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Abstract

Background: Several strains of bacteria have sequenced and annotated genomes, which have been
used in conjunction with biochemical and physiological data to reconstruct genome-scale metabolic
networks. Such reconstruction amounts to a two-dimensional annotation of the genome. These
networks have been analyzed with a constraint-based formalism and a variety of biologically
meaningful results have emerged. Staphylococcus aureus is a pathogenic bacterium that has evolved
resistance to many antibiotics, representing a significant health care concern. We present the first
manually curated elementally and charge balanced genome-scale reconstruction and model of S.
aureus' metabolic networks and compute some of its properties.

Results: We reconstructed a genome-scale metabolic network of S. aureus strain N315. This
reconstruction, termed iSB619, consists of 619 genes that catalyze 640 metabolic reactions. For
91% of the reactions, open reading frames are explicitly linked to proteins and to the reaction. All
but three of the metabolic reactions are both charge and elementally balanced. The reaction list is
the most complete to date for this pathogen. When the capabilities of the reconstructed network
were analyzed in the context of maximal growth, we formed hypotheses regarding growth
requirements, the efficiency of growth on different carbon sources, and potential drug targets.
These hypotheses can be tested experimentally and the data gathered can be used to improve
subsequent versions of the reconstruction.

Conclusion: iSB619 represents comprehensive biochemically and genetically structured
information about the metabolism of S. aureus to date. The reconstructed metabolic network can
be used to predict cellular phenotypes and thus advance our understanding of a troublesome

pathogen.
Background have evolved resistance to some of the most clinically use-
Staphylococcus aureus is a pathogenic gram-positive bacte-  ful antibiotics, including methicillin and vancomycin[1].
rium that causes a variety of disease conditions, some life-  Although the mechanisms of antibiotic resistance and
threatening, both in hospital settings and in the commu-  infection have been elucidated, there is little published

nity at large. Moreover, various strains of this organism  information regarding the basic and systemic biochemical
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function of S. aureus, especially under carefully controlled
environmental conditions in chemically-defined media.
While some research has been performed towards this
goal[2], its scope and extent does not compare to the
research undertaken for better-studied model organisms.
In fact, the annotated genome sequence of a strain of S.
aureus contains much more readily-available specific
information regarding the organism's metabolism than
does a compilation of literature data|3].

The annotated genome of a microorganism, in conjunc-
tion with biochemical and physiological data, can be used
to reconstruct the metabolic network of that organ-
ism[4,5]. Such reconstructed networks consist of a set of
chemical reactions that together comprise the known met-
abolic transformations that take place in a particular
organism. These networks are at the genome-scale when
all or most of the genes with known metabolic function
are included in the network reconstruction. These net-
work reconstructions convey the interactions between cel-
lular components identified from the sequence
annotation, and thus reconstructions can be thought of as
two-dimensional annotation of the genome][6].

Genome-scale reconstructions (GENREs) represent a bio-
chemically and genetically structured database that can be
queried and interrogated using in silico analytical meth-
ods[7]. With the imposition of appropriate constraints on
the reactions in the GENRE, including their exact stoichi-
ometry and reversibility, a genome-scale model (GEM) is
formulated. GEMs reflect allowable network states, or
phenotypes of a cell, by defining a range of permissible
solutions consistent with its mathematical representa-
tion[5]. This range of allowable states can be searched for
the 'best' growth rates using linear programming meth-
ods, and the results from such computations are close to
experimental observations [8-11].

GEMs using the constraint-based modeling formalism
have been constructed for a number of microorganisms,
including Escherichia coli[12], Saccharomyces cerevi-
siae[13,14], Methylobacterium extorquens [15], Mannheimia
succiniciproducens|16], Helicobacter pylori[17] and Haemo-
philus influenzae[18], and reconstructed networks for
human cells are beginning to appear[19]. GEMs are ame-
nable to a wide variety of analysis techniques, yielding a
number of interesting results, as recently reviewed[7].
Importantly, GENREs are two-dimensional annotations,
are portable, and can be used for computations by differ-
ent laboratories. In particular, the GENREs for E. coli and
S. cerevisiae have been analyzed by groups around the
world (see ://systemsbiology.ucsd.edu/organisms
ecoli/ecoli_others.html for a partial list). These analyses
have led to several publications of general interest that
focus on such diverse topics as the causes of enzyme dis-
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pensability[20], the reconfiguration of metabolism fol-
lowing the loss of a gene or enzyme function|21], and the
distribution of metabolic fluxes in microorganisms|[22].

