
BioMed CentralBMC Microbiology

ss
Open AcceMethodology article
Selecting representative model micro-organisms
BR Holland*1 and J Schmid2

Address: 1Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand and 2Institute of 
Molecular BioSciences, Massey University, Palmerston North, New Zealand

Email: BR Holland* - b.r.holland@massey.ac.nz; J Schmid - j.schmid@massey.ac.nz

* Corresponding author    

Abstract
Background: Micro-biological research relies on the use of model organisms that act as
representatives of their species or subspecies, these are frequently well-characterized laboratory
strains. However, it has often become apparent that the model strain initially chosen does not
represent important features of the species. For micro-organisms, the diversity of their genomes
is such that even the best possible choice of initial strain for sequencing may not assure that the
genome obtained adequately represents the species. To acquire information about a species'
genome as efficiently as possible, we require a method to choose strains for analysis on the basis
of how well they represent the species.

Results: We develop the Best Total Coverage (BTC) method for selecting one or more
representative model organisms from a group of interest, given that rough genetic distances
between the members of the group are known. Software implementing a "greedy" version of the
method can be used with large data sets, its effectiveness is tested using both constructed and
biological data sets.

Conclusion: In both the simulated and biological examples the greedy-BTC method
outperformed random selection of model organisms, and for two biological examples it
outperformed selection of model strains based on phylogenetic structure. Although the method
was designed with microbial species in mind, and is tested here on three microbial data sets, it will
also be applicable to other types of organism.

Background
To gain insight into biological processes, biologists often
rely on model organisms. Focusing the funding and
research efforts of many research groups on one model
organism is considered more likely to advance the field
than scattering the same resources over a large number of
organisms. A recent application of this philosophy is in
genome sequencing: rather than simultaneously initiating
the sequencing of the genomes of many individuals from
a species, typically a single representative is chosen. In

microbiology the initial choice of model strain is fre-
quently a well-characterized laboratory strain, often
selected at a time when the ability to determine popula-
tion structure and to measure genetic distances was lim-
ited (see for example [1,2]). There is merit in choosing a
physiologically well-characterised laboratory strain for
genome sequencing, as it facilitates the interpretation and
annotation of sequence data. However, it has often
become apparent that the model strain initially chosen
does not represent important features of the species [3-5].
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For micro-organisms, the diversity of their genomes is
such that even the best possible choice of initial strain for
sequencing may not assure that the genome obtained ade-
quately represents the species [5-7]; additional strains
may need to be studied [7]. To acquire information about
a species' genome as efficiently as possible, we require a
method to choose strains for analysis on the basis of how
well they represent the species.

The problem of choosing representative model strains is
complicated by the fact that the value of an organism as a
representative depends on the features it is meant to rep-
resent. As an example illustrating this problem, assume
that we require model organisms that represent a larger
group of organisms in terms of amino acid sequence at a
particular open reading frame (ORF). Suppose that we are
able to find a single model organism which represents the
entire group; i.e. BLAST searches find significant homolo-
gies between the amino acid sequence of the model pro-
tein and proteins from the other organisms. Let us assume
that homologies between the protein of the model organ-
ism and the more distant members of the group are low,
albeit still significant. We would conclude, using the
BLAST homology criterion that we have represented the
group, and have done so efficiently, using only one model
organism. However, if we were then to try to use this same
organism to design PCR primers for amplifying the ORF
in all members of the group, the model organism would
fail for the more distant members. Likewise if we were to
investigate another, less conserved ORF across the group,
the model organism may fail to show significant homol-
ogy to a large number of members of the group even at the
amino acid sequence level. Another difficulty in choosing
model organisms is that our selection will be based on
limited and biased information obtained in a screen of
the group we wish to represent, such as sequences from a
few genes or restriction fragment length polymorphism
(RFLP) data which may not represent, or only be loosely
linked to, diversity across the entire genome.

In this paper we describe and evaluate approaches for the
rational selection of model organisms, which take these
problems into consideration.

