria. Alternatively, the dif-
ference could reflect differences in metabolic activity
between the serovars at this stage of growth (16 hours).
Bioluminescence is known to correlate well with bacterial
metabolism [31,32].

Plasmid stability

The stability of pAKlux1 was determined by subculturing
bioluminescent Salmonella broth cultures under selective
(with ampicillin) and non-selective (no ampicillin) con-
ditions for 15 days. Bioluminescence of Salmonella strains
cultured under non-selective conditions was declining by
day 2 and continued declining linearly (R% = 0.95) until
the conclusion of the experiment (Figure 3). Based on the
data, the average half-life of pAKiux1 in Salmonella was
approximately 7 days under the described culture condi-
tions. However, the stability varied between Salmonella
serovars. Among the Salmonella strains, plasmid stability
was lower in S. Kentucky and S. Typhimurium as com-
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Correlation between bioluminescence and bacterial numbers. The correlation between luminescent signals and bac-
teria numbers for representative serovars S. Montevideo and S. Newport. A) 96-well plate containing S. Montevideo (rows A,
B, C, and D) and S. Newport (rows E, F, G, and H). 25 pl of bacteria suspension from columns || and 12 were spread on LB
agar plates with ampicillin (100 pg ml-') to determine the concentration of colony forming units. B) plot of bioluminescence
against bacterial numbers for S. Montevideo. C) plot of bioluminescence against bacterial numbers for S. Newport.
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Figure 2

Expression of bioluminescence in Salmonella serov-
ars. The theoretical amount of bioluminescence produced
per CFU of each Salmonella serovar following 16 hrs of
growth was calculated. Bioluminescence per cfu was calcu-
lated by dividing the background subtracted bioluminescence
value (in p/s/cm?/sr) in each well by the number of bacteria
(determined by serial dilution and plate counts). The mean
and standard error from four replicates were then deter-
mined for each strain. Light emission was almost 12 fold
higher in S. Newport as compared to S. Schwarzengrund.

pared to the others. The half-life of pAKlux1 was about 4
days in S. Kentucky and about 5 days in S. Typhimurium
(Figure 3). S. Newport, S. Slachua, and S. Enteritidis main-
tained pAKlux1 longer than others, with a half life of
about 9 days.

pAKlux1 is derived from the broad host range plasmid
pBBR1, which is relatively stable in gram-negative bacteria
in the absence of antibiotic selection [33-35]. pAKlux1
was stable in the gram-negative species Edwardsiella
ictaluri for at least 10 days without antibiotic selection,
and the plasmid caused no alterations in growth kinetics,
native plasmids, and pathogenicity as compared to the
parent strain [15]. Data from the current study indicates
that the pBBR1 replicon is not as stable in Salmonella as it
is in other gram-negative bacteria. However, biolumines-
cent Salmonella strains labeled with pAKlux1 should be
suitable for short term experiments in which antibiotic
selection cannot be applied.

Characterization of skin attachment properties of
Salmonella strains

We developed an in vitro skin attachment model for char-
acterization of attachment properties of different Salmo-
nella strains using BLI. Bioluminescence was successfully
detected on chicken skin after being exposed to Salmonella
strains expressing pAKlux1. Using this model, we were
able to show that Salmonella strains from different serov-

1.3000

http://www.biomedcentral.com/1471-2180/8/10

y = -0.0693x + 1.0085
1.2000 A R? = 0.9535
1.1000 /\
10000 \ / \ ——S. Kentucky
) ——S. Montevideo
g 0:9000 N S. Enteritidis
5 0.8000 \// R\ N S. Alachua
2 07000 < s, Typhimurium
3 ™\ ——8. Seftenberg
0.6000
E NS —s. Thompson
2 0.5000 ‘\\\ % s.
2 04000 \ S. Newport
\\ \ S. Heidelberg
0.3000 \ Y \ S. Schwarzengrund
0.2000 S
0.1000 N
0.0000 =
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Days
.
Figure 3