GEMs do not only give valuable computational results,
but they also provide a wealth of hypotheses that can be
experimentally tested[8,23-26]. The generation of easily
testable hypothesis by biological models permits model
validation and improvement through iterative model
building[23]. When the predictions made by a model do
not agree with experimental observations, the knowledge
that went into the model construction is clearly not com-
plete regarding the area of disagreement. Importantly, an
in silico model allows us to identify areas where our under-
standing of an organism is inadequate and where addi-
tional experimentation is needed[27].

The work reported herein describes the first manually
curated genome-scale elementally and charge balanced
metabolic reconstruction and model for the important
pathogen S. aureus, termed iSB619 following a previously
described naming convention|[25], representing the first
draft of its two-dimensional annotation[6]. This GENRE
allows for the formulation of hypothesis ranging from rel-
ative growth capabilities on different media to the out-
come of potential gene deletion experiments.
Importantly, due to the curation and refinement necessary
to form a functional GEM for S. aureus, the work reported
contains the most comprehensive metabolic reaction list
available for this significant pathogen that is consistent
with known phenotypic functions.

Results and discussion

Basic network properties

We have formulated a GENRE for S. aureus strain N315
consisting of 619 genes, 537 proteins, 640 reactions, and
571 metabolites. The entire reaction list of this GENRE is
included in the supplemental material [see Additional file
5 and Additional file 2] and is also available at http://sys
temsbiology.ucsd.edu/organisms. A set of metabolic
maps graphically representing the GENRE is also available
at the same web address. This GENRE was built without
the benefit of an earlier manually curated reconstruction
and model and should be considered a first-draft to the
two-dimensional annotation of the S. aureus genome.
Unlike other initial GENREs[17,18,28], the S. aureus
GENRE is nearly completely elementally and charge bal-
anced. All but three reactions produce no net change in
terms of chemical elements and charge. Of these three
reactions, one (1,4-dihydroxy-2-naphthoate octaprenyl-
transferase, abbreviated DHNAOT) is never used because
it is a dead-end (see below), one (phosphatidic acid syn-
thase, abbreviated PASYN_SA) is a weighted combination
of various fatty acids to form an average phosphatidate
molecule for this organism, and one (2,3-diketo-5-meth-
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Table I: Basic network properties

Genes 619
Proteins 537
Reactions 640
Reactions with gene associations 581
Metabolites 571
Exchange fluxes 84

ylthio-1-phosphopentane degradation reaction, abbrevi-
ated DKMPPD2) participates in methionine and
spermidine metabolism.

Most of the reactions (91%) in the GENRE are associated
with one or more genes with only 9% (59) of the reactions
included without a known gene. The reactions that do not
have a gene association are principally transport reactions,
allowing metabolites to cross the cell membrane, and
reactions that involve the formation of lipids and other
cell wall components [see Additional file 6]. The inclusion
of these reactions, as well as the reactions which we were
able to associate with a gene despite their absence in the
genome annotation (detailed in Materials and Methods),
is a legacy-data based enhancement of genome-annota-
tion based knowledge on the metabolism of S. aureus. We
provide the most comprehensive reaction list to date,
including reactions that were added based on systemic
analysis [see Additional file 9] - the GEM cannot produce
biomass without them. All reactions that are associated
with genes are also associated with proteins, and they are
represented by what have been termed gene-protein-reac-
tion (GPR) associations[25], which are available as
Boolean statements connecting genes to reactions in the
supplementary material [see Additional file 8] and in
graphical form at http://systemsbiology.ucsd.edu/organ
isms. Basic properties of the reconstructed network are
summarized in Table 1.

