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Abstract

Background: Genome-scale flux models are useful tools to represent and analyze microbial
metabolism. In this work we reconstructed the metabolic network of the lactic acid bacteria
Lactococcus lactis and developed a genome-scale flux model able to simulate and analyze network
capabilities and whole-cell function under aerobic and anaerobic continuous cultures. Flux balance
analysis (FBA) and minimization of metabolic adjustment (MOMA) were used as modeling
frameworks.

Results: The metabolic network was reconstructed using the annotated genome sequence from
L. lactis ssp. lactis IL1403 together with physiological and biochemical information. The established
network comprised a total of 621 reactions and 509 metabolites, representing the overall
metabolism of L. lactis. Experimental data reported in the literature was used to fit the model to
phenotypic observations. Regulatory constraints had to be included to simulate certain metabolic
features, such as the shift from homo to heterolactic fermentation. A minimal medium for in silico
growth was identified, indicating the requirement of four amino acids in addition to a sugar.
Remarkably, de novo biosynthesis of four other amino acids was observed even when all amino acids
were supplied, which is in good agreement with experimental observations. Additionally, enhanced
metabolic engineering strategies for improved diacetyl producing strains were designed.

Conclusion: The L. lactis metabolic network can now be used for a better understanding of
lactococcal metabolic capabilities and potential, for the design of enhanced metabolic engineering
strategies and for integration with other types of 'omic' data, to assist in finding new information
on cellular organization and function.

Background

Lactic acid bacteria (LAB) are a heterogeneous group of
microorganisms able to convert carbohydrates into lactic
acid. They are applied worldwide in the industrial manu-
facture of fermented food products, mainly in the dairy
industry. During fermentation LAB primarily produce lac-
tic acid from the available carbon source, resulting in the
rapid acidification of the food raw material, which is an

important parameter in the preservation and extension of
shelf life of food products. LAB metabolism also contrib-
utes for the development of desired product properties
such as flavor and texture [1,2]. Because of their long tra-
dition of safe use (GRAS microorganism), their capacity to
grow rapidly on lactose-based media derived from milk
and their potential to generate a variety of metabolic
products, LAB also have the potential to be used as cell-
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factories in bioreactors for the in situ production of com-
pounds that contribute to the flavor, texture or health
benefits of foods [1].

Among LAB, Lactococcus lactis is, by far, the most exten-
sively studied with respect to its physiology, metabolic
pathways and regulatory mechanisms, and its genome
was the first LAB genome to be completely sequenced and
annotated [3]. Lactococci are nutritionally fastidious
organisms with a very limited biosynthetic capacity. Ana-
bolic precursors are primarily imported from the growth
media, whereas only a minor fraction is synthesized de
novo from a carbon source. The major part of the carbon
from carbohydrates is converted into fermentation end-
products. For example, during growth on glucose, only
about 5% of the metabolized sugar is converted into bio-
mass [4]. The very limited biosynthetic capacity of L. lactis
implies that, for optimal growth, they require exogenous
supply of a fermentable sugar, numerous vitamins and
amino acids, phosphate, potassium and magnesium [5].

L. lactis is a facultative anaerobic bacterium. Some strains
are capable of growing in the presence of oxygen and
adjust their metabolism accordingly, while others are
strongly inhibited under aerobic conditions. As this
microorganism lacks a functional respiratory chain, the
ability to grow aerobically has been linked to the presence
of NADH-oxidases. Since L. lactis is not able to perform
respiration, ATP is only formed through substrate level
phosphorylation. Thus, in order for Lactococci to grow at
a high specific growth rate, a high carbohydrate degrada-
tion rate (and, concomitantly, an efficient sugar transport
system) is called for. The main function of the sugar
metabolism in L. lactis is to generate the energy necessary
for rapid growth and for maintenance of intracellular pH
during acidification of the environment [6].

Due to its major importance as a laboratorial and indus-
trial microorganism, and because of its relatively simple
metabolism and limited biosynthetic capabilities, L. lactis
has been an organism of choice for many metabolic engi-
neering purposes [1,6,7]. Hence, the design of enhanced
metabolic engineering strategies calls for models where
cellular behavior can be predicted.

The reconstruction of the entire metabolic reaction net-
work of a cell and subsequent application of genome-
scale flux models has been conducted for many organ-
isms, including bacteria, yeast, fungi and animal cells [8-
12]. These models have the potential to become common
modeling tools. One approach that has been used to
explore the capabilities of these large metabolic networks
is flux balance analysis (FBA). This is simply a linear pro-
gramming posed problem in which the constraints are
defined by the stoichiometry of enzymatic reactions and
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transport steps. A solution to the problem, i.e., a set of
fluxes through all the defined reactions, can be found
through specifying an objective function, which is often
defined as the optimization of a certain flux of interest,
e.g., the flux towards formation of biomass. Maximization
of biomass production has been shown to allow descrip-
tion of overall metabolic behavior in a number of cases,
probably because most cells have evolved, under labora-
tory conditions, towards the maximization of their
growth performance [13]. By using appropriate con-
straints and a meaningful objective function, FBA has
been successfully used in exploring the relationship
between genotype and phenotype and in the prediction of
product yields and growth rates under changing environ-
mental and genetic conditions, at steady state [14-16].
More recently, another approach has been proposed for
dealing with the effect of gene deletions in the prediction
of flux distributions, based on quadratic programming
[17]. This minimization of metabolic adjustment
(MOMA) approach relies on the assumption that optimal
growth may initially not be true for mutants generated
artificially in the laboratory as usually those mutants have
not yet undergone evolution towards optimal growth.

In this work the reconstruction process of the metabolic
network of L. lactis is presented. Network reactions were
collected using the annotated genome sequence, bio-
chemical and metabolic pathways databases, biochemis-
try books and journal publications. Once the network was
established, FBA and MOMA were applied to analyze the
network capabilities and to model phenotypic behavior
under anaerobic and aerobic conditions. Simulation
results were compared with experimental data available in
the literature. Furthermore, the model was used to iden-
tify possible metabolic engineering targets to design an
efficient diacetyl producing strain.

Results and discussion

Characteristics of the reconstructed network

The reconstruction process resulted in a network compris-
ing 621 reactions and 509 metabolites. The entire reaction
database can be consulted in the Additional file 1 and is
also available at http://www.fluxome.com/models/
Lactococcus_lactis.html. A total of 358 ORFs out of the
detected 2310 ORFs in the sequenced genome were con-
sidered, corresponding to 476 associated reactions. The
remaining 145 reactions were included based on bio-
chemical/physiological considerations or inferred by the
demands imposed on the metabolic network. Namely,
reactions were included based on experimental informa-
tion reported in literature to account for pathway gaps,
transport steps and biomass assembly. From the entire set
of reactions, 492 correspond to intracellular reactions
while 129 are transport fluxes over the cytoplasmic mem-
brane. From the 358 ORFs considered, 63 ORFs account
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Table I: Main characteristics of the reconstructed metabolic network of Lactococcus lactis.