Results and discussion
Finding the best model organism
As illustrated in the introduction, there will be some
threshold distance, i.e. level of genetic difference, between
the model organism and other organisms, above which
the model organism will no longer be a useful represent-
ative, and different applications will have different thresh-
old values. If we need a model organism for some specific
application where a threshold distance, T, is known, the
problem of selecting the best model organism can be
solved by choosing the organism for which the greatest

number of other organisms lie within this genetic dis-
tance, T. We refer to this criterion as Best Coverage.

For the purpose of illustration we display a constructed
example where distances between organisms are the dis-
tances on a plane (Figs. 1A and 1B). Intuition suggests that
model organisms chosen according to the Best Coverage
criterion will be central to the group of interest. For exam-
ple, in Figure 1A organism a is the most central, it has the
best coverage for any choice of threshold distance. Con-
versely, a non-central organism such as organism b has
worse coverage for any value of T. Choosing a model
organism in the example in Figure 1A is trivial because the
members of the group are distributed in a highly symmet-
rical fashion. However, in many cases members of a group
will not be symmetrically distributed and there will be no
obvious central organism. In such a case, shown in Figure
1B, the value of the threshold distance, T, will affect the
decision as to which organism is best. Depending on the
choice of T, organism a, b, or c could be preferred. Figures
1C and 1D display Coverage for increasing values of T for
the marked organisms in 1A and 1B respectively. Note
that in Figure 1D organism a is best for low threshold val-
ues and that organism c is best for high threshold values,
however, taken as an aggregate over a range of T values
organism b is superior.

Finding the best threshold distance for selecting model
organisms from a group poses a number of difficulties.
Firstly, as noted, different applications require different
thresholds and so no one threshold distance will be ideal
as a basis of model strain selection, unless the model
strain is only to be used for one particular application.
Secondly, even if we knew in advance the exact feature
which we want the model organism to represent, there
will only be limited information on the variation in this
feature for the entire group of organisms -after all, if the
organisms were exactly characterised there would be no
need to pick model organisms for further study. Lastly, if
we want to make a good choice of model organisms we
will need to initially sample a large number of members
of the group the model organisms are supposed to repre-
sent. This favours the use of methods that produce "quick
and dirty" estimates of relationships between members
such as short sequence alignments, fragment length poly-
morphism, biotyping or enzymatic activity. The resulting
distances will only be a rough guide to the true relation-
ship between organisms, and their relationship to T for
specific applications will be unknown.

These considerations suggest that a good criterion for
choosing a model organism is that it be representative for
a range of T values. This can be implemented by normal-
ising the available distances within a group to be repre-
sented to have a maximum of 1, and summing the
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Coverage criterion for T at steps between 0 and 1, e.g. {0
0.05, 0.10... 0.95, 1.00}. We refer to this score as being the
Total Coverage for the model organism, as it is an aggregate
over a range of T values. The Best Total Coverage (BTC)
method picks the organism for which this score is largest.
Relating this to the coverage graphs (Figs. 1C and 1D) the
BTC method picks the organism with the largest area
beneath the curve, for 1C this is organism a, and for 1D it
is organism b.

Determining the number of model organisms required
We can see in Figure 1A, and especially 1B, that for small
threshold values, even the best possible model organism,

as selected by the best total coverage method, cannot rep-
resent the entire group of organisms. Rather than choos-
ing a single model organism we would prefer, if possible,
to choose a set of model organisms so that as many organ-
isms as possible lie within the threshold distance of at
least one model organism for a particular application.
Obviously coverage will continue to improve, or at least
not get worse, as more and more model organisms are
allowed. Indeed, in the ideal case every unique organism
would be chosen as a model organism. However, finan-
cial and time constraints usually mean that such a solu-
tion is not feasible. Plotting the increase in coverage for
different numbers of models organisms allows one to