Particularly because this is a first-pass reconstruction, the
network has a significant number of dead-end metabo-
lites, as other GENREs do[14,17,18,25]. These dead-ends
are compounds that are either only produced or only con-
sumed by reactions in the network. Three hypotheses exist
regarding the presence of a dead-end metabolite in a
reconstructed network: (1) other enzymes required to
produce or consume the metabolite may be missing in the
reconstruction, (2) the reaction that causes the dead-end
may have been misidentified based on a homology search
and may not actually occur in the organism, or (3) the
dead-end may exist in organism. Because the accumula-
tion or depletion of any compound cannot occur in a
steady-state, any reaction in the network involving any of
these compounds cannot be used in a computed network
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state. In total, 108 reactions present in the reconstruction
involve dead-end metabolites. All of these reactions have
an associated gene and are included because of genetic
evidence that they are present in S. aureus. Subsequent
additions to the model will likely close some of these
gaps. These reactions are further detailed in the supple-
mental material [see Additional file 3].

A reaction representing biomass formation, consisting of
58 metabolites required for cellular growth, has been
defined and is detailed comprehensively in the supple-
mental material [see Additional file 1]. Key components
of this reaction include amino acids, nucleotides, lipids,
and cell wall constituents. Because data describing the
biomass composition of S. aureus could not be located in
the literature, data from Bacillus subtilis was substituted
where necessary|[29]; quantitative data specific to S. aureus
accounts for only a small fraction of the biomass function.
Although a comprehensive biomass function has been
published for E. coli and used to analyze the networks of
other initial reconstructions[17,18], this was not appro-
priate for S. aureus because of the differences between
gram-positive and gram-negative bacteria. The relative
quantities of each required metabolite were included in
the biomass function when information existed, but
many of the trace compounds were included in small
ratios that are not quantitatively accurate. It has been
shown previously that the calculated biomass production
is relatively insensitive to the exact ratios used in the bio-
mass function[30]. The biomass function is a key element
of the linear programming (LP) formulation used for
hypothesis generation because it allows for the computa-
tional prediction of growth.

Minimal media and growth requirements

Linear programming using the assumptions of flux-bal-
ance analysis (FBA) allows for the computation of feasible
steady-state fluxes through a reaction network that maxi-
mize a particular objective and satisfy various constraints,
including stoichiometry, thermodynamics, and enzyme
capacity[7,31-33]. Specifically, we used FBA to determine
fluxes leading to optimal growth subject to constraints on
the usage of each reaction. This principle allowed us to
systematically predict a minimal media composition
capable of supporting growth of S. aureus. A literature
search  revealed experimental growth require-
ments|3,34,35] for S. aureus and they are compared with
the computational predictions (Table 2). These require-
ments are for growth with oxygen, nitrate, or nitrite as a
terminal electron acceptor. Computationally, we predict
that S. aureus can grow with a variety of carbon sources,
and Table 2 presents a glucose minimal medium because
the available experimental data assumes that glucose is
the carbon source. This table should be considered as a
prediction of the growth requirements of S. aureus derived
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Table 2: Computational and experimental minimal media
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Computational

Experimental

proline OR arginine OR glutamate OR alanine OR alanine amino acids
aspartate OR glycine OR ornithine OR serine OR glycine
threonine isoleucine

arginine

valine

proline
cytidine OR cytosine OR uridine OR uracil nucleotides
phosphate phosphate cofactors, ions, etc.
sulfate sulfate

nicotinamide OR nicotinate
iron
oxygen OR ((nitrate OR nitrite) AND protoheme)

nicotinamide OR nicotinate
iron? (disagreement in literature)
oxygen assumed

thiamin thiamin
biotin
calcium pantothenate
ammonium
glucose glucose carbon source

The computed and experimentally determined minimal media for growth of S. aureus compare reasonably well. The most noticeable difference is
the amino acid requirement, which can be attributed to regulation, as detailed in the text. The boolean statements (AND/OR) are standard; for
example, there are three terminal electron acceptors that can be members of the computational minimal medium, 02, no3, and no2, but both no3
and no2 also require the presence of pheme. The absence of an explicit logic statement between lines is equivalent to using AND; for example, all
6 amino acids listed are required together in the experimental minimal medium.

from its GENRE. Although some of the components in the
medium seem obvious, like phosphate and a carbon
source, they still serve as validation for the GEM. If we
were to computationally predict that growth was possible
in the absence of a carbon source, it would quickly
become apparent that something was amiss with the
GEM. An agreement between the computationally-pre-
dicted and the experimentally-determined requirements
indicates areas where simple model predictions are con-
sistent with existing experimental data.