ORFs 358
Experimental evidence 63
Clear function (functional annotation derived from probable homologues) 286
Tentative function (functional annotation derived from tentative homologues) 2
Putative function (sequence has probable homologues of uncertain function) 7

Metabolites 509
Intracellular metabolites 414
Extracellular metabolites 95
Unique metabolites 422

Reactions 621
Internal reactions 492
Exchange fluxes 129

Reactions with ORFs assignments 476

Reactions based on biochemical evidence / physiological considerations or inferred by the demands imposed on the metabolic 145

reaction network

for genes that have been isolated and identified from L.
lactis, 286 ORFs have high homology with identified
genes from other organisms, 2 ORFs are annotated
sequences derived from low level homologues and 7
ORFs are described as probable homologues of unknown
function (ORF reliability classification based on [18]).
The reaction database includes a total of 509 network
metabolites, from which 414 are intracellular and 95 are
external metabolites. 87 out of these 95 are metabolites
secreted or taken up by the cell without undergoing phos-
phorylation, and so it can be pointed out that the recon-
structed network accounts for 422 unique metabolites.
Table 1 summarizes the main characteristics of the recon-
structed metabolic network of L. lactis.

Network reactions

From the 358 ORFs considered in the reconstruction proc-
ess, ORFs that are assigned to energy metabolism, amino
acid biosynthesis and nucleotides metabolism account for
more than half of the total number. These ORFs are
involved in 476 reactions. The relatively high number of
associated reactions is mainly due to the existence of low
substrate-specific enzyme activities catalyzing different
reactions. For instances, the model includes a low-specific
aminotransferase (araT) involved in the metabolism of
several amino acids and defined to catalyze 18 reactions
in the model. An equation on biomass formation was
developed to account for the drain of precursors and
building blocks into biomass. A detailed description of its
assembly can be found in the Additional file 2. This equa-
tion also accounts for energy requirements associated
with growth, which have been estimated through model
fitting against experimental observations as being 18.15
mmol ATP gDW-1. One reaction was included to account
for non-growth dependent ATP maintenance. For growth

under glucose limitation this value has been previously
experimentally determined and equals 1 mmol ATP gDW-
1h-1]19].

Network metabolites

The metabolic network of L. lactis contains 509 metabo-
lites, 422 of which are unique metabolites. It is through
metabolites that reactions are connected, as the product of
one reaction becomes the substrate of another. At a zoom-
out level, different biochemical pathways within a cell are
interconnected by virtue of metabolites that participate in
more than one pathway [20]. In particular, cofactors like
ATP, NADH and NADPH play an important role in con-
necting the many different pathways. The most frequent
metabolic intermediates in the reconstructed network are
presented in Table 2. A total of 28 intracellular metabo-
lites were not connected into the overall metabolic net-
work. These non-connected metabolites take part in 25
"non-connected" reactions, catalyzed by 21 "non-con-
nected" gene products (see Additional file 3)

Growth requirements and minimal media

L. lactis is able to metabolize a variety of different sugars
and other carbon sources [2,21] to obtain energy, redox
power and precursor metabolites for macromolecular bio-
synthesis. Fermentable carbon sources utilized by L. lactis
include fructose, galactose, glucosamine, glucose, lactose,
maltose, mannitol, mannose, ribose, sucrose and
trehalose.

The capabilities of the in silico model to utilize different
carbon sources to grow were evaluated using FBA, using
comparable uptake rates and carbon-limited conditions.
All the above mentioned carbon sources were supplied,
one at a time, together with all amino acids and nucle-
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Table 2: Connectivity of metabolites in Lactococcus lactis.
Connectivity is defined as the number of reactions in which the
listed metabolites participate in.

Metabolite Connectivity
ATP 117
proton 116
ADP 101
Phosphate 95
Pyruvate 60
Diphosphate 48
CO(2) 46
Glutamate 42
Phosphoenolpyruvate 39
NADP(+) 39
NAD(+) 38
NADPH 37
NADH 34
NH(3) 20

otides. A sugar consumption rate of 13.6 mmol gDW-1 h-1
was considered (6.8 mmol gDW-! h-1in the case of disac-
charides), both under aerobic and anaerobic conditions.

The specific growth rate under anaerobic conditions was
always higher than at aerobic conditions when the specific
oxygen consumption was set to 3.61 mmol gDW-! h-1
[22], which is in good agreement with experimental evi-
dence [23]. The predicted anaerobic specific growth rate
on glucose was 0.79 h!, while the aerobic specific growth
rate was 0.62 h'1. In case oxygen uptake is not constrained
(unlimited oxygen uptake is allowed) the specific growth
rate was 0.82 h-l. Constrained aerobic growth is slightly
lower than anaerobic growth due to the different flux con-
straints applied to the enzymes that metabolize pyruvate
into acetyl-CoA (see Methods). Pyruvate-formate lyase is
only active under anaerobic conditions, while the pyru-
vate dehydrogenase (PDH) complex is only active during
aerobic growth [24]. This forces the cell to produce more
NADH under aerobic conditions, since the PDH complex
is a NADH producing step and is also an essential reaction
for formation of the precursor metabolite acetyl-CoA.
However, model results indicate that for low oxygen con-
sumptions there is a limited capacity to recycle NADH
through NADH-oxidase, therefore causing the cell to
reduce the flux through the PDH complex, decreasing the
amount of acetyl-CoA available for lipid metabolism and,
consequently, for biomass formation.

Growth on mannose, galactose, sucrose, lactose and glu-
cosamine was found to be the same as for growth on glu-
cose. The capacity to grow on trehalose and maltose was

http://www.biomedcentral.com/1471-2180/5/39

slightly higher, due to a decreased ATP requirement for
the synthesis of the corresponding phosphorylated sugars.
Anaerobically, growth on fructose and mannitol led to a
decrease of 3% and 16% in biomass formation, respec-
tively, compared with growth on glucose. This decrease
has been qualitatively observed experimentally
[21,25,26]. In the case of fructose, the difference seems to
be associated with a lower capacity to generate NADPH
due to a lower flux through the pentose phosphate path-
way. In the case of mannitol, the lower biomass formation
rate seems to be related both with a decrease in the capac-
ity of generating NADPH and with a NADH burden due
to formation of an additional NADH molecule during the
reaction catalyzed by mannitol-1-phosphate dehydroge-
nase. Probably as consequence of that burden, the simu-
lated growth leads to the production of high amounts of
ethanol and formate, which is in good agreement with
experimental results reported by Neves et al. (2002) [26].

In addition to a carbohydrate source, the minimal amino
acid requirements were determined by omission of each
amino acid at a time. The single omission of arginine,
methionine and valine was found to prevent in silico
growth, even when all other amino acids are supplied and
despite the presence of the biosynthetic pathways for
these amino acids in the reconstructed network. In the
case of valine this result is trivial, since simulations were
run under the constraint that the reaction catalyzed by
bcaT_1 can only occur in the catabolic direction, and there
is no alternative pathway for valine synthesis. In the case
of methionine, the reason appears to be the lack of avail-
able FAD (cofactor) to sustain growth. Finally, if no
arginine is supplied, the linear problem becomes infeasi-
ble. Nevertheless, arginine synthesis is observed when
maximizing for an arginine drain.

