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Abstract
Background: Aeromonas spp. have been regarded as "emerging pathogens". Aeromonads possess
multifactorial virulence and the production of many of these virulence determinants is associated
with high cell density, a phenomenon that might be regulated by quorum sensing. However, only
two species of the genus are reported to possess the luxRI quorum sensing gene homologs. The
purpose of this study was to investigate if the luxRI homologs are universally present in the
Aeromonas strains collected from various culture collections, clinical laboratories and field studies.

Results: Of all the 73 Aeromonas strains used in the study, seventy-one strains elicited acyl-
homoserine lactone-mediated response in multiple biosensor strains. However, dot blot
hybridization revealed that the luxRI homologs are present in all the strains. PCR amplification and
sequencing revealed that the luxRI homologs shared a very high percentage sequence similarity. No
evidence for lateral gene transfer of the luxRI homologs between aeromonads and other genera
was noted.

Conclusion: We propose that the luxRI quorum sensing gene homologs are universally present in
the genus Aeromonas independently from their origin. This study is the first genus-wide report of
the taxonomic distribution of the luxRI homologs.

Background
The genus Aeromonas is a medically important genus in
the family Aeromonadaceae within the γ-Proteobacteria [1].
Aeromonas species, referred to as "emerging pathogens"
[2], are suspected to cause multiple infections in humans
[3,4]. In addition, they cause diseases in amphibians, rep-
tiles and fish [5]. They are more frequently isolated from
samples of medical importance than from environmental
sources [6,7]. Their multifactorial virulence determinants
include surface associated factors like adhesins, extracellu-
lar proteins like siderophores for iron acquisition, and

exoenzymes and exotoxins like α-haemolysin and serine
proteases amongst others. The expression of many of
these virulence determinants is associated with high cell
densities [8-11] and are therefore putatively under control
by quorum sensing.

Quorum sensing is a density-dependent regulation of the
gene expression by self-generated signal molecules, such
as the acyl-homoserine lactones (AHLs) in gram-negative
bacteria. In A. hydrophila, the serine- and metalloprotease
activities [12,13], biofilm development [14], and butane-
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diol fermentation [15] are under quorum sensing control.
Although, the AHL mediated production of extracellular
proteases in A. hydrophila is decreased in the presence of
long chain AHLs [12], mutations in its luxRI homologs do
not affect its virulence towards gnotobiotically cultured
Artemia franciscana [16]. Hence, a decrease in the expres-
sion of a virulence factor does not necessarily correlate
with decreased virulence. Unfortunately only two species
of this genus, A. hydrophila and A. salmonicida, are known
to harbour the quorum sensing mechanism as opposed to
the majority of Aeromonas spp. with known pathogenic
potential [17]. It therefore necessitates investigating the
distribution of this mechanism throughout this genus.

Despite the diversity of the phenotypes that are regulated
by the quorum sensing network, luxR and luxI constitute
evolutionary conserved gene families. luxRI homologs can
be identified in most species in which AHL based quorum
sensing is known to operate, although some alternative
AHL synthases do exist [18]. Species can also possess dif-
fering number of luxR and luxI homologs or even a luxR
homolog alone [19]. The AHL-mediated gene expression
machinery is reportedly conserved within a particular
genus and the species within that share very high
sequence similarities with each other. In-between various
genera within a family, even though there are certain
highly conserved regions, the overall levels of sequence
similarity are often very low and range between 18–25 %
and 28–35 % for LuxR and LuxI homologs, respectively
[20].

The environmental distribution of the AHL-mediated
gene expression systems amongst bacteria is very poorly
understood. Merely 2.2 % (21 bacterial genera) of the
total number of bacterial genera listed in the Bergey's
Manual of Systematic Bacteriology [21], are known to har-
bour the AHL producing species, and all of which belong
to the α-, β- and γ-Proteobacteria only [22]. Unfortunately,
at the species level this percentage drops to a fraction of a
percent. Although few reports are known about the AHL-
mediated gene expression by bacterial strains isolated
from contact lens wearers [23], marine snow [24], and
rumen [25], not many reports are available on the exist-
ence of this system across bacterial genera or within a
genus. For instance, only two species of the genus Aerom-
onas are known to harbour the genes for quorum sensing
mechanism [17]. The importance of this mechanism
demands that the existence and distribution of AHL-
mediated gene expression systems be studied across bac-
terial taxa.

With a view that there is a considerable sequence similar-
ity in the AHL-mediated machinery within a genus, it may
be possible to PCR amplify the luxRI homologs either
individually or together. This hypothesis was tested in the

present study using the genus Aeromonas as a model sys-
tem to investigate if the luxRI quorum sensing gene
homologs are universally present in this genus.