The primary difference between the computationally pre-
dicted growth requirements and those from experimental
data is the amino acid requirement. Kuroda et. al[3] report
that the six amino acids listed in Table 2 are specifically
required for strain N315 to grow and speculate that, since
the strain has pathways for the synthesis of all amino
acids, regulation might require the presence of these
amino acids. iSB619 does not account for regulatory
effects and as such predicts media requirements as if regu-
latory processes allow any gene to be expressed at the
needed levels. The transcriptional regulatory network
reduces the functionality of a constraint-based metabolic
model by limiting which reactions are active at a given
time[36]. If enzymes required for the synthesis of a given
amino acid are encoded in the genome, but are not suffi-
ciently transcribed or translated due to regulatory proc-
esses, the cell will require that amino acid as a component

of the medium even though a purely metabolic model
indicates otherwise.

We experimentally predict growth if any one of the nine
amino acids or derivatives listed in the table is provided.
Each of these compounds can either provide nitrogen
through a deamination reaction or be directly converted
into another compound that can provide nitrogen. S.
aureus is said to require an organic source of nitrogen pro-
vided by amino acids[37], so the requirement of at least
one amino acid is not surprising. It should be noted that
the data from Kuroda et al|3] listing six essential amino
acids is "unpublished data" and thus this information
should be viewed with some skepticism. Furthermore, S.
aureus has shown the ability to grow without amino acids
previously thought to be required[37]; thus the amino
acid requirement appears to be flexible. The differences in
computationally-predicted and experimentally-deter-
mined essential amino acids highlight an area that has
been historically under considered.

To explore the discrepancy between experimental results
and computational predictions, we elected to study in sil-
ico the effect of adding each amino acid individually to the
predicted minimal media listed (with arginine present at
all times). The individual results are shown in Figure 1.
We found that, on average, providing one of amino acids
noted as essential from experimental data led to more bio-
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Amino acid contributions to growth. The results of adding equivalent quantities of each amino acid to the media are
shown here. Red bars represent amino acids that are reported essential in the literature, and green bars are amino acids that
are not. Arginine is present in all cases and is the baseline against which the rest of the values are normalized. On average, add-
ing an essential amino acid to the media allows better growth than does adding a non-essential amino acid. E stands for average
essential amino acid, and NE stands for average non-essential amino acid. Two amino acids do not have transporters in the

genome annotation and are not included here for that reason.

mass production than providing one amino acid not
listed as essential. Using a Wilcoxon rank sum test with
Matlab (The MathWorks, Inc., Natick, MA), these results
are only 5.6% likely to be the result of random chance.
The relative biomass production that we predict should be
taken as a hypothesis that can be tested experimentally. It
is not unreasonable that a pathogen would have devel-
oped regulation that leads it to require the uptake of
amino acids that significantly aid its growth, especially
when they are readily available in its typical environment.
In essence, we predict that S. aureus can grow more effi-
ciently by uptaking certain amino acids rather than syn-
thesizing them, even though its genome encodes that
functionality. Although one might intuitively think that
this would be the case for all amino acids, the results in
Figure 1 indicate that the synthesis of some amino acids is
not predicted to substantially inhibit growth under the
conditions studied (cys, his, met, phe, trp, tyr).