Growth was not observed when only these three amino
acids were supplied. If glutamate (or, alternatively,
glutamine) is allowed to be taken up in the presence of
these three amino acids, growth occurs. Therefore, glu-
cose, arginine, methionine, glutamate (or glutamine) and
valine were found to be the minimal required medium for
growth. L. lactis strains are usually auxotrophic for 7 to 9
amino acids, including these four [5,27]. Growth in the
above defined minimal media is, however, 54% lower
than in rich media. When all the amino acids reported as
essential for L. lactis 1L.1403 [27] are allowed to be taken
up by the model, growth rate increases to 87% of the value
in rich media. This corresponds to the addition of aspar-
agine, histidine, isoleucine and leucine to the above
defined minimal media.

Single gene deletion analysis
Single gene deletion analyses were computed to predict
the lethal effect of deleting each individual gene. Predic-
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tion capability was assessed by comparing simulation
results with experimental data on gene lethality reported
for L. lactis [28] and Bacillus subtilis [29], a related Gram-
positive bacteria of low G+C content, during growth in
rich media. 25 genes were found in literature as being
lethal, out of the 34 predicted by the model. From these,
one is a false lethal (ThyA), while no references were
found for the remaining 8 (see Additional file 4). Regard-
ing these analyses, it has to be point out that regulatory
proteins and constrains were seldom included, so it is
likely that we are underestimating the number of actual
lethal genes.

The effect of the deletion of each reaction was also
assessed. These computational studies were performed
both in rich media and minimal media, and both under
aerobic and anaerobic conditions. FBA and MOMA were
used to compute these simulations, with MOMA predict-
ing around 10 more lethal genes/reactions than FBA
(Table 3). We focus the following analysis on MOMA
results (all details can be found in the Additional file 4).
The deletion of 24.6% of the genes showed to be lethal in
minimal media, while in rich media this number
decreases to 12.1% (percentage based on the number of
ORFs included in the model, discounting the 21 "non-
connected" gene products). The single deletion of reac-
tions accounts for 23.1% lethal reactions in minimal
media and 14.1% in rich media (considering 596 network
reactions: all the 621 network reactions minus the 25
"non-connected" reactions). Additionally, it was observed
that although the number of lethal reactions is always
higher than the number of lethal genes, this is mainly due
to the existence of reactions catalyzed by unknown gene
products (enzymes without a corresponding annotated
ORF).

Aerobic and anaerobic simulations led to similar results,
with a few more genes/reactions being lethal under aero-
bic conditions, namely those associated to oxygen utiliza-
tion, CO, production and to the pyruvate dehydrogenase
(PDH) complex. Under aerobic conditions, the PDH
complex is the only pathway leading to the formation of
acetyl-CoA from pyruvate, and as acetyl-CoA is an essen-
tial metabolite in many processes (such as lipid forma-
tion), deletion of the PDH complex results in a lethal

phenotype.

When comparing the growth capabilities in both rich and
minimal media, it can be observed that approximately 40
additional genes are lethal during growth in minimal
media. These are mainly genes associated with biosynthe-
sis of amino acids. From the 83 lethal genes in minimal
media, 19 encode for gene products that catalyze more
than one reaction. Only one of these 83 genes encoded for
a protein that has an isoenzyme.

http://www.biomedcentral.com/1471-2180/5/39

Table 3: Lethality of single gene deletions and single reaction
deletions. Detailed data can be found in the Additional file 4.

Anaerobic  Rich media FBA # lethal reactions 71
# lethal genes 33

MOMA  # lethal reactions 8l

# lethal genes 38
Minimal media  FBA # lethal reactions 119

# lethal genes 72

MOMA  # lethal reactions 131

# lethal genes 77

Aerobic Rich media FBA # lethal reactions 72
# lethal genes 34

MOMA  # lethal reactions 84

# lethal genes 41

Minimal media  FBA # lethal reactions 127

# lethal genes 77

MOMA  # lethal reactions 138

# lethal genes 83

Modeling the shift from homolactic to heterolactic
metabolism

To further evaluate the modeling capabilities of FBA we
used the genome-scale flux model to simulate the shift
from homolactic to heterolactic metabolism in L. lactis
growing anaerobically. This process consisted in compar-
ing simulation results with experimental observations
reported by Thomas, T.D. et al. (1979) [30] for glucose
limited anaerobic chemostat cultures, though refining
and tuning the model through the introduction of appro-
priate biological meaningful constrains. Nevertheless, one
should notice that although FBA is based on steady-state
assumption and therefore is more suitable for simulation
of metabolic behavior in continuous cultivations, model
results can also be compared with batch experimental
data under the assumption of pseudo steady-state during
the exponential growth phase.

Experimental observations reported in literature suggest
that, for L. lactis, product formation at high dilution rates
during continuous cultivations is similar to product for-
mation during batch growth at high glucose concentra-
tions, resulting in lactic acid as the sole metabolic product
[19,31]. On the other hand, growth at low dilution rates
in continuous conditions or at low concentrations of glu-
cose in batch conditions (ie, in the presence of low fluxes
through glycolysis) results in a mixed-acid fermentation,
where formate, ethanol and acetate are produced in a
molar ratio of 2:1:1 [32]. While indicating that the shift in
metabolism is due to regulation, these observations also
suggest that different flux constraints would have to be
introduced to model the shift from homolactic to hetero-
lactic metabolism.
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For simulations of phenotypic behavior, the first obvious
objective function was thought to be "maximization of
growth" while constraining for substrate uptake. How-
ever, it became clear that constraining values for amino
acid uptake rates would pose a problem, as the in silico
strain was auxotrophic for some amino acids, which could
act as a carbon source, and no information was found
available in the literature for amino acid uptake rates
under chemostat conditions. To solve this problem, con-
sumption rates were approximated to be equal to the
amino acids requirement for biomass formation. In the
absence of experimental information for amino acid
uptake rates another approach was followed, in which
phenotypic behavior was simulated by constraining the
growth rate and minimizing for substrate uptake. Both
approaches led to different and complementary
qualitative results regarding the network capabilities, as
discussed below.

Maximizing for growth

When maximizing for biomass formation, the metabolic
phenotype cannot be correctly predicted from the recon-
structed network by simply stating anaerobic constraints
(see Methods). The process of tuning and refining the
model is discussed below and detailed results are summa-
rized in Figures 5 and 6 (see Additional file 5). Simula-
tions in which the specific consumption rate of glucose
was constrained to values equal or greater than 14.1
mmol gDW-1 h-1 revealed the occurrence of multiple solu-
tions for products of metabolism. From these simulations
it was observed that growth rate does not change with dif-
ferent glucose uptake rates, indicating that growth is nitro-
gen-limited and reaches a maximum at 0.82 h-! (in good
agreement with the fact that amino acid uptake rates were
established based on the amino acid cell content at 0.8 h-
1), while for glucose uptake rates lower than 14.1 mmol
gDW-1 h-! growth is glucose-limited. Since lactate produc-
tion is reported under high glycolytic fluxes, and this is
known to be due to regulation exerted by the NADH/
NAD* ratio on the pyruvate-formate lyase [33], additional
constraints can be included in the model in order to
account for regulatory information. For example, Covert,
M.W. et al [34] described a Boolean on/off approach to
account for regulation within the metabolic network.
However, since pyruvate-formate lyase is essential to the
formation of acetyl-CoA (and therefore, biomass) under
anaerobic conditions, a simple on/off Boolean statement
cannot be applied. Therefore, based on fitting the model
against experimental data, the pyruvate-formate lyase flux
was set to 2.15 and 9.8 mmol gDW-! h-l to simulate
homolactic growth when glucose uptake rates equal 24.6
and 18 mmol gDW-! h-1, respectively.