Coverage plots for example data setsFigure 1
Coverage plots for example data sets. A and B) Artificial data sets where organisms are represented by dots with Eucli-
dean distances. The concentric circles around the labelled organisms indicate how many organisms would be well represented 
by this choice of model strain for different threshold values. C and D) Coverage plots for the data sets in A and B respectively, 
showing how many organisms are well represented for increasing threshold values. Key for D: a – x, b – o, c – ∆. E) Best Total 
Coverage score (as a percentage of maximum) for 1–30 model organisms, for data set B, the model organisms are selected 
using a greedy implementation of the BTC method as described later in the text.
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judge when no significant improvement results from add-
ing another model organism, or whether the improve-
ment outweighs the cost of dealing with an extra model
organism. For example, Figure 1E shows the BTC score (as
a percentage of the maximum possible) for the data set in
Figure 1B with from one up to thirty model organisms
allowed. In this example the graph suggests that only mar-
ginal improvements in coverage can be obtained by hav-
ing more than one or two model organisms. In the case
where there are distinguishable clusters of genetically sim-
ilar strains, the value of k could be predetermined based
on the number of clusters.

Computational strategies for implementing the methods
For practical application of the strategies outlined above,
we must consider the computational complexity of find-
ing the best set of model organisms. For a group of n iso-
lates and a predetermined number of model organisms k
there are n!/k!(n - k)! possible sets of model organisms to
be tested, and for each set of model organisms it requires
nk operations to calculate Coverage, because for each of the
n isolates, at worst k putative model organisms must be
checked to determine if the distance between the isolate
and the model organism is less than T. So, for a fixed k, it
will take time proportional to nk + 1 to compute the best set
of model organisms. This means that for large n and k it
will become computationally intractable to test all possi-
ble sets of model organisms. For example, for k = 3 model
organisms from a set of 100 organisms there are 161,700
possible sets of model organisms to consider, for k = 5
model organisms there are 75,287,520 sets to consider,
and for k = 10 there are 1.73 × 1013.

To avoid this problem a greedy approximation to the exact
method can be used. Initially one model organism is cho-
sen, the one that gives the largest Total Coverage score, then
model organisms are added one at a time, at each stage
picking the organism which gives the largest improve-
ment in the Total Coverage score, until some predefined
number of model organisms have been selected. We name
this the greedy-BTC method.

Test of the effectiveness of the greedy-BTC method for 
choosing model organisms
We tested the performance of the greedy method in sev-
eral ways. Firstly we compared the greedy-BTC method
against the exact-BTC method using a range of simulated
sequence data (see the Methods section for details on data
generation). The greedy method gave similar results to the
exact method for problems with small (computationally
feasible) numbers of model sequences (Table 1; for com-
parison the Total Coverage scores for randomly selected
model sequences are also included). For larger numbers
of model organisms we would expect that the greedy
method would perform less well relative to the exact
method. However, in this context we are not so concerned
with finding an optimal solution – a good solution will
do.

Secondly we compared the greedy-BTC method against
both a large number of random selections of model
organisms and researchers' selections based on phyloge-
netic evidence. We used two MLST data sets: 139 strains of
Enterococcus faecium [8], and 121 strains of Candida albi-
cans [9]. Six researchers (four phylogenetics researchers
from the Allan Wilson Centre for Molecular Ecology and
Evolution, and the two authors) were given copies of the
two trees and asked to select three and five model strains
respectively that they felt would be good representatives
of the group of strains based on the phylogenetic tree.
(The reasons we fixed k = 5 for the E. faecium data and k =
3 for the C. albicans data are detailed in a later section.)
The trees in figures 2A and 3A show the researchers' selec-
tions of model organisms and the greedy-BTC choice of
model organisms. Figures 2B and 3B compare the per-
formance of these selections along with 1000 random
selections of model organisms. The greedy-BTC strains
performed better than random selection in all but 4/2000
cases and always outperformed the human selections.