Results
AHL production by Aeromonas strains
A total of 71 strains tested positive for AHL production. Of
the 73 strains screened, 70 strains elicited AHL-mediated
violet pigmentation in the Chromobacterium violaceum
CV026 strain within 24 h. Amongst the three remaining
strains which tested negative with the CV026 assay, one
strain, Aeromonas sp. ATCC 43946T (Hybridization Group,
HG-13) elicited gfp expression in E. coli JM109 harboring
pJBA89 in 24 h as observed in CLSM imaging analysis
(Fig. 1). Two strains: A. hydrophila ATCC 7966T (HG-1)
and A. hydrophila CDC 0434-84 (HG-3) tested negative in
all the three bioassays. No variation in the observations
was noted when extracted AHLs from culture supernatant
were screened similarly. Surprisingly, no inhibition of vio-
let pigmentation in the CV026 reverse assay was noted for
the three negative strains.

Molecular detection of the luxRI homologs
All the seventy-three strains possessed the luxRI homologs
as revealed by dot blot hybridization. Interestingly, the
three strains that tested negative with the CV026 bioassay
showed the presence of luxRI homologs (Fig. 2).
Although, the PCR amplification of the complete regulon
resulted in no success that of the individual gene frag-
ments (luxR and luxI homologs) was successful. The
amplification of the luxR homolog using the gene specific
primer pair, QS-722F and QS-1444R produced a repro-
ducible single DNA fragment (~790 bp) from seventy
strains. The three exceptions were: A. caviae strains RK
217455 and RK 25447, and the recently reported A. mol-
luscorum LMG 22214 T [26]. The amplification of the luxI
homolog using the degenerate primer pair QS-24F and
QS-697R resulted in partial success. PCR amplification
with the primer pairs designed specifically for the luxRI
homologs from A. culicicola MTCC 3249T, AcuRF/AcuRR
and AcuIF/AcuIR, resulted in desired size fragment ampli-
fication for more strains. All these PCR products were then
purified, sequenced and confirmed to be luxRI homologs.
We were successful in PCR amplifying the luxR and luxI
homologs from 70 and 34 strains, respectively.

luxRI homolog sequence analysis
The luxR homologs showed a wide range of sequence sim-
ilarity. The percentage sequence similarity ranged from
79.28–100 % corresponding to 0–161 nucleotide differ-
ences (Additional file 1 available online). Similarly, the
inter-species nucleotide substitution rates were spread out
(0.89–20.46 %). While the least values were shared
between the type strains of A. bestiarum/A. caviae and A.
bestiarum/A. encheleia, the maximum values were between
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A. media (HG-5A)/A. culicicola. Similar nucleotide substi-
tution rates were also observed at the intra-species level
(0.26–17.24 %). The luxR homologs varied in size from
777–786 nucleotides. A total of 331 variable positions
(42.11 % of the sequenced region) of which a very high
proportion of parsimoniously informative sites (Pi) was
observed (31.67 %). Indels were noted at specific posi-
tions in nine strains (Fig. 3). A. hydrophila ATCC 7966T

possessed a single triplet insertion (CAT) at position 402
while deletion of two nucleotide triplets was detected at
position 530 of the luxR homologs in six other strains (A.
sobria CIP 7433T; A. culicicola strains MTCC 3249T, SH and
SLH; A. veronii bv sobria CECT 4246; and A. trota AN-35).
The nucleotide positions are as per the luxRI homologs
[GenBank:X89469] in A. hydrophila [17].

The luxI homologs showed lower sequence similarity. The
percentage sequence similarity ranged from 69.34–100 %
(Additional file 2 available online). The luxI homolgs var-
ied in length from 624–639 nucleotides. A total of 237 Pi
sites (82 % of the total 289 variable positions) were
observed. Similar to the luxR homologs, indels were noted
in the luxI homologs from nine strains. However, three of
these strains were different than the ones with indels in
their luxR homologs. These strains were: A. bestiarum
strains LMG 13448 and LMG 13662, and A. veronii bv

sobria AE-21. In addition, these indels were detected in
the 3' termini of the sequenced region with most lying in
the primer-binding region (data not shown).