In all simulations it can be observed that the metabolic
model predicts trace production of amino acid catabolism

http://www.biomedcentral.com/1471-2180/5/39

products (3-methyl-2-oxobutanoate, 3-methyl-2-oxopen-
tanoate,  4-methyl-2-oxopentanoate, = phenyllactate,
methional), which is in good agreement with experimen-
tal results [35-37]. Interestingly, it can be observed that
although the formation of these catabolic products is not
directly accompanied by the formation of energy or
reduced compounds, they all contribute to a gain in bio-
mass formation.

Plotting experimental against model results for biomass,
lactate, formate, ethanol and biomass formation (Figure
1) shows that simulations can reproduce the general
observed tendencies for product and biomass formation,
overestimating biomass formation. Also formate, ethanol
and acetate are slightly overestimated for the range of the
simulated conditions. At high glucose uptake rates, the
model cannot predict the absence of these products. From
Figure 1 it can further be observed that lactate production
is poorly described with the considered constraints. Addi-
tional constraints could have been introduced to better
describe lactate formation. However, this imposes too
many uncertain variables, namely for amino acid
consumption.

Minimizing for substrate uptake

To overcome this difficulty another approach was used:
the minimization of substrates uptake while constraining
the growth rate. From simulation results, the formation of
end-products of the pyruvate metabolism is observed. No
by-products from the amino acid catabolism were pre-
dicted using this approach, as it minimizes amino acids
uptake, and therefore no excess of amino acids is available
for catabolism of amino acids. Without further con-
straints, mixed-acid fermentation is observed, as this is
energetically more favorable for the cell (more ATP is
formed when acetate is synthesized). However, as men-
tioned above, high fluxes through glycolysis lead to regu-
lation effects towards homolactic fermentation.
Consequently, the reaction catalyzed by pyruvate-formate
lyase was constrained to values between 0 and 9 mmol
gDW-1 h'l (see Table 6) by fitting simulation results
against experimental data

From Figure 2 it is observed that model results for for-
mate, ethanol and acetate formation fairly fit experimen-
tal observations, although the model underestimates
ethanol and acetate production and overestimates for-
mate production. Furthermore, glucose consumption is
also underestimated by model predictions. The difference
is around 14% at high substrate uptake rates and 25% for
lower values. This can be due, for example, to differences
in the maintenance energy between the real cell and the
simulated system.
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Plotting model and experimental data for anaerobic growth, chemostat conditions, when maximizing for bio-
mass formation. Growth rate and conversion yields for lactate (L), formate (F), ethanol (E) and acetate (A) on glucose (S)
are plotted against glucose uptake rate. Model results are from simulations NX5 to NX10 (see Table 5 in Additional file 5).
Experimental data is from Thomas, T.D., et al (1979) [30]. Ethanol and formate predictions are overlapped.

Analysis of amino acid requirements for in silico growth
interestingly shows that, for most of the cases, amino acid
uptake rates linearly increase with the growth rate (Figure
3). This observation only applies if metabolic families of
amino acids, derived from the same precursor, are consid-
ered. Threonine was included in the serine-family (instead
of the expected aspartate-family), as it is related with gly-
cine through the reaction L-threonine <-> glycine + acetal-
dehyde. Even with this change, linearity is not observed
for both these families. Two reasons can be hypothesized
to explain that: either threonine synthesis pathway
depends on the growth rate or, alternatively, it is the ser-
ine contribution for the pyruvate pool that depends on
biomass formation rate.

When minimizing for substrate uptake, the predicted
amino acid uptake rates corresponds to the theoretical
amino acid requirements for the cell to grow at the estab-
lished growth rate. However, in vivo amino acids con-
sumption is usually higher than the theoretical needs for
macromolecules biosynthesis. The excess of amino acids
can then be further catabolized, resulting in the secretion
of amino acid by-products.

Amino acid biosynthesis capabilities

In all simulations under the objective of minimizing the
substrate uptake, it could be noted that some amino acids
are not taken up from the medium even if they are present
in the medium. The cell seems to prefer to synthesize
some of them. Amino acids completely synthesized by the
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Plotting model and experimental data for anaerobic growth, chemostat conditions, when minimizing for sub-
strates uptake. Glucose uptake rate and conversion yields for lactate (L), formate (F), ethanol (E) and acetate (A) on glucose
(S) are plotted against growth rate. Model results are from simulations NS3, NS5, NS7, NS8 to NSI | (see Table 6 in Additional
file 5). Experimental data is from Thomas, T.D., et al (1979) [30]. Acetate and formate predictions are overlapped.

in silico strain were alanine, aspartate, glycine and pheny-
lalanine (either if glutamate is or is not supplied).
Remarkably, this observation is in very good agreement
with experimental data reported by Jensen, N.B. et al.
(2002) [38] for L. lactis subsp cremoris. In their work, they
analyzed the capacity for the de novo biosynthesis of
amino acids when all amino acids except glutamate were
supplied, having observed that alanine, aspartate, pheny-
lalanine and threonine, were synthesized de novo by the
cell. Analyzing the flux distribution of the reactions
involved in amino acid biosynthesis, it can be found that
those preferences are associated with an increased produc-
tion of 2-oxoglutarate, leading to an increased formation
of L-glutamate.

Identfication of metabolic engineering targets

A relevant application of genome-scale metabolic models
is the simulation of cellular behavior in response to
genetic perturbations. Namely, genome-scale metabolic
models can be used as tools in the design of metabolic
engineering strategies, aiming at finding genetic targets
leading to enhanced desired properties [20]. We exem-
plify here the use of the reconstructed network to predict
potential ways to increase the yield of diacetyl, an impor-
tant flavor compound in dairy products. Diacetyl is a by-
product of L. lactis fermentative metabolism and it is pro-
duced chemically by oxidative decarboxylation of the
metabolic intermediate 2-acetolactate (which is derived
from the condensation of two molecules of pyruvate).
Hence, knockout strategies leading to an increased yield
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Figure 3

Model predictions for glucose and amino acid uptake rates versus the growth rate. Model results are from simula-
tions NS3, NS5, NS7, NS8 to NSI I. Amino acids were grouped into six families: Histidine (His), Aromatic (Phe, Trp, Tyr), Serine-
family (Cys, Gly, Met, Ser, Thr), Pyruvate-family (Ala, lle, Leu, Val), Aspartate-family (Asp, Asn, Lys) and Glutamate-family (Arg,

Glu, GIn, Pro) [47].

of 2-acetolactate in glucose were investigated using FBA
and MOMA.

Lactococci metabolism around pyruvate is depicted in Fig-
ure 4. From pyruvate, carbon can be redirected towards
acetyl-CoA, lactate or 2-acetolactate. Common strategies
to increase the flux towards 2-acetolactate have been gene
knockouts around pyruvate (except of the lethal pyruvate
dehydrogenase complex), over-producing the 2-acetolac-
tate synthase and/or over-producing an heterologous
NADH-oxidase [1,7,39-41]. For example, Henriksen et al
(2001) [24] have succeed to convert up to 95% of glucose
towards the formation of 2-acetolactate and related com-
pounds through the deletion of lactate dehydrogenase
and pyruvate-formate lyase. Hugenholtz et al (2000) [39]
constructed a high-producing diacetyl strain able to redi-
rect 80% (16%) of glucose into 2-acetolactate (diacetyl),

by deleting acetolactate synthase and over-expressing an
heterologous NADH-oxidase.