Deletion Study

In order to determine the effects of the deletion of a reac-
tion from the network, as would occur in a gene knock-
out experiment, FBA is used with the additional constraint
that the flux through a particular reaction is zero. This
allows for the rapid prediction of the results of gene dele-
tions and also reaction deletions, as occur when a selective
enzyme inhibitor is used. We calculated the effects of all
single reaction and gene deletions both on minimal
medium and on a rich media (consisting of all amino
acids, nucleotides, and protoheme). We found that, on
rich media, 130 reaction deletions and 88 gene deletions
are computationally predicted to be lethal. On minimal
media, 230 reaction deletions and 168 gene deletions are
predicted to be lethal. These predictions are detailed in the
supplemental material [see Additional file 4 and Addi-
tional file 7]. There are fewer lethal gene deletions than
reaction deletions because some essential reactions are
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Table 3: Essential enzymes and potential chemical inhibitors

Enzyme name Potential Inhibitor Prior testing? Reference
acetyl-CoA carboxylase pseudopeptide pyrrolidine dione antibiotics SA,B [45]
4-amino-4-deoxychorismate synthase (65s)-6-fluoroshikimate B [46]
Adenosylmethionine decarboxylase CGP 40215A, AdoMao B [47,48]
asparagine synthase (glutamine-hydrolysing) mucochloric and mucobromic acids, L-cysteine sulfinic B [49,50]
acid
dihydrofolate reductase methylpteridines B [51]
dihydropteroate synthase Sulfone and sulfanilamide sulfa drugs B [52,53]
3-dehydroquinate synthase carbocyclic inhibitors B [54]
FMN adenylyltransferase (FAD synthase) Riboflavin 5'-pyrophosphate F [55]
glycerol-3-phosphate dehydrogenase (NADP) 5-n-alk(en)ylresorcinols NF [56]
glutamine synthetase L-methionine sulfoximine, aminomethylene- NF [57,58]
bisphosphonic acid derivatives
glutamyl-tRNA reductase see table | in paper NF [59]
GTP cyclohydrolase | Diamino-6-hydroxypyrimidine, pterins NF [60,61]
Hydroxymethylglutaryl CoA reductase (ir) statins NF [62,63]
Hydroxymethylglutaryl CoA synthase (ir) beta-lactone, 3-Hydroxy-3-methylglutaryldithio- NF [64,65]
coenzyme A
isopentenyl-diphosphate D-isomerase NE21650 NF [66]
methionine adenosyltransferase adduncts 14 and 16 B [67]
Phosphatidate phosphatase Propranolol NF [68]
phosphoribosylpyrophosphate synthetase MRPP, ARPP NF [69]
riboflavin synthase 9-D-ribitylamino-1,3,7,9-tetrahydro-2,6,8-purinetriones B [70]
spermidine synthase adenosylspermidine, dicyclohexylamine SA, B [71,72]
thiamine transport via ABC system azidobenzoyl derivatives of thiamin, methylene blue F [73,74]
thioredoxin reductase Arsenicals, Aurothioglucose NF [75,76]
UDP-N-acetylglucosamine 4-epimerase uridine analogs NF [77]
UDP-N-acetylenolpyruvoylglucosamine reductase 4-thiazolidinones B [78]

A reasonable number of enzymes that are computationally predicted to be essential for the growth of S. aureus have inhibitors. These molecules are
potential drugs against this organism. The prior testing column uses abbreviations to indicate if we located evidence that the listed compounds had
been tested in S. aureus (SA), other bacteria (B), fungi (F), or if no evidence was located (NF). The interested reader should consult the relevant

references for full details regarding these potential inhibitors.

not associated with genes, some essential reactions are
associated with isozymes, and some genes catalyze multi-
ple reactions. When analyzed in the context of GPR asso-
ciations, we found that 20 (9%) of the reactions that are
essential on minimal media are associated with isozymes.
This calculation indicates that gene dispensability is
explained by the presence of isozymes less often than in S.
cerevisiae (14.6%-27.8%) [20]. We note that the distinc-
tion between isozymes that independently catalyze a reac-
tion and multiple gene products required simultaneously
for a reaction is not always clear from the data sources
used in this reconstruction.