Phylogenetic potential of luxRI homologs
The genus Aeromonas formed a distinct lineage, well sepa-
rated from other genera in the class Proteobacteria for
which the luxR (Fig. 4) and luxI homologs (data not
shown) are known. However, some strains of other genera
grouped with different genus, indicating possible events
of lateral gene transfer (LGT) between them. Multiple tree
topologies obtained using other tree-building algorithms
were similar with some minor variations in the branch
lengths. The phylogenetic trees were based on the nucle-
otide sequences rather than the amino-acid sequences due
to the loss of information in the latter caused by synony-
mous substitutions as reported earlier [27]. The luxI
homologs, similar to the luxR homologs, possessed the
ability to discriminate the genus Aeromonas from the other
genera in the proteobacterial class. However, the inability
to sequence the luxI homologs from all the strains ham-
pered further analysis for this gene.

Discussion
The disruption of quorum sensing has been suggested as
a new strategy for combating disease spread by pathogenic

Biosensor based detection of AHL production by Aeromonas strainsFigure 1
Biosensor based detection of AHL production by Aeromonas strains. a) Chromobacterium violaceum CV026 assay plate 
with both controls alongwith A. culicicola MTCC 3249T and the three negative strains; and b) CLSM images of gfp expression 
from E. coli JM109 harboring pJBA89 in the presence of spent culture supernatants from all the six strains as in a) showing pos-
itive result for HG-13.
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bacteria. Unfortunately, the scarcity of information on the
environmental distribution of this mechanism and the
fact that strains of the same species isolated from different
ecological niches might possess diverse physiological
characteristics, drastically limits the application of this
strategy on a genus-wide basis. For instance, species of the
genus Aeromonas have been isolated from diverse environ-
ments such as the midgut of Culex quinquefasciatus and
Aedes aegyptii mosquitoes [28,29], monkey faeces [30],
and bivalve molluscs [26], as well as from a variety of
foods such as vegetables, raw milk, ice cream, meat and
seafood [6,7]. The pathogenic potential of many species
of genus Aeromonas indicates the presence of common reg-
ulatory machinery amongst strains isolated from different
ecological niches. However, only two species of this genus
are known to possess the quorum sensing mechanism
[17]. In addition, only A. hydrophila has been studied in
great detail [12-15]. An understanding of the genus-wide
distribution of this mechanism in Aeromonas spp. is the
first step towards ascertaining if there are certain common
phenotypes under quorum sensing regulation in the
genus Aeromonas. This will allow successful implementa-
tion of quorum sensing based disease control strategies.

Cell division in the genus Aeromonas may be linked to
quorum sensing. Although, there is no experimental evi-
dence, molecular studies in A. hydrophila and A. salmonic-
ida [17] and our analysis of the quorum sensing network
in A. culicicola MTCC 3249T (K. Jangid, P. Verma, P. V. Par-

ameswaran, M. S. Patole, and Y. S. Shouche, unpublished
data) confirmed a gene with close homology to iciA,
present downstream of the luxRI homologs. iciA is an E.
coli gene encoding a specific inhibitor of chromosomal
initiation of replication [31]. The presence of iciA in the
genus Aeromonas clearly implicates that cell division may
be linked to quorum sensing. The present study on the
distribution of the quorum sensing regulatory network in
the genus Aeromonas, therefore gains importance.

Earlier studies have reported that some bacterial strains
may possess diverse signalling molecules, which cannot
be detected by a single biosensor strain [32]. Using multi-
ple biosensor strains would reduce such possibility.
Although, possible AHL production from the majority of
the strains was detected (Fig. 1), a conclusive evidence of
the presence of luxRI homologs was obtained only after
dot blot hybridization analysis (Fig. 2). We tested the
extracted AHLs to confirm possible inhibition of biosen-
sor strains by some secondary metabolites in the culture
supernatant of the three negative strains. In addition,
AHLs from upto 100 ml of culture supernatant of these
three negative strains were also tested to determine if
insufficient AHL quantities yielded the negative results.
However, no variation in the results was noted. We
hypothesized that regardless of the extent of luxRI
homolog sequence similarity shared between Aeromonas
strains, the AHLs produced may be diverse and thus not
detected by the biosensor strains used. Gene sequencing
analyses further validated this hypothesis. The three
strains that tested negative in the CV026 bioassay or the
reverse assay shared very high luxR homolog sequence
similarity (94.58 % to 99.36 %) with the ahyR and asaR
sequences [17] (Additional file 1 available online). More-
over, indels were noted in a group of strains at two local-
ized regions in the autoinducer binding domain (amino
acid 18–168) of the luxR homologs (Fig. 3). This domain
specifically binds to the autoinducer molecules and these
indels might therefore be important in autoinducer specif-
icity.

