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Abstract

Background: Changes in aboveground plant species diversity as well as variations of
environmental conditions such as exposure of ecosystems to elevated concentrations of
atmospheric carbon dioxide may lead to changes in metabolic activity, composition and diversity of
belowground microbial communities, both bacterial and fungal.

Results: We examined soil samples taken from a biodiversity X CO, grassland experiment where
replicate plots harboring 5, 12, or 3| different plant species had been exposed to ambient or
elevated (600 ppm) levels of carbon dioxide for 5 years. Analysis of soil bacterial communities in
these plots by temporal temperature gradient gel electrophoresis (TTGE) showed that dominant
soil bacterial populations varied only very little between different experimental treatments. These
populations seem to be ubiquitous. Likewise, screening of samples on a high-resolution level by
terminal restriction fragment length polymorphism (T-RFLP) showed that increased levels of
carbon dioxide had no significant influence on both soil bacterial community composition
(appearance and frequency of operational taxonomic units, OTUs) and on bacterial richness (total
number of different OTUs). In contrast, differences in plant diversity levels had a significant effect
on bacterial composition but no influence on bacterial richness. Regarding species level, several
bacterial species were found only in specific plots and were related to elevated carbon dioxide or
varying plant diversity levels. For example, analysis of T-RFLP showed that the occurrence of
Salmonella typhimurium was significantly increased in plots exposed to elevated CO, (P < 0.05).

Conclusion: Plant diversity levels are affecting bacterial composition (bacterial types and their
frequency of occurrence). Elevated carbon dioxide does not lead to quantitative alteration
(bacterial richness), whereas plant diversity is responsible for qualitative changes (bacterial

diversity).
Background processes, including the response of ecosystems to envi-
Knowledge on the relationship between plant communi-  ronmental changes such as increasing atmospheric carbon

ties and soil microbial communities is still lacking in large ~ dioxide levels [1-3].
parts, although recent ecological research focuses on
potentially beneficial effects of biodiversity on ecosystem
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Soil microorganisms are the driving force behind soil
organic matter transformations such as mineralization of
organic compounds. These transformations are the basis
of plant decomposition, soil aggregation, nutrient availa-
bility, soil fertility and, therefore in general, soil ecosys-
tem functioning. However, these transformations might
be significantly influenced by different levels of plant
diversity which can affect soil microbial communities
regarding e.g. population sizes, activities and taxonomic
composition (see e.g. [4-8]. In addition, anthropogenic
activities resulting in e.g. increasing atmospheric carbon
dioxide concentrations might induce specific responses
(stimulation, inhibition) of soil microbes (bacteria,
fungi) possibly mediated via altered growth of the plant
communities [9-12].

On both local and global scales, the wealth of soil micro-
bial diversity is poorly appreciated and, therefore, the
importance of soil organisms has been largely neglected
[13]. A profound understanding of soil biodiversity and
its relation to ecosystem functions is vital for long-term
sustainable soils [14]. However, detailed knowledge on
the control of ecosystem processes and functioning by this
diversity is still lacking [15].

Soil microbial communities are characterized by two lev-
els of diversity, namely genetic diversity and functional
diversity: a high level of genetic diversity is found in many
different types of soil (e.g. [16]). Recent detailed investiga-
tions based on molecular methods such as DNA-DNA-
hybridization, 16S rRNA sequencing, PCR-based methods
with primers derived from rRNA sequencing, fluorescence
in situ hybridization (FISH), or immunological tech-
niques revealed that soil microbial communities are com-
posed of a vast variety of microorganisms resulting in
complex microbial interactions and nutrient flows [17].
The composition of these communities is usually subject
to seasonal fluctuations and may vary between different
locations. In addition, organisms are not homogeneously
distributed over the whole environment [18,19]. Regard-
ing soil, it has been hypothesized that significant reduc-
tions in microbial diversity due to environmental changes
are unlikely and that the genetic diversity does not repre-
sent a major factor that limits ecosystem functioning [15].

Elevated atmospheric CO, can have indirect effects on soil
microbial communities via altered plant inputs (litter,
exudates, rhizodeposition). As result, soil microbial com-
munities and their activities are stimulated: increased car-
bon flow might affect the portion of culturable soil
bacteria and might favor fast growing organisms [20]. In
turn, also the nitrogen flow (e.g. N-fixation) in soil ecosys-
tems can be influenced by elevated CO, [21], although
nitrogen concentration in plant litter is not affected [22].
Therefore, microbial community composition and func-
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tional diversity are subject to changes under changing
environmental conditions and the populations will adapt
to the new conditions.