Stability of pAKlux| in Salmonella. Salmonella strains car-
rying pAKlux| were subcultured under ampicillin selective
and non-selective conditions for |5 days. At each passage,
bioluminescence was measured and normalized for cell den-
sity (ODyqp)- The ratio between the normalized values under
non-selective (nLB) and ampicillin selected conditions
(nLBamp) revealed the plasmid stability in different Salmonella
serovars. The black line represents the mean of eleven
strains, and the red line is the linear trend line.

ars vary in their ability to attach to chicken skin (Figure 4).
Bacteria numbers in S. Seftenberg, S. Thompson, and S.
Schwarzengrund were significantly different from each
other and from other strains (P < 0.05). The S. Heidelberg
strain had significantly less binding to chicken skin than
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Figure 4

Attachment of Salmonella strains to chicken skin. The
amount of Salmonella attachment to chicken skin was deter-
mined by measuring the bioluminescence following | h incu-
bation of bacterial suspension with quadruplicate skin
samples. Bacteria numbers of each strain were estimated
from the bioluminescence values using each strain's linear
correlation formula. Unattached Salmonella were removed by
gentle washing prior to bioluminescence measurements. The
bacteria number for each strain is the geometric mean of
four replicates from three separate experiments. Letters on
the right of the graph indicate statistical groupings as deter-
mined by Tukey's test. Values with the same letter are not
significantly different (P > 0.05).
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all the other strains and was 79 fold lower than S. Seften-
berg, which had the highest amount of binding (Figure 4).
This result suggests that Salmonella strains vary in their
ability to bind to chicken skin; this ability may be a dis-
criminating factor determining whether Salmonella strains
persist through processing or whether they are removed.
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The effect of washing on Salmonella removal from
chicken skin

Bioluminescence was an effective tool for measuring the
effects of washing for removal of Salmonella from chicken
skin using our model (Figure 5). Bioluminescent Salmo-
nella strains have been previously utilized to monitor
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The effect of washing on removal of Salmonella from chicken skin. Bioluminescence was used to measure the ability of
agitated water bath to remove Salmonella strains from chicken skin. Salmonella was allowed to attach to chicken skin for | h,
and then the amount of Salmonella present on skin that received four 30 min washes was compared to the amount of Salmo-
nella present on non-washed skin. Bioluminescence was measured after each 30 min wash, and the mean of four replicates
from three separate experiments was determined. A) Representative plate containing 3 Salmonella strains at five time points.
Half of the plate included washed skin samples (w) and the other half included unwashed skin controls (nw). Column | is S. Sef-
tenberg, column 2 is S. Thompson, and column 3 is S. Typhimurium. B) Amount of bioluminescence for the three representa-

tive strains at each time point.
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progress of infection, effect of heat and pH treatments,
growth in food samples, and toxicity [13,20,22,36]. One
study used a single bioluminescent Salmonella Hadar iso-
late to investigate the effectiveness of washing for removal
of Salmonella from turkey skin [20]. The current study
demonstrates, for the first time, use of BLI for real-time
monitoring of twelve Salmonella strains using a chicken
skin model.

As a general trend observed from all strains, washing sup-
pressed the reproduction of Salmonella on chicken skin,
probably due to physical removal of bacteria (Figure 6). In
non-washed skin samples, Salmonella numbers increased
steadily over the two hour incubation period (Figure 5B),
with final numbers showing an increase ranging from
143% (S. Schwarzengrund) to 459% (S. Newport) com-
pared to initial measurement at time zero. In washed skin
samples, the increase in Salmonella numbers was lower,
demonstrating the effectiveness of simple agitation in
water for suppressing Salmonella growth on chicken skin.