The inability to PCR amplify the complete regulon and
the luxI homologs from all strains confirmed previous
observations that Aeromonas strains possess greater
sequence diversity in luxI as compared to luxR [17]. Pre-
liminary analysis of the percentage sequence similarity
and the nucleotide substitution rates for the luxRI
homologs support this observation. Our ongoing analysis
of the quorum sensing network in A. culicicola MTCC
3249T further supports the hypothesis (Jangid et al.,
unpublished data). We noted the presence of indels in the
binding site of the designed degenerate primers for the
luxI homolog from this strain and a 10 % lower sequence
similarity value as compared to others [17]. This is con-
trary to the fact that the luxI homolog sequence similari-

Dot-blot analysis of luxRI gene homologs from Aeromonas strainsFigure 2
Dot-blot analysis of luxRI gene homologs from 
Aeromonas strains. A representative dot-blot showing the 
presence of luxRI homologs in all the strains that showed no 
PCR amplification for either luxR or luxI homolog. The nega-
tive control (genomic DNA of Selenomonas lipolytica) and 
positive control (genomic DNA of A. culicicola) are also 
shown.
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ties between genera are higher than the corresponding
luxR homologs [20].

No evidence of LGT of the luxRI homologs to the genus
Aeromonas from another donor was found. All the Aerom-
onas strains grouped together in a single cluster that was
clearly separated from the other members within the Pro-
teobacteria (Fig. 4). However, it is incorrect to conclude
that it probably did not occur. It might be possible that if
LGT occurred, the donor was probably an organism simi-
lar to Aeromonas but not so far included in the analysis. It
is even possible that the lineage is currently extinct. From
the depth of the branch (Fig. 4), it would seem likely that
this organism would moderately be related to Aeromonas
but certainly more related than any of the current genera
used for the analysis. In case, there was no LGT and if par-

alogy occurred, some aeromonads or their ancestors
might have had more than one gene for these proteins or
that the properties of the proteins might be different for
different aeromonads. Both of these scenarios have been
discussed in great deal earlier [33]. The same study also
reported that the overall congruity between the quorum
sensing genes and the rRNA trees is consistent with an
ancient origin for the quorum sensing proteins within the
Proteobacteria. Our results were however, incongruent with
these observations (data not shown). The potential of the
luxRI homologs as molecular chronometer and its com-
parison with the conventional molecular chronometers
for the genus Aeromonas has been studied in great detail
(K. Jangid, J. M. Gonzalez, W. B. Whitman, G. B. Nair, R.
Kong, M. S. Patole, and Y. S. Shouche, unpublished data).

Sequence alignment of the region with indels in the luxR homologFigure 3
Sequence alignment of the region with indels in the luxR homolog. a) Nucleotide sequence; and b) corresponding 
amino acid sequence. Sites of insertion/deletion are marked by a solid line.

a) 

 

AhyR  ATTTCGTTCCCGTTGCACGGTGCGGCAGGGGAGAACGGCAT---ACTGTCGTTCATCACC 417
AsaR  ATTTCGTTTCCGCTGCACGGTGCGGCGGGTGAAAACGGCAT---ACTGTCGTTCATCACC 417
ATCC 7966T ATTTCGTTCCCGTTGCACGGTGCGGCAGGGGAGAACGGCATCATACTGTCGTTCATCACC 420
CIP 7433T ATCTCCTTCCCCCTGCACGGTGCTGCCGGGGAGACCGGTAT---CCTCTCCTTCATCACC 417
MTCC 3249T ATCTCCTTCCCTCTGCACGGCGCAGCCGGGGAGAACGGGAT---CCTCTCCTTTATCACC 417
AN-35  ATCTCCTTCCCTCTGCACGGCGCAGCCGGGGAGAACGGAAT---CCTCTCCTTTATCACG 417
CECT 4246 ATCTCCTTCCCTCTGCACGGCGCAGCCGGGGAGAACGGAAT---CCTCTCCTTTATCACG 417 
2238A          ATCTCCTTCCCTCTGCACGGCGCAGCCGGGGAGAACGGGAT---CCTCTCCTTTATCACC 417 
3037T          ATCTCCTTCCCTCTGCACGGCGCAGCCGGGGAGAACGGGAT---CCTCTCCTTTATCACC 417
  ** ** ** **  ******* ** ** ** ** * *** **    ** ** ** *****   