We examined soil samples from experimental grassland
plots where plant communities of different species rich-
ness had been exposed for 5 years to ambient or elevated
levels of carbon dioxide and assessed soil microbial com-
munity structure. The two main questions were: (i) what
is the effect of elevated CO, and plant diversity on bacte-
rial richness? (ii) to which extent are treatment-induced
effects reflected in changes in the structural composition
of the soil bacterial community? An innovative feature of
this study is the combination of an experimental-ecologi-
cal approach and a microbiological approach to character-
ize the microbial populations involved. We determined
the total number of soil microbial operational taxonomic
units (OTUs) as a measure for "bacterial richness" as well
as the dissimilitude of these OTUs as a measure for bacte-
rial composition applying analyses of terminal restriction
fragment length polymorphism (T-RFLP).

Results

Dominant soil microbial populations (as determined by
TTGE) varied only very little between different soil sam-
ples (Fig. 1). Only a few bands were observed. The band
patterns of the total community 16S rDNA showed that
bacterial communities consisted of five to six bacterial
groups that were present in all of the differently treated
soils examined. These populations seemed to be ubiqui-
tous and occurred in all samples, independently of exper-
imental treatments or sampling location. Only very rarely
additional OTUs were detected (e.g. lane 13). As a conse-
quence, we found that soil bacterial community structure
was only poorly resolved when analyzing bacterial popu-
lations by TTGE. In our case, the resolution of TTGE was
too low for the monitoring of soil microbial diversity.

To improve analysis on a high resolution level, soil micro-
bial populations were assessed by T-RFLP [23]. Different
TRF'-types were applied, namely (i) 3'-BstU, (ii) 5'-BstU,
(iii) 3'-MNL, and (iv) 5'-MNL (see Material & Methods).
Combination (i), (ii) and (iii) yielded 20, 21 and 19 oper-
ational taxonomic units (OTUs), respectively, whereas 44
OTUs were obtained from combination (iv). Every of the
four different TRF'-types applied may constitute on its
own a possibility to determine soil microbial diversity. A
combined analysis, however, allows more powerful statis-
tical analysis and to monitor soil microbial diversity more
comprehensively regarding the different OTUs present.

However, combining the information obtained from all
assays (enzyme/label combinations) showed that ele-
vated carbon dioxide levels does not significantly influ-
ence the number of soil microbial community OTUs (=
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Example of TTGE band pattern (arrow: operational taxo-
nomic unit, OTU) of DNA extracted from soil samples
exposed to different levels of plant biodiversity and carbon
dioxide. H: high diversity level (31 plant species); M: medium
diversity level (12 plant species); L: low diversity level (5 plant
species). Image was photographically enhanced using Pho-
toshop.

"bacterial richness") (Fig 2a). Moreover, also different
plant diversity levels showed no significant effect on this
bacterial richness measure (Fig. 2b). No interaction was
detected between carbon-dioxide and diversity treat-
ments.

To analyze bacterial composition, all band patterns of the
different enzyme/label combinations were analyzed in
combination by canonical correspondence analysis.
Occurrence of OTUs within the four replicates of each
treatment combination was analyzed separately, but addi-
tionally also the frequency of occurrence of OTUs within
the four replicates was assessed. As shown in Fig. 3b, plant
diversity had a significant (P < 0.05) effect on bacterial
composition. Three distinct separate clusters can be
observed, each related to one of the three different plant
diversity levels. In contrast, elevated carbon dioxide did
not affect bacterial composition (Fig. 3a). Although a clus-
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Figure 2

Number of operational taxonomic units (OTUs) observed in
relation to different restriction enzyme/fluorescent label
combinations. Boxes give median with upper line represent-
ing 75th percentile and lower line 25th percentile; whiskers
extend to the most extreme data points with range not more
than 1.5 times the interquartile range from the box. Number
of OTU is a measure for "bacterial richness". a) elevated car-
bon dioxide in comparison to ambient levels; b) three differ-
ent plant diversity levels.

tered pattern was observed, a significant difference was
not detectable.