An interesting outcome of this experiment is that strain
selections which seem almost identical based on the phy-
logenetic tree, for example those selections represented by

Table 1: Performance of the greedy algorithm in selecting model organisms from simulated DNA sequence data sets.

Total coverage (percent of exact method)

k = 1 k = 2 k = 3

Greedy Score 100.0% 99.6% 99.6%
Random Score 77.7% 76.5% 76.4%

The scores are the mean Total Coverage over the 100 simulated data sets for k = 1, 2 or 3 with the greedy and random scores (scores obtained 
when randomly chosen sequences are used as model strains) expressed as a percentage of the exact scores. All data sets were generated as 
described in the methods section, distances were normalised to have a maximum value of 1, and Total Coverage was evaluated in steps of 0.05 
between 0 and 1.
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Comparing greedy-BTC model strains to researchers' selections for the Enterococcus dataFigure 2
Comparing greedy-BTC model strains to researchers' selections for the Enterococcus data. Neighbor-joining [10] 
tree based on MLST data for 139 E. faecium strains. Each MLST scheme has seven genes, these genes were concatenated 
together and a distance matrix (used by both neighbor-joining and the greedy-BTC method) was constructed based on uncor-
rected distances between pairs of sequences (i.e. the proportion of sites that differ). The blue triangles indicate the five model 
strains selected using the greedy-BTC method. Coloured circles indicate model strains selected by six researchers. The inset 
histogram compares the BTC-scores of the greedy and human selection to 1000 random selections of five model strains.
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Comparing greedy-BTC model strains to researchers' selections for the Candida dataFigure 3
Comparing greedy-BTC model strains to researchers' selections for the Candida data. Neighbor-joining tree 
based on MLST data for 121 C. albicans strains (see figure 2 caption for details of construction). The blue triangles indicate the 
three model strains selected using the greedy-BTC method. Coloured circles indicate model strains selected by six research-
ers. The inset histogram compares the BTC-scores of the greedy and human selection to 1000 random selections of three 
model strains.
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red and green circles in figure 3A, performed quite differ-
ently. This is probably because trees cannot (except in the
case of perfectly treelike distances) reflect all of the infor-
mation in the distance matrix [10].

Assessing usefulness of the method in choosing model 
organisms representing characters unknown at the time of 
selection
As pointed out in the introduction, selection of model
organisms will often be based on characters different from
the ones which will later be studied using the model
organism. Since different loci may evolve according to dif-
ferent processes in different lineages [10], selecting a
model organism using one set of characters does not guar-
antee that it is representative for other characters. The
exchange of genetic material between organisms of differ-
ent species (horizontal gene transfer) will produce addi-
tional problems of a similar nature. The true test of a
method for selecting model organisms is therefore if it can
arrive at a model organism which is reasonable represent-
ative for characters not used in its selection.

We therefore tested the BTC method on three examples of
micro-biological data sets in which we could assess the
representativeness of model organisms for characters not
used in their selection. In each case we began by using one
character set to choose the greedy-BTC model strains for k
in the range 1–10. As in the previous example with simu-
lated data we compared the greedy-BTC score to the Total
Coverage score attained by random sets of model organ-
isms for each data set and value of k. Then, for a fixed
value of k, we compared our choice of model organisms
with random choices of k organisms, in terms of how well
they represented the characters not used in the selection of
the model organisms.

The first example was a sample of 22 Pseudomonas aerugi-
nosa strains, for which both RFLP typing data and
sequence data (pvdS gene) are available [11]. We used the
RFLP data for model strain selection. As expected, the plot
of greedy BTC score versus k for the RFLP based distances
(Fig. 4A) showed a gradual improvement in Total Coverage
as increasing numbers of model strains are used. For each
value of k (k = 1–10) we compared the Total Coverage of
the greedy-BTC model strains to the Total Coverage of 1000