We took the results of the reaction deletion study on rich
media and searched PubMed for chemical inhibitors of
each of those reactions (Table 3). Most of the inhibitors
listed do not have any published information regarding
their effectiveness in S. aureus to the best of our knowl-
edge. These computational predictions can be experimen-
tally tested with targeted gene deletions or the inhibitors

listed. Due to the diversity of biological systems in which
the inhibitors were initially discovered, gene deletions
would be expected to agree with our predictions more
than the use of chemical inhibitors. There are a variety of
reasons why any one of these inhibitors listed may have
no utility whatsoever as a drug. For example, there may be
no way for the inhibitor to actually enter a cell. Neverthe-
less, when considered as an initial guess at potential
drugs, Table 3 represents hypotheses formed by a systems-
level approach that has not been applied to an organism
as clinically troublesome as S. aureus before.

Additionally, we considered comparing the results of our
gene deletion study with the results of an existing experi-
mental approach to determine gene essentiality. Unfortu-
nately, although we are aware of two large-scale studies on
gene essentiality in S. aureus[38,39], there does not exist a
comprehensive, publicly-available resource listing all
essential genes in this organism. There is a comprehensive
gene essentiality study for the related organism B. subti-
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Figure 2

Relative growth efficiency with different carbon sources. The in silico growth of iSB619 varies depending on which car-
bon source is provided and the amount of oxygen present. The predicted efficiency of carbon incorporation into biomass is
shown here as a function on the oxygen consumption. Growth rate is normalized relative to the number of carbon atoms per
molecule. Oxygen consumption is normalized relative to optimal oxygen consumption for each carbon source. Trehalose, lac-
tose, and sucrose all overlap (the trehalose line indicates all three). The legend is presented in the same order as the carbon

sources appear in the figure, top to bottom.

lis[40], but this is a different organism. Should compre-
hensive gene essentiality data become available for S.
aureus, a comparison between experimental data and the
predictions detailed herein can easily serve as validation
for this model and identify problem areas. The absence of
a comprehensive, publicly-available data set regarding
gene essentiality in this organism is in itself powerful
motivation to undertake the reconstruction detailed in
this paper, as the reconstruction can rapidly predict essen-
tial metabolic genes that can later be screened experimen-
tally as potential drug targets.

Growth Phenotypes

We computed the sensitivity of growth rate to oxygen
uptake on a variety of different carbon sources (Figure 2).
The carbon source uptake rate is restricted to the same

molar maximum for all calculations. As expected, bio-
mass production increases with oxygen uptake up to the
point where there is no longer an oxygen limitation. In
addition, the carbon sources which contain more carbon
atoms also generally allow greater biomass production.
For example, trehalose, which contains twice as much car-
bon as glucose, allows close to twice as much biomass
production as an equivalent molar amount of glucose.
The normalization used, explained in the figure caption,
allows a quick analysis of the efficiency of the network in
utilizing different carbon sources. Importantly, these pre-
dictions can be tested experimentally as a means of vali-
dating and improving the current GEM.

Page 7 of 12

(page number not for citation purposes)



BMC Microbiology 2005, 5:8

Conclusion

The work reported is the first genome-scale metabolic
reconstruction for the pathogenic bacterium S. aureus and
represents the first draft to its two-dimensional genome
annotation. The GENRE with the GPR associations repre-
sents a chemically and genetically structured database
derived from the underlying data. When the properties of
this GENRE are analyzed using FBA, the model computa-
tionally predicts phenotypic states. Based on the surpris-
ing paucity of physiological growth data available for this
organism, especially under carefully defined conditions,
the predictions made by the GEM are best viewed as
hypotheses. These hypotheses can be experimentally
tested, with similar results serving as validation for the
GEM and dissimilar results describing failure modes of
the GEM. These failure modes can be more interesting
than correct predictions because they provide direction
for improvement of the GEM and point to areas in metab-
olism and regulation that need further investigation. The
analysis of failure modes and subsequent improvement of
the GEM constitute a cycle of iterative model build-
ing[23,27], with the potential to significantly improve a
GEM. Second generation models of E. coli and S. cerevisiae
have made substantial improvements over initial
genome-scale reconstructions. These enhancements
include greater coverage of metabolism, explicit GPR asso-
ciations, more detailed enzyme localization, and better
enforcement of elemental and charge balancing. We
expect that future enhancements to iSB619 will improve
the accuracy of the reaction network and the GPR
associations.