The first step in our modeling strategy was to find a set of
appropriate constraints that lead to results comparable
with experimental observation. By simply allowing
unconstrained uptake of oxygen it was possible to obtain
both 2-acetolactate and acetate as the main by-products of
metabolism, which is in good agreement with experimen-
tal reports [39]. Oxygen uptake was about 1.4 mmol O, /
mmol glucose. The simulated growth rate and yield of 2-
acetolactate on glucose are presented in Table 4. However,
a plurality of solutions were observed under the chosen
conditions. In order to minimize the number of solutions,
we constrained the activity of lactate dehydrogenase
(1dh), 2-acetolactate synthase (aldB) and alcohol dehy-
drogenase (adhA) to zero. This forces pyruvate to be redi-
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Figure 4

The pyruvate metabolism of Lactococcus lactis. LDH: lactate dehydrogenase; PDH: pyruvate dehydrogenase complex;
PFL: pyruvate formate-lyase; ADHE: acetaldehyde dehydrogenase ; ADHA: alcohol dehydrogenase; PTA: phosphotransacety-
lase; ACKA: acetate kinase, ALS/ILV B: catabolic and anabolic 2-acetolactate synthase; ALDB-acetolactate decarboxylase;
BUTA-diacetyl reductase; BUTB: acetoin reductase; NOX: NADH — oxidase. ..

Table 4: Designed strategies to enhance 2-acetolactate production, and corresponding predictions for specific growth rates and yields

of 2-acetolactate on glucose.

FBA MOMA
Growth (h'!) Y (C-mol/C-mol) Growth (h!) Y (C-mol/C-mol)
Reference 0.82 0.31 0.82 0.31
Aldh AaldB AadhA 0.82 0.32 0.82 0.31
Aldh AaldB AadhA Apta 0.56 0.74 0.323 0.34
Aldh AaldB AadhA Apta Afhs 0.56 0.76 0.53 0.75
Aldh AaldB AadhA Apta AserA 0.56 0.76 0.53 0.74
Aldh AaldB AadhA Apta Azwf 0.38 0.71 0.38 0.75

rected either towards acetate or 2-acetolactate (and related
compounds, ie, C4 and C5 products).

Next, the impact of single gene deletions on product for-
mation was simulated by maximizing for growth. It was
found that the deletion of PTA leads to a slight yield

increase. The enzyme Pta catalyzes the conversion of
acetyl-CoA to acetyl-P, and its deletion eliminates the pro-
duction of acetate. Furthermore, another single gene dele-
tion was run on the "mutant" AldhAaldAadhAApta and
three deletions leading to a higher production of 2-acetol-
actate were found, AFHS, ASERA and AZWF. The enzyme
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Fhs is a formyltetrahydrofolate synthetase (EC 6.3.4.3),
involved in the folate metabolism. Its contribution
towards a higher yield of 2-acetolactate is due to an
increase in carbon availability for by-product formation,
since this reaction is used by the cell to generate ATP and
formate (in rich media). The enzyme SerA, a 3-phos-
phoglycerate dehydrogenase, is involved in serine metab-
olism. This part of the metabolism connects with Fhs.
Hence, this deletion increases 2-acetolactate yield
similarly to the deletion of SERA. Finally, ZWF deletion is
only predicted by MOMA as being advantageous. ZWF
encodes for glucose-6-phosphate 1-dehydrogenase, the
first step of the pentose-phosphate pathway. This deletion
is accompanied by a decrease in biomass formation,
because the availability of NADPH decreases. Therefore,
more carbon is redirected towards other products of
metabolism (C4 and C5 compounds), resulting in an
increase of 2-acetolactate yield. Observed yields and bio-
mass formation rates are summarized in Table 4. One
should keep in mind that these are theoretical maximum
specific growth rates at which high yields of 2-acetolactate
can be obtained. Other factors such as a limitation in the
uptake rate of oxygen may lead to experimentally lower
values.

Conclusion

The metabolic network of Lactococcus lactis was recon-
structed based on genomic, physiological and biochemi-
cal information, comprising a total of 621 reactions and
509 metabolites. Lactococcal network characteristics are
comparable with other bacterial genome-scale recon-
structed networks.

Metabolic network analysis was carried out using FBA and
MOMA. The genome-scale metabolic model for L. lactis
was shown to be robust and able to predict many experi-
mental observations, when considering additional con-
straints derived from available experimental data. The
model proved to be a useful tool to analyze the metabolic
capabilities of L. lactis and to understand how the individ-
ual components in the system interact and influence the
overall cell function. For example, the model could pre-
dict that, if all the amino acids were supplied, the cell will
prefer to synthesize de novo alanine, aspartate, glycine and
phenylalanine. The model can now be used as a useful
tool to test or develop novel metabolic engineering strate-
gies to redirect fluxes towards the production of important
products such as diacetyl, alanine and exopolysaccharides

[1].

Reconstructed metabolic networks are finding many other
applications than the ones described in this work. Opti-
mization methods have also been used to assess maxi-
mum capabilities of the network and to analyze gene
dispensability [42]. More recently, different methods to

http://www.biomedcentral.com/1471-2180/5/39

integrate metabolic networks with transcriptome data
were described [43-45]. Patil and Nielsen (2005) [45]
describe a method that represents the metabolic network
as an enzyme-metabolite interaction graph and, assigning
expression scores to each enzyme, it is possible to high-
light which metabolites are more affected by transcrip-
tional changes (the so-called reporter metabolites). The
method also identifies the most active metabolic sub-net-
work responding to a particular perturbation. In the near
future it is expected that metabolic networks will be
further used together with other types of 'omic' informa-
tion and help to reveal hidden information on cellular
organization and function.

Methods

Network reconstruction

The reconstruction process of the metabolic network of L.
lactis involved a comprehensive search of the current
knowledge of its metabolism. The process started based
on the ORFs information from the annotated genome of
L. lactis IL 1403 [3]. From this list, a reaction database was
built using the available genomic, biochemical and
physiological data accessible in databases and relevant lit-
erature. Particular focus was given to the reactions revers-
ibility. Reactions whose reversibility could not be assessed
were defined as reversible. The reaction set also includes a
reaction for biomass formation defined as a drain of
major building blocks into biomass. One reaction was
included to account for non-growth dependent ATP main-
tenance. After the initial assembly of the entire metabolic
network, the list was re-examined to account for meta-
bolic and physiological details. The list of reactions was
manually and carefully examined regarding reliability of
gene assignment, all possible/probable catalytic activities
of gene products and the in vivo reaction reversibility.