AhyR  AACTACATCTTCGAGGCGGCGATCCGGATTGTGCGGGTCAGTCTGCGGGAAGATGACCCT 537
AsaR  AACTACATCTTCGAGGCGGCGATCCGGATTGTGCGGGTCAGTCTGCGGGAAGATGACCCT 537
ATCC 7966T AACTACATCTTCGAGGCGGCGATCCGGATTGTGCGGGTCAGTCTGCGGGAAGATGACCCT 540
CIP 7433T AACTACATCTTCGAGGCGGCAATCCGGGTTGTGCGCCTGAGGGATTCGGATCA------A 531 
MTCC 3249T AATTACATCTTCGAGGCTGCGATCAGGGTTGTGCGCCTGAGGGATTCGGATCA------A 531 
AN-35  AATTACATCTTCGAGGCTGCGATCAGGGTTGTGCGCCTGAGGGATTCGGATCA------A 531
CECT 4246 AATTACATCTTCGAGGCTGCGATCAGGGTTGTGCGCCTGAGGGATTCGGATCA------A 531 
2238A          AATTACATCTTCGAGGCTGCGATCAGGGTTGTGCGCCTGAGGGATTCGGATCA------A 531 
3037T          AATTACATCTTCGAGGCTGCGATCAGGGTTGTGCGCCTGAGGGATTCGGATCA------A 531 
               ** ************** ** *** ** *******  * **      ***  *  

b) 

AhyR  ISFPLHGAAGENG-ILSFITAERASSDLLLESSPILSWMSNYIFEAAIRIVRVSLREDDP 179
AsaR  ISFPLHGAAGENG-ILSFITAERASSDLLLESSPILSWMSNYIFEAAIRIVRVSLREDDP 179 
ATCC 7966T ISFPLHGAAGENGIILSFITAERASSDLLLESSPILSWMSNYIFEAAIRIVRVSLREDDP 180 
CIP 7433T ISFPLHGAAGETG-ILSFITSERASSDLLLESSPILSWMANYIFEAAIRVVR--LRDSDQ 177
MTCC 3249T ISFPLHGAAGENG-ILSFITSERASSDLLLESSPILSWMANYIFEAAIRVVR--LRDSDQ 177
AN-35  ISFPLHGAAGENG-ILSFITSERASSDLLLESSPILSWMANYIFEAAIRVVR--LRDSDQ 177
CECT 4246 ISFPLHGAAGENG-ILSFITSERASSDLLLESSPILSWMANYIFEAAIRVVR--LRDSDQ 177 
2238A          ISFPLHGAAGENG-ILSFITSERASSDLLLESSPILSWMANYIFEAAIRVVR--LRDSDQ 177 
3037T          ISFPLHGAAGENG-ILSFITSERASSDLLLESSPILSWMANYIFEAAIRVVR--LRDSDQ 177 
               ***********.* ****** ******************:********* **  **: *       
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Proteobacterial luxR homolog based phylogenetic treeFigure 4
Proteobacterial luxR homolog based phylogenetic tree. The tree was constructed using the Kimura-2-parameter dis-
tances in the neighbor joining method. Values near the nodes represent percentage bootstrap support (1000 replicates). Vibrio 
fischeri Group I [GenBank:M96844, AY292966, AY292967, AY292969, AY292970, AY292979 and AY292980]; and V. fischeri 
Group II [GenBank:M19039, M25751, M25752, Y00509, AF170104, AY292964, AY292965, AY292971–AY292978, and 
AY292982–AY292985]. The GenBank accession numbers of the luxRI homologs from Aeromonas are given in Table 1.
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Conclusion
In conclusion, using both conventional bioassay and
molecular approaches, we proved that all the Aeromonas
strains used in the study possess the quorum sensing
genes irrespective of the nature of the isolates, whether
clinical or environmental. The universal presence of the
luxRI homologs with high sequence similarity in this
genus makes it a potential target for treating Aeromonas
borne infections. An understanding of the signaling
mechanism in Aeromonas strains from a particular ecolog-
ical niche would provide a model for bacterial communi-
cation among such strains. To our knowledge, this is the
first genus-wide study of the taxonomic distribution of
luxRI homologs and is the first step in assessing the signif-
icance of this mechanism both as a survival strategy and
in maintaining ecosystem function.