For all 12 strains, the washed treatments had a signifi-
cantly lower change in bioluminescence than the corre-
sponding non-washed treatments after the 2 h wash
period. However, there was strain variation in the effec-
tiveness of washing (Figure 6). For three strains (S. Ken-
tucky, S. Mbandaka and S. Montevideo), washing reduced
the number of Salmonella present on chicken skin at 120
min compared to 0 min (pre-wash). For the other strains,
although washing did not decrease the number of Salmo-
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Figure 6

Comparison of the amount of Salmonella before and
after 2 h incubation. The change in bioluminescence on
chicken skin following 2 h incubation (relative to pre-wash
bioluminescence) for washed and non-washed treatments is
shown. Letters at the top of the graph indicate statistical
groupings for the mean differences between washed and
non-washed treatments within each strain as determined by
Tukey's test. Values with the same letter are not significantly
different (P > 0.05).
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nella on chicken skin, it was effective in significantly
reducing the growth relative to non-washed samples.

When the differences in bioluminescence between
washed and non-washed treatments at 120 min were
compared across strains, the decrease in bioluminescence
for S. Newport caused by washing was significantly greater
than the decrease in bioluminescence for S. Alachua, S.
Braenderup, S. Enteritidis, and S. Schwarzengrund (Figure
6). Thus, based on the difference in bioluminescence
between washed and non-washed treatments, washing
was apparently most effective in removing S. Newport and
least effective for S. Alachua, S. Braenderup, S. Enteritidis,
and S. Schwarzengrund. However, it is interesting to note
that the two strains that attached to chicken skin most
effectively (S. Seftenberg and S. Thompson; Figure 4) were
also able to increase their numbers in the wash treatment
most effectively (3.7 and 2.7 fold increases, respectively,
relative to pre-wash) over the 2 hr incubation.

Conclusion

Our results demonstrate that pAKlux1 is effective for labe-
ling Salmonella enterica strains with bioluminescence.
Using this tool, we were able to develop twelve biolumi-
nescent Salmonella strains that were isolated from the
poultry production/processing continuum. However, sta-
bility results indicated that pAKlux1 is not as stable in Sal-
monella as it is in other gram-negative species. Therefore,
this labeling system may not be useful for long-term
experiments, and work is already in progress in our group
to develop a labeling system for Salmonella that is more
stable.

Our work also shows that bioluminescence is an effective
and sensitive method to monitor Salmonella on food
products. In particular, our study demonstrates that Sal-
monella strains vary in their ability to attach to chicken
skin. Future research aimed at determining whether the
ability to attach to chicken skin correlates with the ability
to persist in poultry production/processing environments
is warranted. Finally, our results indicate that simple
washing in an agitated water bath can remove contami-
nating Salmonella from chicken skin, but this method
alone cannot eliminate the Salmonella completely due to
strong bacterial attachment to skin. Therefore, additional
methodologies should be used in poultry processing to
eliminate Salmonella from the chicken skin to prevent dis-
ease outbreaks. The skin model developed in this study
should be very useful for testing alternative strategies in
addition to washing procedures.

Methods

Bacterial strains and growth media

As part of a previous study, we have collected, isolated,
and serotyped thousands of Salmonella specimens derived
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and cataloged at five different sites along the broiler pro-
duction continuum: post hatchery, prior to harvest, arrival
at the plant, pre-chill tank, and post-chill tank. Salmonella
isolates were collected from 66 different flocks during the
years 2003-2006. The cataloged information ascribed to
each isolate includes location within the production con-
tinuum, flock environmental and production parameters,
as well as processing plant information. Strains from
twelve Salmonella enterica serovars from the poultry pro-
duction continuum were selected for this study (S. Ala-
chua, S. Braenderup, S. Enteritidis, S. Heidelberg, S.
Kentucky, S. Mbandaka, S. Montevideo, S. Newport, S.
Schwarzengrund, S. Seftenberg, S. Thompson, and S.
Typhimurium). Salmonella strains were grown using
Luria-Bertani broth and agar plates at 37°C, and biolumi-
nescent Salmonella strains were grown in the same
medium containing ampicillin (100 pg ml-!) for plasmid
maintenance.