Biomass composition

An equation for biomass formation was developed to
account for the drain of precursors and building blocks
into biomass. Biomass synthesis was set as a linear combi-
nation of seven macromolecular components - proteins,
DNA, RNA, lipids, lipoteichoid acids, peptidoglycan and
polysaccharides — which were considered to account for
the cell overall biomass composition. The individual
composition of every component was maintained at a
fixed stoichiometry, independent of the specific growth
rate. Cellular energy requirements were also considered,
by taking into account information on the ATP cost of
polymerisation and growth and non-growth associated
ATP maintenance. The detailed calculation of the biomass
composition can de found in the Additional file 2.

From the developed equations, an elemental biomass
composition was determined for the reconstructed in silico
strain, CH, 500 43N 22P0.02S0.01, corresponding to a
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molecular weight of 27.8 g/C-mol. This is in good agree-
ment with values found in the literature. Novak, L. et al.
(2000) have measured a value of 27.7 g/C-mol for L. lactis.

Mathematical frameworks: FBA and MOMA

Flux balance analysis (FBA) is a linear programming
posed problem where equations are defined by mass bal-
ance-derived stoichiometric reactions, constrains are
imposed by fluxes limitations and the objective function
is established based on a biological meaningful objective.

Given a stoichiometric matrix derived from mass balance
around all metabolites of a cell and assuming steady state,
a system of linear equations is produced which simply
states that the incoming fluxes are balanced by the outgo-
ing fluxes. For a metabolic network comprising N metab-
olites and M metabolic reactions, the stoichiometric
matrix can be written as:

M

j=1
where §j;is the stoichiometric coefficient of metabolitej in
reaction i, v; represents the flux of reaction i, and b; quan-
tifies the network's uptake (or secretion) of metabolite j.
Reversible reactions are defined simply as two irreversible
reactions in opposite directions, constraining all fluxes to
nonnegative values, ie:

1,20, Vi (2)

Some other constraints based on physiological or physic-
ochemical aspects may be applied, such as thermodynam-
ics considerations, regulation effects and maximal
enzymatic rates:

oazv;2f, Vi (3)

Establishing a particular objective function, Z, written as a
linear combination of existing variables, the optimal solu-
tion can then be found at one corner of the set of feasible
solutions. For metabolic applications, typical objective
functions are maximization of biomass formation or min-
imization of substrate consumption.

Flux balance analysis can then be simply summarized as a
linear programming problem posed as:

maximize Z = eg, biomass formation  (4)
subject to

M
ZSjil/i Zb] Vi<N
j=1
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v;20,Vi
azv;2fB, Vi

Another mathematical framework that can be used to find
flux distribution solutions is the so-called minimization
of metabolic adjustment (MOMA) [17]. MOMA relaxes
the assumption of optimal growth flux for gene deletions,
displaying a suboptimal flux distribution that is interme-
diate between the wild-type optimum and the mutant
optimum. The philosophy of MOMA can be interpreted as
the projection of the FBA optimum onto the feasible space
of the mutant. Therefore, MOMA can be posed as a quad-
ratic programming problem, with the same set of linear
constrains as for FBA and where the objective function is
to minimize the distance between the feasible solutions
space of both wild-type and mutant.

Both the FBA and the MOMA problems were solved with
an in-house developed software using the following solv-
ers: GNU Linear Programming Kit http://www.gnu.org/
software/glpk/glpk.html and Object-Oriented software
for Quadratic Programming http://www.cs.wisc.edu/

~swright/oogp/.

Model constraints

All simulations were run allowing free uptake of nucle-
otides (xanthine, uracil, cytosine, adenine, guanine and
hypoxanthine), phosphate, biphosphate and sulfate.
Additionally, non-growth associated ATP requirement
was always set to 1 mmol ATP gDW-! h-1, which is the
value experimentally estimated for carbon-limitated che-
mostat cultures [19].

To simulate growth under anaerobic conditions, the oxy-
gen uptake rate was set to zero. Experimental insight on
pyruvate metabolism led to two additional constraints.
Since it is known that the pyruvate dehydrogenase (PDH)
complex is not active in the absence of oxygen [46],
pdhA_1 and pdhB_1 fluxes were therefore set to zero.

Aerobic growth was simulated by allowing oxygen to be
taken up by the model. Unless otherwise stated, the oxy-
gen consumption was set to 3.61 mmol gDW-1 h-1 [22].
Under aerobic conditions the pyruvate dehydrogenase is
active but the pyruvate-formate lyase (PFL) is strongly
inhibited by oxygen [24]. pdhA_1 and pdhB_1 were there-
fore left unconstrained while the pfl_1 flux was set to zero.

Evaluation of growth requirements and minimal media

Network capabilities to utilize different sugar sources were
evaluated using FBA. A number of different sugars were
supplied, one at a time, together with all amino acids and
nucleotides. A sugar consumption rate of 13.6 mmol
gDW-1h-1 was allowed, both under aerobic and anaerobic
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conditions (6.8 mmol gDW-! h-1in the case of the disac-
charides sucrose, lactose, maltose and trehalose). When
the specific growth rate was higher than 0.01 h-!, the sugar
was considered to be used for growth. This value was
established based on the observation that when supplying
only amino acids but no sugar, a specific growth rate of
0.01 h-lis predicted by the model, which is not observed
experimentally [19].

Amino acid requirements for in silico cell growth were ana-
lyzed under anaerobic conditions. The dilution rate was
fixed to 0.18 and 0.76 h-! and the objective function used
in this investigation was the minimization of substrates
uptake rate. Beginning with all the amino acids available,
single-omissions were simulated by setting the
corresponding uptake rate to zero, one at a time. If no bio-
mass is formed, the omitted amino acid was defined as
essential for growth. Simulations were run with the reac-
tions catalyzed by bcaT_1, bcaT_2 and bcaT_3 constrained
to the catabolic direction.

A minimal medium was established by allowing uptake of
glucose at a rate of 13.6 mmol gDW-! h-! and uptake of the
previously determined essential amino acids at a rate of
0.5 mmol gDW-! h-1 per amino acid. Remaining amino
acids were individually supplied until growth was
observed.

Single genelreaction deletion analyses

Single gene deletion (SGD) and single reaction deletion
(SRD) analyses were performed using both FBA and
MOMA. Reaction deletions were simulated by setting the
corresponding flux to zero. Gene deletions were simu-
lated by setting to zero all fluxes catalyzed by the corre-
sponding gene product. Lethality was evaluated based on
the deletions that led to infeasible problems or to biomass
formation lower than 0.01 h-!. For simulation of growth
on rich media, glucose uptake was set at 13.6 mmol gDW-
1h-1, and all amino acids were allowed to be taken up (at
arate corresponding to the amino acid cell content assum-
ing a specific growth rate of 0.8 h-!). Simulating growth on
minimal media, only glucose at 13.6 mmol gDW-! h-l,
arginine, methionine, valine and glutamante (0.5 mmol
gDW-1 h-1) were supplied.

Modeling of homolactic and heterolactic metabolism

The shift from homolactic to heterolactic metabolism was
simulated under anaerobic conditions, using FBA. Appro-
priated flux constraints were determined by fitting the
model to experimental results, which is described in the
following.