All TRFs were compared with the TAP-database. Only bac-
terial strains simultaneously matching maximally two
types of enzyme/label combinations were considered
(Table 1). No strains simultaneously matching three or
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Canonical correspondence analysis of plots exposed to dif-
ferent carbon dioxide levels (a); plots exposed to different
plant diversity levels (b). A: ambient carbon dioxide; E: ele-
vated carbon dioxide; H: high plant diversity; M: medium
plant diversity; L: low plant diversity; numbers 1, 2, 3, and 4:
four replicates.

four enzyme/label combinations were detected. In several
cases, results yielded more than one bacterial species for
the same enzyme/label combination. The frequency of
occurrence of the different combinations of TRFs and bac-
teria belonging to them was variable. Several bacterial
strains were found only in specific plots and were obvi-
ously related to elevated carbon dioxide or varying plant
diversity levels: Escherichia coli and Ferrobacterium limneti-
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cum were detected only in three samples, all showing a
high plant diversity level. The patterns referring to the uni-
dentified strain from Lake Gossenkoellesee was found
only in samples with medium plant diversity (12 different
plant species). Clostridium perfringens, Sulfobacillus disulfi-
dooxidans, Kitasatospora paracochleata, Kitasatospora melano-
gena and Kitasatospora kifuense were found only in plots
with elevated carbon dioxide levels. Furthermore, analy-
ses of the different TRF patterns by logistic regression
showed that the probability of occurrence of Salmonella
typhimurium in plots treated by elevated CO, was signifi-
cantly increased (P < 0.05).

Discussion

Several studies found a positive relationship between ele-
vated CO, and bacterial richness [11], whereas others
found a negative effect [24]. Therefore, results show a cer-
tain inconsistency [25,26]. In our case, considering the
negligible effect of elevated carbon dioxide and of differ-
ent plant diversity levels on the number of OTUs detected,
it can be concluded that both experimental treatments
had no effect on bacterial richness. Furthermore, elevated
carbon dioxide concentrations did not affect soil micro-
bial composition as also reported by Griffiths et al. [27] or
Zak et al [28]. In contrast, aboveground plant diversity sig-
nificantly affected belowground bacterial composition.
These findings suggest that the soil microbial composition
is mainly related to plant diversity (assuming that differ-
ent plant species might harbor specific rhizospheric
microbial populations) rather than altered soil carbon
fluxes induced by elevated atmospheric CO, and subse-
quently increased photosynthetic activities.

Our analyses showed that increased levels of carbon diox-
ide had no influence on soil microbial community com-
position (Fig. 3a). Canonical correspondence analysis
(CCA) showed no statistical difference between plots at
ambient CO, level compared with plots with elevated
CO, level. Differences in rhizosphere carbon allocation
(and subsequent alterations of soil microbial communi-
ties) have been postulated and observed when plants were
exposed to increased CO, levels in other studies, e.g.
changed quality of litter, increase in root exudates and
stimulation of rhizodeposition [29,30]. Consequently,
effects on soil microbial community composition might
occur [9]. However, in our case the aboveground exposure
of plants to elevated carbon dioxide was not reflected in a
belowground change of bacterial composition.

In contrast to the CO, treatment, plant diversity had a sig-
nificant effect on belowground microbial community
composition (Fig. 3b). That is, on a genetic level, bacterial
community structure in soil can be differentiated in rela-
tion to different plant diversity levels. This is in agreement
with studies reported earlier on the functional microbial
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Table I: Organisms identified by double matches of restriction enzyme/fluorescent label combinations