Performance of the greedy-BTC method for Pseudomonas dataFigure 4
Performance of the greedy-BTC method for Pseudomonas data. A) The greedy Best Total Coverage score for k = 1–10 
model organisms, for the Pseudomonas RFLP distances, is shown by the crosses. For each value of k the box and whisker plot 
indicates the quartiles (i.e. the box indicates those 50 % of the values closest to the median) and range for 1000 random 
choices of model organisms. Total Coverage scores were produced by adding up the percentage of organisms represented at 
each of 20 threshold value intervals (0, 0.05, 0.10,...,0.95 and 1.0); they are reported as a percentage of the maximum possible 
Total Coverage score. B) Histogram showing the Total Coverage scores of 1000 random choices of model organism, the arrow 
indicates the Total Coverage score for the BTC choice of model strain.
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randomly chosen sets of k strains. For all values of k tested
the greedy-BTC score is in the top quartile of the distribu-
tion of scores for randomly chosen strains.

To assess the representativeness of the BTC model strain
on the pvdS data (not used in model strain selection) we
fixed k = 1, as the total number of strains was fairly small,
and Figure 4A did not suggest any obvious clustering in
the data (clustering would be indicated by a sharp jump
in coverage for some value of k). We then measured the
Total Coverage of the selected model strain for the pvdS
gene and compared it to the Total Coverage of the remain-
ing 21 strains (Fig 4B). (In order to compute the Total Cov-
erage score for the pvdS data we constructed Hamming
distances from the sequence alignment.) In 55% of cases
random selection did equally well (this was unsurprising
as 12/22 of the strains had identical pvdS sequences), but
in 45% of the cases random choice gave a worse represen-
tation than the BTC selected model strain.

The second data set consisted of partial sequences of seven
genes (adk, atpA, ddl, gyd, gdh, purK, and pstS) of 139 Ente-
rococcus faecium strains [8]. We constructed seven test data
sets, for each a distance matrix was generated by taking the

Hamming distances from the sequences for six of the loci
(i.e. each time we omitted one locus). Using these dis-
tances we carried out selection of model organisms sepa-
rately for each of the seven test data sets. We then tested
the performance of the greedy-BTC method by assessing
how well the model organisms represented the seventh
locus (omitted when constructing the distance matrix).

For each value of k (k = 1..10) we compared the Total Cov-
erage of the greedy-BTC model strains to the Total Coverage
of 1000 randomly chosen sets of k strains. The results for
one of these data sets (adk omitted) are shown in Figure
5A. The greedy-BTC model strains were always in the top
quartile of the distribution of scores for random strains.

To assess the representativeness of the greedy-BTC model
strains on the omitted gene (not used in model strain
selection) we fixed k = 5, and compared the five greedy-
BTC model strains to random selections of five strains.
Figure 5B shows the performance on each data set. In one
case the greedy-BTC model strains outperformed the ran-
dom strains and in six cases the greedy-BTC model strains
performed about equally to the median random score.
However, note that the distribution of random scores is

Performance of the greedy-BTC method for Enterococcus dataFigure 5
Performance of the greedy-BTC method for Enterococcus data. A) The greedy Best Total Coverage score for k = 1–10 
model organisms, for the distances generated from all loci excluding adk, is shown by the crosses. For each value of k the box 
and whisker plot indicates the quartiles (i.e. the box indicates those 50 % of the values closest to the median) and range for 
1000 random choices of model organisms. Total Coverage scores were produced by adding up the percentage of organisms rep-
resented at each of 20 threshold value intervals (0, 0.05, 0.10,..., 0.95 and 1.0); they are reported as a percentage of the maxi-
mum possible Total Coverage score. B) For each omitted locus the box and whisker plot indicates the quartiles and range for 
1000 random choices of 5 strains. The score of the five greedy-BTC model strains are shown by crosses. C) Histogram show-
ing the aggregate Total Coverage scores of 1000 random choices of five strains summed over the seven data sets, the arrow 
indicates the aggregate Total Coverage score for the BTC choices of model strains.
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skewed – i.e. the best random sets of strains had scores
about 5% higher than the greedy-BTC model strains but
the worst random sets had scores about 10% lower than
the model strains. Figure 5C shows the aggregate perform-
ance over all seven data sets. Picking strains systematically
using the BTC method did better than picking a random
set of five strains in 844 out of 1000 cases.