Two different approaches were selected to predict cell
growth and product formation. First, glucose and amino
acid uptake rates were set to fixed values and biomass pro-

http://www.biomedcentral.com/1471-2180/5/39

duction was maximized. Growth rate and products forma-
tion were determined as a function of different glucose
uptake rates. Values for sugar uptake rates were taken from
the literature [4,30], ranging from 7 to 24.6 mmol gDW-!
hl. Amino acids uptake rates were calculated from the
amino acid cell content assuming a specific growth rate of
0.8 h-! [4]. A second approach consisted of setting a fixed
specific growth rate while minimizing for the substrate
uptake rates (objective function written as a linear combi-
nation of glucose and amino acids uptake rates, all terms
with coefficient one). In this case, uptake rates and
product formation were calculated for different specific
growth rates. Here, a constraint on the flux of the pyru-
vate-formate lyase had to be introduced to account for
experimental evidence, as suggested by Melchiorsen et al.
(2002) [31].

Design of a diacetyl overproducing mutant

Simulations were performed under aerobic conditions
and on rich media (as described above), with glucose as
the carbon source (13.6 mmol gDW-! h'l). Pyruvate
secretion was not allowed and oxygen uptake was uncon-
strained. In silico gene deletions were simulated by con-
straining the respective fluxes to zero and solving the FBA
problem while optimizing for biomass. Single gene
deletions leading to high 2-acetolactate formation rates
while allowing for growth (specific growth rate higher
than 0.01 h-1) were selected as targets for metabolic engi-
neering, as described in the Results and discussion
section.
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reactions included in the metabolic network of Lactococcus lactis. Sheet
"pathway_order" contains the reactions grouped by metabolic pathway,
and journal references are indicated whenever reaction information is
taken from journal references other than Bolotin et al. (2001). Sheet
"alphabetic_order" lists the reactions alphabetically.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-39-S1.xls]

Additional File 2

Biomass composition. Derivation of the equation for biomass composition,
based on literature information.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-39-S2.pdf]

Additional File 3

Non-connected Metabolites. List of the non-connected metabolites and
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Single gene and reaction deletions. List of genes and reactions from the
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Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-39-S4.pdf]

Additional File 5

Modeling the shift from homolactic ot heterolactic metabolism. These
tables summarize the modeling procedure for inclusion of appropriate con-
strains when applying FBA to simulate anaerobic growth.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-5-39-S5.pdf]

Acknowledgements

Mats Akesson is acknowledged for fruitful discussions on modeling issues

and results. Kiran R Patil is acknowledged for developing a program to per-
form single gene/reaction deletion using FBA and MOMA. Karin Hammer

is acknowledged for contribution on insights of gene lethality in L. lactis.

References

Kleerebezem M, Hols P, Hugenholtz J: Lactic acid bacteria as a
cell factory: rerouting of carbon metabolism in Lactococcus
lactis by metabolic engineering. Enzyme Microb Technol 2000,
26:840-848.

de Vos W: Metabolic engineering of sugar catabolism in lactic
acid bacteria. Antonie Van Leeuwenhoek 1996, 70:223-242.

Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach
J, Ehrlich SD, Sorokin A: The complete genome sequence of the

20.

21.

22.

23.

24.

25.

26.

http://www.biomedcentral.com/1471-2180/5/39

lactic acid bacterium Lactococcus lactis ssp. lactis IL1403.
Genome Res 2001, 11:731-753.

Novak L, Loubiere P: The metabolic network of Lactococcus
lactis: distribution of (14)C- labeled substrates between cat-
abolic and anabolic pathways. | Bacteriol 2000, 182:1136-1143.
van Niel EWJ, Hahn-Hagerdal B: Nutrient requirements of lacto-
cocci in defined growth media. Applied Microbiology and
Biotechnology 1999, 52:617-627.

Hugenholtz ], Kleerebezem M: Metabolic engineering of lactic
acid bacteria: overview of the approaches and results of
pathway rerouting involved in food fermentations. Curr Opin
Biotechnol 1999, 10:492-497.

Kleerebezem M, Boels IC, Groot MN, Mierau I, Sybesma W, Hugen-
holtz J: Metabolic engineering of Lactococcus lactis: the
impact of genomics and metabolic modelling. | Biotechnol
2002, 98:199-213.

Forster ], Famili I, Fu P, Palsson BO, Nielsen J: Genome-scale
reconstruction of the Saccharomyces cerevisiae metabolic
network. Genome Res 2003, 13:244-253.

Edwards JS, Palsson BO: Metabolic flux balance analysis and the
in silico analysis of Escherichia coli K-12 gene deletions. BMC
Bioinformatics 2000, 1:1.

Edwards ]S, Palsson BO: Systems properties of the Haemo-
philus influenzae Rd metabolic genotype. | Biol Chem 1999,
274:17410-17416.

Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson
BO: Genome-scale metabolic model of Helicobacter pylori
26695. | Bacteriol 2002, 184:4582-4593.

Sheikh K, Forster J, Nielsen LK: Modeling Hybridoma Cell
Metabolism Using a Generic Genome-Scale Metabolic
Model of Mus musculus. Biotechnol Prog 2005, 21:112-121.
Edwards JS, lbarra RU, Palsson BO: In silico predictions of
Escherichia coli metabolic capabilities are consistent with
experimental data. Nat Biotechnol 2001, 19:125-130.

Covert MW, Schilling CH, Famili |, Edwards S, Goryanin Il, Selkov E,
Palsson BO: Metabolic modeling of microbial strains in silico.
Trends Biochem Sci 2001, 26:179-186.

Palsson B: In silico biology through "omics". Nat Biotechnol 2002,
20:649-650.

Patil KR, Akesson M, Nielsen J: Use of genome-scale microbial
models for metabolic engineering. Curr Opin Biotechnol 2004,
15:64-69.

Segre D, Vitkup D, Church GM: Analysis of optimality in natural
and perturbed metabolic networks. Proc Natl Acad Sci U S A
2002, 99:15112-15117.

Andrade MA, Brown NP, Leroy C, Hoersch S, de Daruvar A, Reich
C, Franchini A, Tamames }, Valencia A, Ouzounis C, Sander C: Auto-
mated genome sequence analysis and annotation. Bioinformat-
ics 1999, 15:391-412.

Benthin S: Growth and product formation of Lactococcus
cremoris. Technical University of Denmark; 1992.

Stephanopoulos G, Aristidou A, Nielsen |: Metabolic Engineering: Prin-
ciples and Methodologies Academic Press, San Diego; 1998.

Roissart H, Luquet FM: Bactéries Lactiques Edited by: Roissart H and
Luquet FM. Lorica; 1994.

Jensen NB, Melchiorsen CR, Jokumsen KV, Villadsen J: Metabolic
behavior of Lactococcus lactis MG 1363 in microaerobic con-
tinuous cultivation at a low dilution rate. Appl Environ Microbiol
2001, 67:2677-2682.

Nordkvist M, Jensen NBS, Villadsen J: Glucose Metabolism in Lac-
tococcus lactis MG1363 under Different Aeration Condi-
tions: Requirement of Acetate To Sustain Growth under
Microaerobic Conditions. Appl  Environ  Microbiol 2003,
69:3462-3468.

Henriksen CM, Nilsson D: Redirection of pyruvate catabolism
in Lactococcus lactis by selection of mutants with additional
growth requirements. Appl Microbiol Biotechnol 2001, 56:767-775.
Pedersen MB, Koebmann B}, Jensen PR, Nilsson D: Increasing Acid-
ification of Nonreplicating Lactococcus lactis{Delta}thyA
Mutants by Incorporating ATPase Activity. Appl Environ
Microbiol 2002, 68:5249-5257.