Methods
Bacterial strains, media, and culture conditions
A total of 73 Aeromonas strains collected from clinical as
well as environmental sources and different geographical
regions were used in the study (Table 1). Most of the clin-
ical strains were isolated from patients with acute diarrhea
over a period of 2 years in Kolkata, India [34]. Eight clin-
ical strains were isolated from stools of diarrhea patients
at Queen Mary hospital in Hong Kong, China. The eleven
environmental strains were isolated from ovary, salivary
gland, or midgut of wild mosquito species collected from
across India over a period of 2 years. All these strains were
identified based on conventional microbiological and
biochemical analysis. In addition, two recently reported
A. culicicola strains (2238A and 3037T) from a drinking
water supply in Spain were also included [35]. The AHL
responsive biosensor strains used were: Chromobacterium
violaceum CV026 [36], E. coli JM109 harboring plasmid
pSB403 [37] and E. coli JM109 harboring plasmid pJBA89
[38]. These three strains were selected based on earlier
reports [36-39] that they could detect a wide range of AHL
compounds (Table 2). Although, the plasmid pJBA89 [38]
was originally derived from pSB403 [37], the ribosomal
binding sites in the former was optimised to detect low
concentrations of AHLs and has a gfp-fusion which pro-
vides low background fluorescence [for details see [38]].
After arrival and/or collection, each bacterial strain was
checked for purity on solid medium, and its identity was
confirmed by partial sequencing of the 16S rRNA gene. All
the strains used in the study were maintained on Luria-
Bertani (LB) medium at 30°C, except for the A. salmonic-
ida strains, which were incubated at 25°C. Wherever nec-
essary, the medium was supplemented with 50 μg of
ampicillin ml-1, 40 μg of kanamycin ml-1 or 20 μg of tetra-
cycline ml-1. Cell growth was monitored by measuring the
optical density at 600 nm.

Screening for AHL production
For preliminary screening for AHL production by the
Aeromonas strains, 20 μl of the culture supernatant from
overnight growth was inoculated in wells created onto LB
agar plates seeded with 1 ml (OD600 = 1) of CV026 cul-
ture. Visible violet pigmentation was checked after 24–48
h incubation at 30°C. The assay with the other two bio-
sensor strains was carried out as described earlier [40].
Bioluminescence was measured after 30 min incubation.
Confocal laser scanning microscope (CLSM) imaging
analysis of gfp expression by E. coli JM109 harboring plas-
mid pJBA89 was done at 10× using an argon laser at 488
nm on a Zeiss LSM510 (Jena, Germany). Synthetic AHL
standards: BHL (catalogue no. 09945; Fluka), HHL (cata-
logue no. 09926; Fluka), OHL (catalogue no. 10940;
Fluka), DHL (catalogue no. 17248; Fluka) and dDHL (cat-
alogue no. 17247; Fluka) served as controls. Strains, tested
negative were processed for AHL extraction from 5 ml cul-
ture supernatant using dichloromethane (7: 3::superna-
tant: dichloromethane). A parallel extraction of the AHLs
from A. culicicola MTCC 3249T served as a control. The
dried extract was reconstituted in 50 μl HPLC grade ace-
tonitrile, a 10 μl aliquot spot dried onto paper discs
(Whatman 3 M) and processed similarly as above. To
detect long-chain AHLs which antagonize activating sig-
nals, the three negative strains were also tested using the
CV026 reverse assay as described by Swift [39].

Dot blot hybridization, PCR amplification and sequencing
Genomic DNA was prepared by standard phenol/chloro-
form/isoamyl alcohol extraction [41]. For dot blot hybrid-
ization, 1–2 μg of genomic DNA was denatured and
spotted (2 μl aliquots) onto positively charged Nylon
membrane (Hybond N+, Amersham Pharmacia Biotech
UK Ltd.). Hybridization was performed at 50°C for 14 h.
Unbound DNA was washed off with 2× SSC/0.1 % SDS
for 20 min at room temperature followed by a second
wash with 0.2× SSC/0.1% SDS for 15 min at 42°C for
another 20 min. Intensifier screens (Imaging Screen-K,
Biorad, USA) were scanned after 30 min on Molecular
Imager FX (Biorad, USA). The A. hydrophila ahyRI frag-
ment [17] was used as the heterologous probe. The probe
was random labeled with [α-32P]dATP using the Meg-
aprime DNA labeling system (Amersham Pharmacia Bio-
tech UK Ltd.) as per the manufacturer's instructions. The
luxRI homologs were PCR amplified under following con-
ditions: initial denaturation at 95°C for 3 min, 35 cycles
of denaturation at 95°C for 1 min, annealing at 55°C for
1 min and extension at 72°C for 1 min followed by elon-
gation at 72°C for 10 min. The details of the primers used
are given in Table 3. The PCR amplified products were
purified by PEG/NaCl precipitation and sequenced using
the PCR primers either on an ABI-310 or ABI-3730 auto-
mated DNA analyzer (Applied Biosystems).
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Table 1: List of Aeromonas strains used in the study

Species (Hybridization Group) Strain No. Isolation site GenBank Accession No.