The third data set consisted of partial sequences of seven
genes (AAT1a, ACC1, ADP1, MPIb, SYA1, VPS13, and
ZWF1b) of 122 Candida albicans strains [9]. Similarly to
the previous example, we generated seven distance matri-
ces, each based on six of the loci, and, using these dis-
tances, carried out selection of model strains. We then
tested our choice by assessing how well the model strains
represented the alleles at the seventh locus (omitted when
constructing the distance matrix).

For each value of k (k = 1..10) we compared the Total Cov-
erage of the greedy-BTC model strains to the Total Coverage
of 1000 randomly chosen sets of k strains. The results for

one of these sequence sets (AAT1a omitted) are shown in
Figure 6A. The greedy-BTC model strains were always in
the top quartile of the distribution of scores for random
strains, and for k = 5, 6, 7, 8, 9, and 10 the scores for the
greedy-BTC model strains were outside the range of scores
for random sets of strains.

To assess the representativeness of the greedy-BTC model
strain on the omitted gene (not used in model strain selec-
tion) we fixed k = 3, and compared the three greedy-BTC
model strain to random selections of three strains. Figure
6B shows the performance on each data set. In four out of
seven cases the greedy-BTC model strains outperform ran-
domly chosen strains at representing the omitted gene,
but for AAT1a and ACC1 random selection does better.
Figure 6C shows the aggregate performance over all seven
data sets, in 759 cases out of 1000 the greedy-BTC model
strains outperformed the randomly chosen strains.

Performance of the greedy BTC method for Candida dataFigure 6
Performance of the greedy BTC method for Candida data. A) The greedy Best Total Coverage score for k = 1–10 model 
organisms, for the distances generated from all loci excluding AAT1a, is shown by the crosses. For each value of k the box and 
whisker plot indicates the quartiles (i.e. the box indicates those 50 % of the values closest to the median) and range for 1000 
random choices of three strains. Total Coverage scores were produced by adding up the percentage of organisms represented 
at each of 20 threshold value intervals (0, 0.05, 0.10,..., 0.95 and 1.0); they are reported as a percentage of the maximum possi-
ble Total Coverage score. B) For each omitted loci the box and whisker plot indicates the quartiles and range for 1000 random 
choices of three strains. The score of the three greedy-BTC model strains are shown by crosses. C) Histogram showing the 
aggregate Total Coverage scores of 1000 random choices of three strains summed over the seven data sets, the arrow indicates 
the aggregate Total Coverage score for the BTC choices of model strains.

1 2 3 4 5 6 7 8 9 10

k

0

20

60

40

80

100

100

200

300

0

60 8070

%
o
f
m
a
x
.
T
o
ta
l
C
o
v
e
ra
g
e

(o
f
a
ll
d
a
ta

e
x
c
lu
d
in
g

A
A

T
1a

)

%
o
f
m
a
x
.
T
o
ta
l
C
o
v
e
ra
g
e

(o
f
o
m
m
it
e
d
d
a
ta
)

Aggregate Total Coverage

(of omitted data)

k=3

A

Omitted data

A
A

T
1a

A
C

C
1

A
D

P
1

M
P

Ib

S
Y

A
1

V
P

S
13

Z
W

F
1b

0

20

60

40

80

100
k=3

B C
Page 9 of 11
(page number not for citation purposes)



BMC Microbiology 2005, 5:26 http://www.biomedcentral.com/1471-2180/5/26
Conclusion
The greedy-BTC method outperformed selections based
on phylogenetic evidence made by researchers with expe-
rience in phylogenetics. By testing the greedy-BTC choice
against the exact-BTC where feasible or against a large
number of random selections of model strains we also
demonstrated that the method comes close to achieving
optimal representation of organisms (according to the
BTC criterion).