Neves AR, Ramos A, Shearman C, Gasson M}, Santos H: Catabolism
of mannitol in Lactococcus lactis MG1363 and a mutant
defective in lactate dehydrogenase.  Microbiology 2002,
148:3467-3476.

Page 14 of 15

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2180-5-39-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2180-5-39-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2180-5-39-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2180-5-39-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2180-5-39-S5.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10862894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10862894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10862894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8879408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8879408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10648541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10648541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10648541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12141987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12141987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12566402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12566402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12566402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11001586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11001586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15903248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15903248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15903248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11246024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12089538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15102469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15102469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12415116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12415116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10366660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10366660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11375180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11375180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11375180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12788751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12788751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12788751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11601628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11601628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11601628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12406711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12406711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12406711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12427938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12427938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12427938

BMC Microbiology 2005, 5:39

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Cocaign-Bousquet M, Garrigues C, Novak L, Lindley ND, Loubiere P:
Rational development of a simple synthetic medium for the
sustained growth of Lactococcus lactis. Journal of Applied
Bacteriology 1995, 79:108-116.

Lai CY, Cronan JE: Beta-ketoacyl-acyl carrier protein synthase
111 (FabH) is essential for bacterial fatty acid synthesis. | Biol
Chem 2003, 278:51494-51503.

Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud
M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC,
Bron S, Bunai K, Chapuis ], Christiansen LC, Danchin A, Debarbouille
M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Err-
ington |, Fillinger S, Foster §J, Fujita Y, Galizzi A, Gardan R, Eschevins
C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo
MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K,
Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio |, le Coq
D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S,
Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T,
O'Reilly M, O'Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins
JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild
HH, Scanlan E, Schumann WV, Seegers JFML, Sekiguchi |, Sekowska A,
Seror §J, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T,
Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat
A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K,
Yoshida K, Yoshikawa H, Zuber U, Ogasawara N: Essential Bacillus
subtilis genes. PNAS 2003, 100:4678-4683.

Thomas TD, Ellwood DC, Longyear VM: Change from homo- to
heterolactic fermentation by Streptococcus lactis resulting
from glucose limitation in anaerobic chemostat cultures. |
Bacteriol 1979, 138:109-117.

Melchiorsen CR, Jokumsen KYV, Villadsen }, Israelsen H, Arnau J: The
level of pyruvate-formate lyase controls the shift from
homolactic to mixed-acid product formation in Lactococcus
lactis. Appl Microbiol Biotechnol 2002, 58:338-344.

Melchiorsen CR: Metabolic Engineering of Pyruvate Metabo-
lism in Lactococcus lactis. Technical University of Denmark;
2000.

Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M: Control
of the shift from homolactic acid to mixed-acid fermentation
in Lactococcus lactis: predominant role of the NADH/NAD+
ratio. | Bacteriol 1997, 179:5282-5287.

Covert MW, Palsson BO: Transcriptional regulation in con-
straints-based metabolic models of Escherichia coli. | Biol
Chem 2002, 277:28058-28064.

Christensen JE, Dudley EG, Pederson JA, Steele JL: Peptidases and
amino acid catabolism in lactic acid bacteria. Antonie Van
Leeuwenhoek 1999, 76:217-246.

Amarita F, Fernandez-Espla D, Requena T, Pelaez C: Conversion of
methionine to methional by Lactococcus lactis. FEMS Micro-
biol Lett 2001, 204:189-195.

Yvon M, Thirouin S, Rijnen L, Fromentier D, Gripon JC: An ami-
notransferase from Lactococcus lactis initiates conversion of
amino acids to cheese flavor compounds. Appl Environ Microbiol
1997, 63:414-419.

Jensen NB, Christensen B, Nielsen J, Villadsen |: The simultaneous
biosynthesis and uptake of amino acids by Lactococcus lactis
studied by (13)C-labeling experiments. Biotechnol Bioeng 2002,
78:11-16.

Hugenholtz ], Kleerebezem M, Starrenburg M, Delcour ], de Vos W,
Hols P: Lactococcus lactis as a cell factory for high-level
diacetyl production. Appl Environ Microbiol 2000, 66:4112-4114.
Lopez F, Starrenburg M, Hugenholtz J: The role of NADH-oxida-
tion in acetoin and diacetyl production from glucose in Lac-
tococcus lactis subsp. lactis MG1363. FEMS Microbiology Letters
1997, 156:15-19.

Lopez F, Kleerebezem M, de Vos WM, Hugenholtz J: Cofactor engi-
neering: a novel approach to metabolic engineering in Lac-
tococcus lactis by controlled expression of NADH oxidase. |
Bacteriol 1998, 180:3804-3808.

Papp B, Pal C, Hurst LD: Metabolic network analysis of the
causes and evolution of enzyme dispensability in yeast.
Nature 2004, 429:66 1-664.

Akesson M, Forster ], Nielsen J: Integration of gene expression
data into genome-scale metabolic models. Metab Eng 2004,
6:285-293.

http://www.biomedcentral.com/1471-2180/5/39

44. Covert MW, Knight EM, Reed ]L, Herrgard MJ, Palsson BO: Inte-
grating high-throughput and computational data elucidates
bacterial networks. Nature 2004, 429:92-96.

45. Patil KR, Nielsen J: Uncovering transcriptional regulation of
metabolism by using metabolic network topology. Proc Natl
Acad Sci U S A 2005, 102:2685-2689.

46. Snoep JL, de Graef MR, Westphal AH, de KA, Teixeira de Mattos M|,
Neijssel OM: Differences in sensitivity to NADH of purified
pyruvate dehydrogenase complexes of Enterococcus faeca-
lis, Lactococcus lactis, Azotobacter vinelandii and
Escherichia coli: implications for their activity in vivo. FEMS
Microbiol Lett 1993, 114:279-283.

47. Schlegel HG: Allgemeine Mikrobiologie (7th Ed.) 7th edition. Thieme;
1992.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 15 of 15

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14523010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14523010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12682299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12682299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=108249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=108249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=108249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11935185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11935185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11935185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9286977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9286977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9286977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12006566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12006566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10532381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10532381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11682200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11682200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9023921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9023921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9023921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11857275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11857275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11857275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10966436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10966436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9683475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9683475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9683475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15190353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15190353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15491858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15491858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15129285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15129285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15129285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15710883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15710883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8288104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8288104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8288104
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Table 1

	Results and discussion
	Characteristics of the reconstructed network
	Network reactions
	Network metabolites

	Growth requirements and minimal media
	Single gene deletion analysis
	Modeling the shift from homolactic to heterolactic metabolism
	Maximizing for growth
	Minimizing for substrate uptake

	Amino acid biosynthesis capabilities
	Identfication of metabolic engineering targets
	Table 4


	Conclusion
	Methods
	Network reconstruction
	Biomass composition
	Mathematical frameworks: FBA and MOMA
	Model constraints
	Evaluation of growth requirements and minimal media
	Single gene/reaction deletion analyses
	Modeling of homolactic and heterolactic metabolism
	Design of a diacetyl overproducing mutant

	List of abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