Bioluminescence tagging of Salmonella strains
Bioluminescent Salmonella enterica strains were estab-
lished using the broad host range plasmid pAKlux1 con-
taining the IuxCDABE operon from Photorhabdus
luminescens [15]. Salmonella strains were grown to loga-
rithmic phase (ODg,,0f 0.6-0.8), made electrocompetent
by washing with 10% cold glycerol solution four times,
and stored at -80°C. pAKluxl was isolated from
Escherichia coli DH5a strain by QIAprep Spin Miniprep Kit
(Qiagen, Valencia, CA). Salmonella strains were trans-
formed with pAKlux1l by electroporation using a Gene
Pulser I system at 2.5 kV, 25 uF, and 400 Q (Bio-Rad, Her-
cules, CA). Cells were allowed to recover for 1 h at 37°C
in SOC media (Invitrogen Corp., Carlsbad, CA). Follow-
ing recovery, bacteria were spread on LB plates with amp-
icillin and placed in an incubator at 37°C for
approximately 16 h. Ampicillin resistant bioluminescent
Salmonella colonies were detected using a Chemilmager
5500 imaging system with AlphaEaseFC software (Alpha
Innotech, San Leandro, CA) or using an IVIS Imaging Sys-
tem 100 Series with Living Image Software v2.50 (Xeno-
gen Corp., Alameda, CA).

Characterizing the bioluminescence properties of
Salmonella strains

Bioluminescent Salmonella strains were grown overnight,
and ODy,, values of each strain were measured from
quadruplicate samples in a 96-well plate using Ther-
moMax spectrometer (Molecular Devices, Sunnyvale,
USA). Following OD,, measurements, four separate dilu-
tion series were prepared from each strain in black 96-well
microtiter plates. Each series contained 2 x 103, 4 x 103,
8 x 103, 1.6 x 104, 3.2 x 104, 6.4 x 104, 1.3 x 105, and
2.6 x 105 dilutions. Bioluminescence was measured for 5
s at 37°C using an IVIS Imaging System 100 Series, and
bioluminescence was quantified using Living Image soft-

http://www.biomedcentral.com/1471-2180/8/10

ware v2.50 (Xenogen Corp.). The last two dilutions were
spread on LB agar with ampicillin to determine viable bac-
terial densities.

The linear correlation between population densities and
bioluminescence was determined for each strain by plot-
ting bioluminescence against bacteria numbers deter-
mined by duplicate plate counts. The minimum detectible
number for each strain was determined using the number
of bacteria present in the last dilution that had detectable
luminescence above background. Colony counts were
also used to calculate the theoretical amount of biolumi-
nescence produced per CFU for each strain, which was
used to compare expression of bioluminescence among
serovars.

Plasmid stability in vitro

Plasmid stability of pAKlux1 in eleven Salmonella strains
was analyzed by subculturing bioluminescent Salmonella
strains in LB medium with and without ampicillin 15
times. For each passage, new 0.1 ml cultures were inocu-
lated in microplates in quadruplicate from 16 h cultures
at a 40-fold dilution. Bacterial density (OD,,) and biolu-
minescence were determined for each of the 16 h cultures
prior to starting new subcultures. Bioluminescence was
measured using an IVIS Imaging System for 5 s at 37°C
and normalized by dividing total flux by OD, readings.
The average normalized bioluminescence for each strain
and passage was determined under non-selective and
ampicillin-selected conditions, and plasmid stability was
determined by calculating the ratio between normalized
bioluminescence under non-selective conditions versus
ampicillin-selected conditions. This revealed the capabil-
ity of each serovar to maintain pAKlux1 under non-selec-
tive conditions.

Development of skin attachment model

An experimental model for investigating bacterial attach-
ment to chicken skin was established. Chicken skin was
obtained from a commercial poultry processing plant and
submerged in 0.26% sodium hypochlorite solution for
approximately 2 h and stored at 4°C until use. Circular
sections of skin approximately 8 mm in diameter were
made using a circular cutting blade and placed in black
24-well culture plates. To determine the optimal bacterial
dose to prevent loss of experimental data due to image sat-
uration, chicken skin was incubated with different num-
bers of bioluminescent Salmonella (1 x 108to 2.5 x 104
CFU) in 1 ml of phosphate-buffered saline. Based on
these results, we used a bacterial concentration of 1 x 10¢
CFU/ml for subsequent experiments because this dose
does not cause saturation and because it falls in the linear
detection interval (1 x 103-1 x 108 photons/s/cm?2/
steradean [p/s/cm?/sr]).
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Characterization of skin attachment properties of
Salmonella strains

