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Abstract

Background: Mycobacterium avium subspecies avium (M. avium) is frequently encountered in the
environment, but also causes infections in animals and immunocompromised patients. In contrast,
Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is a slow-growing organism
that is the causative agent of Johne's disease in cattle and chronic granulomatous infections in a
variety of other ruminant hosts. Yet we show that despite their divergent phenotypes and the
diseases they present, the genomes of M. avium and M. paratuberculosis share greater than 97%
nucleotide identity over large (25 kb) genomic regions analyzed in this study.

Results: To characterize genome similarity between these two subspecies as well as attempt to
understand their different growth rates, we designed oligonucleotide primers from M. avium
sequence to amplify |5 minimally overlapping fragments of M. paratuberculosis genomic DNA
encompassing the chromosomal origin of replication. These strategies resulted in the successful
amplification and sequencing of a contiguous | I-kb fragment containing the putative Mycobacterium
paratuberculosis origin of replication (oriC). This fragment contained || predicted open reading
frames that showed a conserved gene order in the oriC locus when compared with several other
Gram-positive bacteria. In addition, a GC skew analysis identified the origin of chromosomal
replication which lies between the genes dnaA and dnaN. The presence of multiple DnaA boxes and
the ATP-binding site in dnaA were also found in M. paratuberculosis. The strong nucleotide identity
of M. avium and M. paratuberculosis in the region surrounding the origin of chromosomal replication
led us to compare other areas of these genomes. A DNA homology matrix of 2 million nucleotides
from each genome revealed strong synteny with only a few sequences present in one genome but
absent in the other. Finally, the 16s rRNA gene from these two subspecies is 100% identical.

Conclusions: We present for the first time, a description of the oriC region in M. paratuberculosis.
In addition, genomic comparisons between these two mycobacterial subspecies suggest that
differences in the oriC region may not be significant enough to account for the diverse bacterial
replication rates. Finally, the few genetic differences present outside the origin of chromosomal
replication in each genome may be responsible for the diverse growth rates or phenotypes
observed between the avium and paratuberculosis subspecies.
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Background

Mycobacteria are Gram-positive, acid-fast, pleomorphic,
non-motile rods belonging to the order Actinomycetales.
Mycobacterium avium complex organisms consist of the
human and animal pathogens M. avium subsp. avium, M.
avium subsp. paratuberculosis, and M. avium subsp. silvati-
cum [1]. DNA-DNA hybridization studies have long ago
established a genetic similarity between M. avium subspe-
cies avium (M. avium) and M. avium subspecies paratuber-
culosis (M. paratuberculosis) [2-4]. Now that whole
genome sequencing technologies are available, investiga-
tors can begin to examine genetic relatedness in greater
detail through direct nucleotide-nucleotide comparisons.
These comparisons are particularly important in instances
where two genetically similar bacteria have little or no
specific diagnostic tests to distinguish each.

The literature reports genetic similarity between M. paratu-
berculosis and M. avium at between 72% and 95% [2,4] de-
pending on the region analyzed. However, despite the
reported similarities, these mycobacteria are quite differ-
ent phenotypically. M. paratuberculosis is an intracellular
pathogen that infects ruminant animals, most notably cat-
tle and sheep. The site of infection is the gastrointestinal
tract, where it causes a chronic inflammatory ailment
termed Johne's disease [5]. In contrast, M. avium is com-
mon in the environment, causes tuberculosis in birds, and
disseminated infections in HIV patients [6]. Growth of M.
paratuberculosis is characterized by its slow rate (doubling
time of 22-26 hours, compared to 10-12 hours for M. avi-
um) and requirement of mycobactin in culture media [5].
With the absence of a well-defined genetic system for M.
paratuberculosis, a comparative genomic approach holds
great potential in addressing the genetic basis for many of
these phenotypic differences.

The genus Mycobacterium contains species that range from
fast-growingsaprophytes such as M. smegmatis and M. for-
tuitum to slow-growing pathogens such asM. leprae, M. tu-
berculosis and M. paratuberculosis. Although the
chromosomal origin of replication has been studied in
some mycobacteria [7,8], the genetic organization of the
origin of replication in M. paratuberculosis has been previ-
ously unknown. Knowledge of the gene organization and
sequence of this region is particularly important because
chromosomal replication may be regulated by a common
mechanism that could directly affect rate of growth.

Several features of the oriC region are highly conserved
among bacteria. The sequence immediately flanking the
dnaA gene is considered the origin of chromosomal repli-
cation, or oriC region [9,10]. This region contains several
genes that encode proteins required for basic cellular
functions, including the protein subunit of RNase P
(RnpA), ribosomal protein L34 (RpmH), the replication
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initiator protein (DnaA), the beta subunit of DNA
polymerase III (DnaN), the recombination repair protein
RecF, and the DNA gyrase proteins GyrA and GyrB. The
relative gene order in this region is also highly conserved
in many bacteria, especially the Gram-positives [11]. Al-
though intergenic sequences in this region are conserved
only among closely related organisms, the DnaA box is
found in the non-coding regions flanking dnaA in most
bacteria studied [12]. DnaA boxes are conserved nucle-
otide sequences (TTGTCCACA) where the DnaA protein
binds to DNA, triggering events that ultimately lead to
replication initiation and DNA synthesis [9].