Enzyme/label combination ~ Fragment Organism identified, species

strain; type culture
collection number

number of plots (out of 24)
where strain was detected

Bst-FAM x BstU-JOE 226/173  Clostridium botulinum 202F; ATCC 23387 5
Clostridium butyricum E.VI.3.6.1.; NCIMB 8082
Clostridium butyricum MMP3; DSM 2478
Clostridium butyricum ATCC 43755
236/173  Bacillus subtilis 7
unidentified species 16SX-1
unidentified species 165X-2
BstU-JOE x MNL-JOE 171/93 Ralstonia solanacearum ACH 0732 24
171/93 Piscirickettsia salmonis 5
173/93 Pirellula sp. (uncultered) clone 5H12 5
Thermoanaerobacterium saccharolyticum B6A-RI
275/93 Ferribacterium limneticum cda-| 3
Escherichia coli chloroplast of Marchantia
polymorpha
BstU-JOE x MNL-FAM 173/210  symbiont of Crithidia sp. 24
275/205  unidentified strain from Gossenkollesee 3
275/211  Azoarcus sp. PH002
Azoarcus sp. CR23
Azoarcus sp. FLO5
unidentified species clone Al-13
unidentified species cloneSJA-62
275/217  Salmonella typhimurium EI0O NCTC 8391 15
275/226  unidentified species clone SJA-47 2
MNL-JOE x BstU-FAM 226/93 Clostridium algidicarnis NCFB 2931 (T) |
BstU-FAM x MNL-FAM 103/211 unidentified species clone SJA-112 I
219/426  Frankia sp. L27 |
Kibdelosporangium aridum subsp. aridum
Mycobacterium asiaticum Né6IH; ATCC 25276
221/129  Nocardia crassostreae RBI 22
Nocardia crassostreae OB3
221/183  Sulfobacillus disulfidooxidans SD-11 12
Kitasatospora paracochleata 14769
Kitasatospora melanogena JCM 3337
Kitasatospora kifuense JCM 9081
236/138  Leuconostoc citreum NCDO 2787 7
Leuconostoc lactis ATCC 19256
Leuconostoc mesenteroides subsp. ATCC 8293
mesenteroides
388/210  Oxalobacter formigenes BLISS 12
390/211  Pseudomonas sp. BI3 I
MNL-FAM x MNL-JOE 134/93 Clostridium perfringens CPN50 2

diversity in soil samples exposed to different plant diver-
sity levels [4]. The differentiation between the three differ-
ent plant diversity levels on the basis of the soil bacterial
composition suggests that all three plant diversities
exhibit their own bacterial environment.

The land where our experimental plots have been set up,
has a long-time record as pasture for cows. Therefore, the
occurrence of Escherichia coli and Salmonella sp. is not sur-
prising since these organisms easily originate from cow-
pats as shown by Muirhead et al., [31] and Johannessen et
al. [32]. Anoxic micro-habitats might occur in soil allow-

ing the existence and survival of anaerobes such as
Clostridia. In addition, Clostridium is an spore-forming
organism able to form spores which can easily survive in
soil for prolonged time periods. Since Ralstonia
solanacearum is commonly found in soil as plant pathogen
but also free-living when host plants are absent [33], the
occurrence is not unusual. Therefore, we conclude that
our findings reflect the true state of the soil investigated.

As stated by other authors [34], soil type might be the key
determinant for soil microbial communities. Since the
soil type was the same throughout all experimental plots,
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we believe that the differences we have observed reflect
the true state of the soil depending on the different treat-
ments e.g. elevated CO, or plant diversity.

Conclusion

In summary, plant diversity levels are affecting bacterial
composition (bacterial types and their frequency of occur-
rence). Elevated carbon dioxide does not lead to quantita-
tive alteration (bacterial richness), whereas plant diversity
is responsible for qualitative changes (bacterial diversity).

Methods

Site description

Soil samples were collected from a nutrient-poor, calcare-
ous experimental grassland in northwestern Switzerland
(for a more detailed site description see [35][36][37]).
The field site is located on a southwest-facing slope in the
Jura mountains of Switzerland near the village of Nenzlin-
gen (47°33'N 7°34'E). Detailed information on soil char-
acteristics have been already published elsewhere. As
described by Niklaus et al. [38], "the Rendzina-type soil,
which is typical for these habitats, consists of a 10 to 15
cm neutral to slightly basic (pH approx. 7.8) silty clay
loam top soil and is underlain with calcareous debris. In
the top 10 cm, the horizon, where most of the fine roots
occur, organic C and N are approx. 3.9% and 0.33%,
respectively". Typically, the climate in this area is charac-
terized by cold wet springs, warm drought-prone sum-
mers, pleasant falls, and moderate winters [39].

Experimental design

Twenty-four plots (1.27 m2 each) received factorial com-
binations of two carbon dioxide treatments at three plant
species diversity levels. CO, treatments were (i) 12 open-
top, open-bottom chambers with ambient CO, (approx.
350 ppm) ["A"]; 12 open-top, open-bottom chambers
with elevated CO, (approx. 600-650 ppm) ["E"] using the
Screen-Aided CO, Control system (SACC) for carbon
dioxide exposure [35]. The plant species diversity levels
were (i) 31 species ("high" diversity level) ["H"], 12 spe-
cies ("medium" diversity level, all species also present in
H) ["M"], and 5 species ("low" diversity level, all species
also present in M and H) per plot ["L"]. Plants were
selected from three functional groups grasses, herbs and
legumes [36]. Diversity treatments were established in
September 1993, prior to the onset of CO, treatment
which started in early April 1994. Each treatment combi-
nation (carbon dioxide level x plant diversity level) was
replicated four times. The treatment combinations are
accordingly named "HA", "MA", "LA", "HE", "ME", and
"LE".