After establishing the skin attachment model, differential
attachment properties of twelve Salmonella strains were
determined. For each strain, overnight bioluminescent
Salmonella cultures were diluted to approximately 1 x 10°
CFU/ml in distilled water, and 1 ml was added to skin sec-
tions in quadruplicate. Plates were incubated at room
temperature for 1 h to allow Salmonella to attach to skin.
Then bacterial suspension was removed, and each well
was gently washed twice with distilled water to remove
unattached bacteria. Immediately after washing, plates
were warmed to 37 °C for 5 min and bioluminescence was
measured for 15 s using the IVIS Imaging System. The
experiment was repeated three times.

Total flux was calculated from the pseudo color images.
To normalize for bacterial density differences between
strains, the total flux from each well was divided by the
ODy, of the bacterial suspension used to infect that well.
Because the amount of bioluminescence from different
strains varied, theoretical bacterial numbers were calcu-
lated from bioluminescence using the linear correlation
formulas calculated for each strain (Figure 1). The data
were transformed by taking the base 10 logarithm of the
calculated bacterial numbers to improve normality. To
compare bacterial numbers of the 12 Salmonella strains
following skin attachment (after 1 h incubation), a two-
way analysis of variance (ANOVA) of the transformed
data was conducted using PROC GLM SAS 9.1 (SAS Insti-
tute Inc., Carey NC). Variables for replicate, strain, and
their interaction were included in the model. Pairwise
comparison of the means was done using Tukey proce-
dure. A significance level of P < 0.05 was used. Data were
then retransformed to percent mortality for interpreta-
tion.

The effect of washing on Salmonella removal from
chicken skin

The effect of washing chicken skin in an agitated water
bath for removal of Salmonella was determined. The same
12 bioluminescent Salmonella strains were allowed to
attach to chicken skin sections using the exact method
described for the attachment experiment. In this experi-
ment, two treatments were included for each strain: a
washed treatment and a control (non-washed) treatment.
Each treatment was set up in quadruplicate, and the exper-
iment was repeated three times. Each bioluminescence
measurement was conducted after warming plates to
37°C for 5 min. Following the 1 h incubation for attach-
ment and washes to remove unattached bacteria, biolumi-
nescence was measured. One ml of distilled water was
added to the washed treatments, and control treatments
received no water. Plates were incubated at room temper-
ature for 30 min with agitation at 200 rpm. Water was

http://www.biomedcentral.com/1471-2180/8/10

removed from the washed treatments, and biolumines-
cence was measured. One ml of water was added to the
washed skin treatments, and the wash procedure was
repeated three more times (2 h total). After each wash,
bioluminescence was measured. Total flux was measured
from the pseudo color images for each time point, and
samples were normalized as described for the attachment
experiment.

To determine the effect of washing within each strain, the
mean difference in bioluminescence between 0 minutes
(prior to washing) and 120 minutes was calculated for
both washed and non-washed treatments for each strain.
The mean differences of washed and non-washed treat-
ments within each strain were then compared by conduct-
ing a two-way analysis of variance using PROC GLM SAS
9.1 (SAS Institute Inc., Carey NC) for each strain. Varia-
bles for replicate, treatment, and their interaction were
included in each model. To compare the effect of washing
across strains, the mean difference in bioluminescence
between washed and non-washed treatments after 120
minutes was calculated for each strain. A two-way analysis
of variance was conducted on the mean differences using
PROC GLM SAS 9.1 (SAS Institute Inc., Carey NC). Varia-
bles for replicate, strain, and their interaction were
included in the model. Pairwise comparison of the means
was done using Tukey procedure. A significance level of
0.05 was used in all analyses.
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