The scope of hypotheses that can be devised with a con-
straint-based metabolic model ranges from the relatively
mundane, such as prediction of relative growth on differ-
ent carbon sources, to the potentially groundbreaking,
such as the determination of novel prospective drug
targets. With an organism as harmful as S. aureus, any
advancement of knowledge is welcome.

Methods

Reconstruction of the metabolic network

A genome annotation for S. aureus strain N315 was down-
loaded from the Comprehensive Microbial Resource
(CMR) at The Institute for Genomic Research (TIGR) web-
site[41] and used to form a gene index. Each key meta-
bolic pathway present in map form on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) website[42]
was then examined to extract reactions that genomic data
suggest occur in this strain. These reactions were matched
to proteins and genes based on the information provided
by both TIGR and KEGG. After this pathway-by-pathway
approach, the predicted functionality of each gene in the
genome was examined manually, both in the TIGR anno-
tation and on the KEGG website to find additional
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metabolic reactions that are not present in any KEGG
map. Inconsistencies between TIGR and KEGG were han-
dled on a case-by-case basis to determine what function-
ality should be assigned to a given gene. For example, in a
case where one source (either TIGR or KEGG) indicated
that the gene was a "conserved hypothetical protein" but
the other source listed a specific metabolic function, the
gene was generally given the specific function. If both
sources gave conflicting functions, a reaction was
included in the model if it was present in related organ-
isms but was only associated with a gene that had conflict-
ing annotations if another suitable gene without
conflicting information could not be found.

After assembling the network based on genomic data,
missing functions were noted based on physiological data
regarding this organism, as well as B. subtilis and E. coli.
Two books proved particularly helpful for this proc-
ess[37,43]. Likely reactions were added to the model
based on pathways present in related organisms. For
example, some cell-wall components known to be in S.
aureus could not be produced without the addition of
reactions in various pathways present in B. subtilis. Mem-
brane-bound transporters were added whenever evidence
existed that a metabolite could enter and/or exit the cell.
For example, if data indicated that a given carbon source
could be used, a transporter was added to the reconstruc-
tion. Potential genes for some of these reactions were
located by best-hit BLAST analysis against E. coli and B.
subtilis. Each reaction without a gene association was
checked against the genome annotations for E. coli and B.
subtilis to determine if a gene exists in either organism for
a given function. A homology search was used with any
gene located in E. coli or B. subtilis against the entire S.
aureus N315 genome. A reaction was putatively associated
with a gene based on the E value provided by BLAST and
the annotation information for that gene from both
KEGG and TIGR. If a S. aureus gene did not have any func-
tional information included in either annotation, a BLAST
E value of 0.05 was considered sufficient to make an asso-
ciation. If functional information was present and differed
from the specific reaction under consideration, a better E
value would be necessary; the precise E value required was
a judgment call and depended on the specificity of the
annotation information. An association based on a rela-
tively large E value should not be considered as a claim
that a gene product catalyzes a reaction, but a suggestion
as to a candidate gene [see Additional file 9]. Transporters
were not associated with genes unless an annotation indi-
cated with some degree of specificity that the gene had the
given function. Whenever possible, the reactions in the
network were balanced elementally and with respect to
charge, where compound charge and molecular formula
were based on a cellular pH of 7.2. The end result can be
visualized as a stoichiometric matrix S with each column
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representing a reaction and each row a metabolite, with
each element representing the stoichiometric coefficient.
This reconstruction process, including accounting for GPR
associations, and the subsequent analysis described below
were done using the software program SimPheny™ (Geno-
matica Inc., San Diego, CA).

Biomass composition

Because no thorough biomass composition has been pub-
lished for S. aureus, the relative production of metabolites
required for growth was taken to be similar to that pub-
lished for the related gram-positive organism B. subti-
lis[29]. The fatty acid composition of the lipids required
for growth was, however, based on data specific to S.
aureus[44]. Small amounts of a number of minor biomass
constituents were added to the biomass function in equal
amounts to account for their necessity in cellular growth.
Further details are provided in the supplemental material
[see Additional file 1].