The greedy-BTC also performed well in the more challeng-
ing situation where the characters to be represented were
not used in model strain selection; for most of the biolog-
ical data sets, with the exception of two loci in the Candida
albicans data, the greedy-BTC model organisms did an
equal or better job than random organisms of represent-
ing data not used in model strain selection.

One interesting feature of the distributions of Total Cover-
age scores for random organisms is its skewness – many
sets produce good scores but there is a long tail of poor
scores. This feature seemed to be consistent across a range
of data sets. This means that picking organisms at random
may occasionally do a little better than using the greedy-
BTC method but it may also do a lot worse.

The three biological data sets analysed suggest that the
BTC method we have developed should facilitate
selection of model organisms that will be representative
of the group of interest for a wide range of applications.
Nevertheless, differences in the rate of evolution at differ-
ent loci plus other phenomena such as horizontal gene
transfer place limits on the degree of reliability of selected
model organisms in terms of representativeness in regard
to other, unknown loci. We would therefore suggest that
if the BTC method were used to select organisms for a
project associated with major expenses (in terms of time
or money), such as a genome sequencing project, it would
be advisable to begin by eliminating part of the input data
and testing how well the method works at selecting model
organisms that capture the diversity of the omitted part of
the data. Such an analysis will not only provide a general
idea of how well the selected organisms will represent the
sample, it will also reveal if some of the markers intended
for selection may give misleading information. If, for
instance one of them had been acquired by horizontal
gene transfer, this should become apparent as poor repre-
sentation of allelic diversity at that marker locus by model
organisms selected on the basis of the remaining markers.

We note that one problem our method does not address
is how to obtain a suitable collection of the group of
organisms on which the BTC method is to be used to
choose representatives. The BTC method is aimed at opti-
mally representing a group defined by its user, and highly

prevalent genetically similar subgroups in this user-
defined group will carry more weight than low prevalence
groups. Therefore, if the group is biased so that particular
groups are over represented, the BTC choice of model
strains will be biased as well.

Methods
The greedy-BTC and exact-BTC methods described for
selecting model organisms have been implemented in a C
program that has been tested using both UNIX and
WindowsXP. The exact method is only feasible for k ≤ 3
unless the total number of strains is also fairly small; the
program automatically defaults to the greedy method if k
≥ 4 and n ≥ 10. The program also works for user-defined
threshold values. All code is available on request from
b.r.holland@massey.ac.nz.

The method described can be expressed mathematically as
follows. Firstly let X be the set of all organisms, and d(m,x)
a measure of the distance between organism m and x.
Define y(m,x) = 1, if d(m,x) <T,

y(m,x) = 0, otherwise.

In the case of choosing a single model organism m

To solve the multiple model organism case we choose a
set M of fixed size k, such that

The test data used to generate Table 1 was generated using
the software Treevolve version 1.3.2 [12] to simulate DNA
sequences along a large (1000 taxon) random tree accord-
ing to a simple model of nucleotide substitution (the
Jukes Cantor model [13]). One hundred data sets of size
20 were then sampled from this large data set, and dis-
tance matrices were generated by taking the uncorrected
distance between sequences (this is the proportion of sites
that differ between the two sequences).

List of abbreviations
BTC – best total coverage

MLST – multi-locus sequence typing

ORF – open reading frame

PCR – polymerase chain reaction

BestCoverage y m x

BestTotalCoverage y m x

m X x X

m X

=

=

∈ ∈

∈

∑max ( , )

max ( , ))
x XTvalues ∈
∑∑

BestTotalCoverage y m x
M m Mx XTvalues

=
∈∈

∑∑max min ( , )
Page 10 of 11
(page number not for citation purposes)



BMC Microbiology 2005, 5:26 http://www.biomedcentral.com/1471-2180/5/26
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

RFLP – restriction fragment length polymorphism

Authors' contributions
B.R.H. developed and implemented the methods, per-
formed simulations and wrote the bulk of the manuscript.
J.S. developed the methods, wrote the introduction sec-
tion of the manuscript, edited the manuscript, and
sourced the example data sets.