LuxI LuxR

A. hydrophila (HG-1) ATCC 7966T Tin of milk with fishy odour AY987564 AY764300
ATCC 49140 Human AY987586 AY764351
RK 217215 Human faeces AY987590 AY764358
RK 70363 Human faeces NS AY764359

AE-53 Patient with acute diarrhea AY987572 AY764329
AE-55 Patient with acute diarrhea NS AY764330
AE-57 Patient with acute diarrhea AY987573 AY764331
AN-1 Patient with acute diarrhea AY987574 AY764332
AN-2 Patient with acute diarrhea AY987575 AY764333
AN-3 Patient with acute diarrhea NS AY764334
AN-25 Patient with acute diarrhea NS AY764336
AN-32 Patient with acute diarrhea AY987577 AY764338

A. bestiarum (HG-2) ATCC 51108T Infected fish AY987565 AY764301
ATCC 13444 Ditch water AY987587 AY764352
ATCC 23211 Water supply AY987588 AY764353
ATCC 23213 River water AY987589 AY764354
LMG 13448 Human faeces AY987581 AY764346
LMG 13662 Faeces AY987582 AY764347

A. salmonicida (HG-3) CECT 894T Salmon, Salmo salar AY987583 AY764348
CDC 0434–84 Freshwater AY987566 AY764302

A. caviae (HG-4) ATCC 15468T Epizootic of young guinea pigs NS AY764303
RK 217455 Human faeces NS NS
RK 25447 Human faeces NS NS
RK 27611 Human faeces NS AY764355
RK 65541 Human faeces NS AY987549

AE-11 Patient with acute diarrhea NS AY764321
AE-23 Patient with acute diarrhea NS AY764323
AE-34 Patient with acute diarrhea NS AY987548
AE-39 Patient with acute diarrhea NS AY764325

A. media (HG-5A) CDC 0862–83 Infected fish NS AY764304
A. media (HG-5B) ATCC 33907T Fish farm effluent NS AY764305

345 NA NS AY764344
A. eucrenophila (HG-6) ATCC 23309T Freshwater fish NS AY764306
A. sobria (HG-7) CIP 7433T Fish AY987567 AY764307
A. veronii bv sobria (HG-8/10) CDC 0437–84 Infected fish NS AY764308

CECT 4246 Frog red-leg AY987580 AY764345
RK 43939 Human faeces NS AY764356
RK 77343 Human faeces NS AY764357

AE-21 Patient with acute diarrhea AY987570 AY764322
AE-41 Patient with acute diarrhea NS AY764326
AN-50 Patient with acute diarrhea NS AY764341

A. jandaei (HG-9) ATCC 49568T Faeces from patient with diarrhea NS AY764309
AN-51 Patient with acute diarrhea NS AY764342

A. veronii bv veronii (HG-10/8) ATCC 35624T Sputum of drowning victim NS AY764310
211c NA NS AY764343

Aeromonas sp. (HG-11) ATCC 35941 Ankle suture NS AY764311
A. schubertii (HG-12) ATCC 43700T Forehead abscess NS AY764312

AE-48 Patient with acute diarrhea NS AY764327
Aeromonas sp. (HG-13) ATCC 43946 Human leg wound NS AY764313
A. trota (HG-14) ATCC 49657T Human faeces NS AY764314

AE-31 Patient with acute diarrhea NS AY764324
AN-35 Patient with acute diarrhea AY987578 AY764339

A. allosaccharophila (HG-15) CECT 4199T Diseased elvers NS AY764315
A. encheleia (HG-16) CECT 4342T Healthy juvenile freshwater eel NS AY764316
A. popoffii (HG-17) LMG 17541T Drinking water production plant AY987568 AY764317
A. culicicola MTCC 3249T Mosquito midgut AY987569 AY764318

SH Mosquito midgut NS AY764319
SLH Mosquito midgut NS AY764320

2238A Domestic water supply AY987596 AY987550
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764331
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987574
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764332
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987575
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764333
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764334
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764336
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987577
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764338
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987565
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764301
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987587
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764352
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987588
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764353
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987589
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764354
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987581
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764346
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987582
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764347
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987583
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764348
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987566
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764302
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764303
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764355
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987549
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764321
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764323
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987548
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764325
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764304
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764305
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764344
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764306
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987567
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764307
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764308
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987580
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764345
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764356
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764357
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987570
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764322
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764326
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764341
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764309
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764342
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764310
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764343
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764311
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764312
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764327
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764313
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764314
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764324
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987578
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764339
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764315
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764316
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987568
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764317
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987569
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764318
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764319
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY764320
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987596
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY987550
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Phylogenetic analysis
Nucleotide and protein sequence analysis was performed
with BLAST [42]. The sequences were aligned using the
CLUSTALW v1.83 at the European Bioinformatics site
[43]. The GenBank accession numbers for the sequences
are given in Table 1. In addition, the two previously
reported Aeromonas luxRI homolog sequences [Gen-
Bank:X89469 and U65741] were also used. The sequence
similarity matrix was prepared using the DNAdist pro-
gram in the PHYLIP package [44] using the Jukes Cantor
corrections. The phylogenetic trees were constructed with
the neighbor joining method using Kimura-2-parameter
distances in MEGA v3.1 [45]. The resulting trees were
compared with the parsimony method (100 bootstrap
replicates) in the PHYLIP package and with the maxi-
mum-likelihood method using the fastDNAml program
[46].
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Table 3: List of primers used in the study