Computation of phenotypic states and deletion study
With the reconstructed metabolic network and biomass
function defined, flux-balance analysis (FBA) [31] was
used to find optimal growth phenotypes. Briefly, linear
programming was used to find a complete set of meta-
bolic fluxes (v) that are consistent with all constraints,
namely steady-state network operation (eq. 1 below) and
reaction rate limitations (eq. 2 below), and which maxi-
mize the production of biomass components in the
defined ratio. This corresponds to the following linear
programming problem:

max Z = Vgrowth

Subject to
Sev=0 (1)
o<vi<B; (2)

where S is the stoichiometric matrix described above, and
o; and B, define the minimum and maximum allowable
fluxes through each reaction v;. The flux range was set arbi-
trarily high for all internal reactions so that no internal
reaction restricted the network, with the exception of reac-
tions known to be irreversible, which have a minimum
flux of zero. The inputs to the system were restricted where
necessary (for example, limiting the amount of glucose
available to the cell). The function vy, is a special reac-
tion taking as substrates all biomass metabolites, ATP and
water, and producing ADP, protons, and phosphate (as a
result of the non-growth associated ATP maintenance
requirement). SimPheny™ (Genomatica Inc, San Diego)
was used for all FBA calculations.

http://www.biomedcentral.com/1471-2180/5/8

The value of Z computed with the above procedure can
either be zero or greater than zero depending on the
inputs and outputs that are allowed, corresponding to the
nutrients provided in the media. A zero value is a compu-
tational prediction of no growth; this commonly occurs
when an essential nutrient like a carbon source is not pro-
vided. Any value greater than zero corresponds to cellular
growth.

For the deletion study, each reaction was individually con-
strained to have zero flux and maximal biomass produc-
tion was computed. Reactions were considered essential if
no biomass could be produced without their usage. Gene
deletions were computed in a similar manner, but all reac-
tions requiring the presence of a given gene were simulta-
neously restricted to zero flux prior to computing
maximal biomass production.

Minimal media

The minimal media was determined computationally
with the systematic testing of distinct inputs. In short, dif-
ferent combinations of molecules were allowed to enter
the reaction network until the minimal group that
allowed biomass production, or non-zero Z, was found.
Importantly, the minimal media computed here does not
discriminate between extremely slow, inefficient growth
and rapid growth; it is only concerned that some amount
of biomass production is calculated.
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Additional material

Additional File 1

Cellular biomass demand table This is a detailed, quantitative listing of
the macromolecules required for cellular growth.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-8-S1.pdf]

Additional File 2

Compound abbreviations This is a listing of the compound abbreviations
used in the reconstruction and the corresponding formal compound
names.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-8-S2.pdf]

Additional File 3

Dead-end reactions This is a listing of the reactions that the current ver-
sion of the model will never use because they involve a dead-end
metabolite.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-8-3.pdf]

Additional File 4

Lethal reaction deletions on minimal media This is a listing of all of the
reactions that are predicted to be essential for growth on minimal media
and their corresponding gene associations.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-8-S4.pdf]

Additional File 5

Network reaction list This is a comprehensive list of all of the reactions
that are in the model.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-8-85.xls]

Additional File 6

Reactions without any gene association This is a list of the reactions that
are included in the model without any gene association and rationale for
their inclusion.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-8-6.xls]

Additional File 7

Lethal reaction deletions on rich media This is a listing of all of the reac-
tions that are predicted to be essential for growth on rich media and their
corresponding gene associations.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-8-S7.pdf]
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Additional File 8

Boolean gene-reaction associations This is a listing of reaction abbrevia-
tions along with the genes that are required for those reactions, in a
Boolean form.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-8-S8.pdf]

Additional File 9

Reactions that were added based on systemic evidence This is a list of the
reactions that were added to the reconstruction based on systemic analysis
(they do not appear in an obvious fashion in the genome annotation), and
the gene(s) with which they are associated in cases where a gene could be
located based on homology searches.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-8-89.pdf]
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