Acknowledgements
B.R.H. acknowledges the help of Mike Hendy and David Penny during her 
PhD when this work originated. B.R.H. and J.S. acknowledge Jamie Riden 
for the C implementation of the method. B.R.H. and J.S. acknowledge Rich-
ard D. Cannon for his comments on a draft of this ms. B.R.H. and J.S. 
acknowledge Frank Odds for the use of the Candida MLST data. This work 
was supported in part by Marsden grant MAU902 from the royal Society to 
J.S.

References
1. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey

MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, et al.: Com-
plete genome sequence of Pseudomonas aeruginosa PA01, an
opportunistic pathogen. Nature 2000, 406:959-964.

2. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB,
Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW,
Scherer S: The diploid genome sequence of Candida albicans.
Proc Natl Acad Sci USA 2004, 101:7329-7334.

3. Liu HC, Styles A, Fink GR: Saccharomyces cerevisiae S288C has a
mutation in FLO8, a gene required for filamentous growth.
Genetics 1996, 144:967-978.

4. Takagi H, Shichiri M, Takemura M, Mohri M, Nakamori S: Saccharo-
myces cerevisiae Sigma 1278b Has Novel Genes of the N-
Acetyltransferase Gene Superfamily Required for L-Proline
Analogue Resistance. J Bacteriol 2000, 182:4249-4256.

5. Fitzgerald JR, Musser JM: Evolutionary genomics of pathogenic
bacteria. Trends Microbiol 2001, 9:547-553.

6. Lan R, Reeves PR: Intraspecies variation in bacterial genomes:
the need for a species genome concept. Trends Microbiol 2000,
8:396-401.

7. Boucher Y, Nesbo CL, Doolittle WF: Microbial genomes: dealing
with diversity. Curr Opin Microbiol 2001, 4:285-289.

8. Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, van
Embden JD, Willems RJ: Multilocus Sequence Typing Scheme
for Enterococcus faecium. J Clin Microbiol 2002, 40:1963-1971.

9. Odds F: Unpublished Candida albicans MLST data. .
10. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM: Phylogenetic Infer-

ence. In Molecular Systematics 2nd edition. Edited by: Hillis DM,
Moritz C, Mable BK. Sinauer Associates, Inc. Publishers, Sunderland,
Massachusetts; 1996:407-514. 

11. Al-Samarrai TH, Zhang N, Lamont I, Martin L, Kolbe J, Wilsher M,
Morris AJ, Schmid J: Simple and inexpensive but highly discrim-
inating method for computer-assisted DNA fingerprinting of
Pseudomonas aeruginosa. J Clin Microbiol 2000, 38:4445-4452.

12. University of Oxford, Department of Zoology. Evolutionary
biology group, software page  [http://evolve.zoo.ox.ac.uk/soft
ware.html]

13. Jukes TH, Cantor CR: Evolution of protein molecules. In Mam-
malian Protein Metabolism Edited by: Munro HN. Academic Press;
1969:21-132. 
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10984043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10984043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15123810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8913742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8913742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10894734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10894734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10894734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11825715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11825715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10989306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10989306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11378480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11378480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101578
http://evolve.zoo.ox.ac.uk/software.html
http://evolve.zoo.ox.ac.uk/software.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Finding the best model organism
	Determining the number of model organisms required
	Computational strategies for implementing the methods
	Test of the effectiveness of the greedy-BTC method for choosing model organisms
	Assessing usefulness of the method in choosing model organisms representing characters unknown at the time of selection

	Conclusion
	Methods
	List of abbreviations
	Authors' contributions
	Acknowledgements
	References