Primer Name* Primer Sequence (5' to 3')

QSH-24F TTA TTC TGT GAC CAG TTC GCG CGC
QS-24F TTA YTC KGT GAC CAG TTC SCK SGC
QS-697R GGT CTT GTT TCA TAT GCT AGC CCC C
QS-722F GGG GGC TAG CAT ATG AAA CAA GAC C
QS-1444R TTA TTG CAT CAG CTT GGG GAA GTT G
AcuIF ATG TTG GTT TTC AAA GGA AAA TTG
AcuIR TTA TAT CTG GGC CGC TAA CTC ATG GGA
AcuRF ATG AAA CAA GAG CAA CTG TTT GAG TAT
AcuRR CTA TTG CAT CAG TTT AGG GAA GTT GGT

'*'- Numbers in the primer name indicate the 3' end binding site with 
respect to A. hydrophila sequence [GenBank:X89469].

3037T Domestic water supply AY987597 AY987551
A. molluscorum LMG 22214T Wedge-shells (Donax trunculus) NS NS
Aeromonas sp. AE-51 Patient with acute diarrhea AY987571 AY764328

AN-24 Patient with acute diarrhea AY987576 AY764335
AN-30 Patient with acute diarrhea NS AY764337
AN-46 Patient with acute diarrhea AY987579 AY764340

Manipal A1 NA AY987584 AY764349
ABJ Gastric biopsy of gastritis patient AY987585 AY764350
1 m Mosquito ovary AY987591 AY764360
12 m Mosquito ovary AY987592 AY764362
13 m Mosquito ovary AY987593 AY764363
15 m Mosquito ovary AY987594 AY764364
17 m Mosquito salivary gland NS AY764365
19 m Mosquito ovary AY987595 AY764366

NA, Data not available; and NS, not sequenced due to inability to PCR amplify the gene under the conditions used.

Table 1: List of Aeromonas strains used in the study (Continued)

Table 2: Range of AHLs detected by the three biosensor strains 
used in the study

acyl-homoserine lactone (AHL) CV026 pSB403 pJBA89

N-Butanoyl-L-homoserine lacone 
(BHL)

▲ � ▲ ▼ ▲

N-Butanoyl-L-homocysteine 
thiolacone (BHT)

▲ � �

N-(-3-Oxobutanoyl)-L-homoserine 
lacone (OBHL)

▲ ▼ ▲ � �

N-Benzoylacyl-l-homoserine lactone 
(BAHL)

▲ � �

N-Hexanoyl-L-homoserine lacone 
(HHL)

▲ ▲ ▲

N-Hexanoyl-L-homocysteine 
thiolacone (HHT)

▲ � �

N-(-3-Oxohexanoyl)-L-homoserine 
lacone (OHHL)

▲ ▲ ▲

N-(-3-Oxohexanoyl)-D-homoserine 
lacone ((D)OHHL)

▲ ▼ ▲ � �

N-(-3-Oxohexanoyl)-L-
homocysteine thiolacone (OHHT)

▲ � �

N-Octanoyl-L-homoserine lacone 
(OHL)

▲ ▲ ▲ ▼ ▲

N-(3-Oxo-octanoyl)-l-homoserine 
lactone (OOHL)

▲ ▲ �

N-Decanoyl-l-homoserine lactone 
(DHL)

� ▲ �

N-(3-Oxodecanoyl)-l-homoserine 
lactone (ODHL)

� ▲ �

N-Dodecanoyl-l-homoserine lactone 
(dDHL)

� ▲ ▼ ▲ �

N-(3-Oxododecanoyl)-l-homoserine 
lactone (OdDHL)

� ▲ ▼ ▲ �

N-Tetradecanoyl-l-homoserine 
lactone (tDHL)

� � �

N-(3-Oxotetradecanoyl)-l-
homoserine lactone (OtDHL)

� � �

"▲" indicates a suitable biosensor; "▲ ▼ ▲" indicates that the sensor 
will detect the AHLs at high concentration; "�" indicates that the 
sensor will antagonize AHL-mediated induction; and "�" indicates data 
not available. The data presented here was previously reported [36–
39].
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