Soil sampling
Soil sampling took place in spring 1999. Six samples were
taken from the top layer (0-10 cm) from each plot. Soil
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coring was done with a core bit which was sterilized by
flaming with ethanol prior to every sampling. Three sam-
ples were pooled in a sterile plastic tube (Greiner AG,
Kremsmiinster, Austria), kept on ice and immediately fro-
zen at -80°C after returning to the laboratory, resulting in
two independent samples from each plot.

DNA extraction

Prior to DNA extraction, all samples were lyophilized over
night and ground in sterile plastic tubes with sterile glass
beads. Total community DNA was extracted using the
Ultra Clean Soil DNA Kit (MO BIO Laboratories, Inc.),
following the manufacturer's instructions. DNA extracts
were stored at -20°C.

Temporal temperature gradient gel electrophoresis
(TTGE)

Samples were prepared by amplifying approximately a
500-bp piece of bacterial 16S rRNA gene, using the bacte-
rial universal primers 341F (5'CCTACGGGAGGCAGC
AG-3") and 907R-GCclamp (5'CGCCCGCCGCGCGCG-
GCGGGCGGGGCGGG GGCACGGGGGGCCGTCAAAT-
TCMTTITRAGTTT-3"). TTGE was performed in 1.25 x TAE
buffer (1 x TAE corresponds to 40 mM Tris-acetate, 20
mM acetic acid, 1 mM EDTA, pH 8.3) for 7 h. For analysis
of bacterial 16S rDNA fragments, gels were run at 60 V
over a temperature range of 60-70°C increasing at a rate
of 1.4°C/h.

Terminal restriction fragment length polymorphism (T-
RFLP)

16S rRNA genes were amplified using the eubacterial uni-
versal primer combination of 6-carboxyfluorescein
(FAM)-labeled primer 27F (5'-AGAGTIT-TGA-TCC-TGG-
CTC-AG-3') and 6-carboxyfluorescein (JOE)-labeled
primer 1525R (5'-AAG-GAG-GTG-WTC-CAR-CC-3'). PCR
amplification parameters were as follows: 94°C and 2
min of initial melt and polymerase activation; 35 amplifi-
cation cycles of 94°C, 30 sec; 55°C, 30 sec; and 72°C, 2.5
min; and a final extension at 72°C for 5 min in a thermo-
cycler (Biometra). The standard reaction mixture con-
tained in a total volume of 100 ul, 1 x JumpStart
ReadyMix Taq (Sigma), 0.4 uM concentration of each
primer (Microsynth GmbH, Balgach, Switzerland) and
genomic DNA (< 60 ng). The fluorescently labeled prod-
ucts were purified with the MinElute Gel Extraction Kit
(Qiagen, Hilden, Germany) according to the protocol
provided by the supplier and were digested for 6 hat37°C
with restriction enzyme MNL1 (MBI Fermentas, St. Leon-
Rot, Germany) or, alternatively, for 6 h at 60°C with the
restriction enzyme BstU1 (New England Biolabs, Beverly,
USA). T-RFLP analysis was carried out on an ABI 310
genetic analyzer (Perkin-Elmer, Foster City, Calif.) with
Genescan software and an internal size standard (ROX
500). Cutoffs were applied (5 base pairs to 480 base
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pairs). Peaks with < 5% of maximum intensity were
neglected. Alignment was done using standards size Gene
scan 500. Position tolerance was < 0.5%. All together,
FAM-labeled 5'-ends and JOE-labeled 3'-ends of the PCR-
products cut by two different restriction enzymes resulted
in four different types of terminal restriction fragments
(TRF), namely (i) 3'-BstU, (ii) 5'-BstU, (iii) 3'-MNL, and
(iv) 5'-MNL. Resulting TRFs were compared with the
results of a virtual search for TRFs with the T-RFLP analysis
program (denoted as TAP T-RFLP) [40].

Statistical analysis

Modeling and canonical correspondence analysis were
done with the open source software package R [41]. In
particular, canonical correspondence analysis (CCA) - a
multivariate analysis method derived from correspond-
ence analysis - was performed to compare the similarity
of band patterns obtained from T-RFLP. All data were
checked for normal distribution and transformed if neces-

sary.
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