In an effort to understand the genetic basis for growth rate
and other phenotypic differences between M. paratubercu-
losis and M. avium, we have analyzed the genetic similarity
of these genomes using two strategies. First, the putative
oriC region of M. paratuberculosis was amplified, se-
quenced and compared with M. avium and other bacteria.
Second, we examined nucleotide identity outside the oriC
region using DNA homology matrix analysis as well as us-
ing several hundred M. paratuberculosis sequences from a
random shotgun library compared with M. avium se-
quences present in the unfinished microbial genomes da-
tabase. Our results show that these subspecies not only
have a conserved gene order surrounding the origin of
chromosomal replication, but also have a high synteny
and nucleotide identity throughout both genomes. In ad-
dition, this preliminary comparative survey of the genom-
es of M. avium and M. paratuberculosis show even greater
similarity (97%) than the literature suggests (72% to
95%) [2].

Results

Identification of predicted ORFs encoding replication-re-
lated proteins

An ~11-kb contiguous genomic fragment from M. paratu-
berculosis was amplified and sequenced using 15 primer
pairs designed from M. avium genomic sequence in the
putative oriC region (Fig. 1). This strategy enabled the suc-
cessful amplification of all 15 minimally overlapping frag-
ments of ~800 bp in length for this region of the M.
paratuberculosis chromosome. A putative replication ori-
gin was identified by GC skew analysis [14]. A strong in-
flection point in the GC plot marks this origin (Fig. 1).
Eleven ORFs were identified using the gene prediction
software Artemis [15] (release 3; The Sanger Centre http:/
/www.sanger.ac.uk/Software/Artemis/). Similarity search-
es were conducted locally using the BLASTP algorithm
through the Artemis interface. Seven of these ORFs have
high identity to proteins essential for basic cellular proc-
esses, including replication, in other mycobacterial spe-
cies (Table 1). The function of GidB is unknown, but it
may have a role in cell division [11]. RNase P, which con-
sists of the protein subunit RnpA and a catalytic RNA
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Table I: Sequence analysis of predicted ORFs in the M. paratuberculosis oriC region.

Protein Length (amino acids) Top BLASTP match Expect Value
| 311 gidB (M. tuberculosis, 62% identity, 70% similarity) S5e-64
2 195 hypothetical protein Rv3920c (M. tuberculosis, 70% identity, 72% similarity) le-49
3 370 hypothetical protein Rv392Ic (M. tuberculosis, 87% identity, 92% similarity) le-142
4 115 hypothetical protein Rv3922c (M. tuberculosis, 67% identity, 76% similarity) 2e-35
5 126 rnpA (M. tuberculosis, 49% identity, 58% similarity) S5e-21
6 146 rpmH (M. tuberculosis, 89% identity, 93% similarity) 4e-17
7 524 dnaA (M. avium, 89% identity, 89% similarity) 0.0
8 409 dnaN (M. tuberculosis, 78% identity, 83% similarity) le-173
9 385 recF (M. tuberculosis, 66% identity, 75% similarity) le-144
10 280 hypothetical protein Rv0004 (M. tuberculosis, 65% identity, 71% similarity) le-63
Il 685 gyrB (M. leprae, 84% identity, 88% similarity) 0.0
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Amplification strategy and organization of the M. paratuberculosis chromosomal origin of replication. The locations of primer
pairs used for amplification and sequencing are marked with facing arrows above the kilobase (kb) scale. The GC skew is
shown beneath the kb scale and has a window size of 500. OriC, right at the point of the GC inflection, designates the origin of
replication. An open reading frame map of the ~I | kb fragment is represented by shaded boxes and the two divergent arrows
immediately above identify the direction of transcription. The degree of substitution in comparison to the corresponding M.
avium gene is indicated below the gene name. & (tau) is the overall substitution rate, ds is the synonymous substitution rate,
and dn is the non-synonymous substitution rate. GidB, glucose inhibited division protein B. RnpA, RNAse protein component
A. RpmH, ribosomal protein L34. DnaA, replication initiator. DnaN, DNA polymerase subunit lll. GyrB, DNA gyrase subunit B.
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Comparative gene order in the oriC region of mycobacteria and other Gram-positive bacteria. The relative gene order in this
region of M. paratuberculosis conforms to the highly conserved order found in other gram-positive bacteria. Numbers indicate
the length of the ORF or intergenic region. Arrows show the direction of transcription.

subunit, is essential for generating mature tRNAs by cleav-
ing the 5'-terminal leader sequences of precursor tRNAs
[16]. rpmH encodes ribosomal protein L34, and DnaA is
the initiator protein for chromosome replication. The B-
subunit of DNA polymerase is encoded by dnaN. The recF
gene product is involved in recombination, DNA repair,
and induction of the SOS response, and may also have a
role in replication [17]. Bacterial DNA gyrase, a tetramer
consisting of A and B subunits, catalyzes the ATP-depend-
ent unwinding of covalently closed circular DNA [18]. The
remaining predicted ORFs in this region have high simi-
larity to hypothetical proteins from M. tuberculosis (Table

1).

Sequence homology and conserved gene order in the oriC
region of mycobacteria and other gram-positive bacteria

Alignment of the region surrounding oriC for several my-
cobacteria and other gram-positive bacteria provides
some interesting comparisons (Fig. 2). The M. paratuber-
culosis oriC region conforms to the conserved gene order
that is present in other mycobacteria as well as the closely
related Streptomyces coelicolor. Even the more distantly
related Bacillus subtilis shows some degree of synteny in
this region. The fast growing M. smegmatis species con-
tains a gnd sequence between dnaN and recF, which is ab-
sent in the slow-growing mycobacteria (Fig. 2). However,
there appear to be no notable differences between M. avi-
um and M. paratuberculosis at this level. The M. smegma-
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Table 2: Comparison of amino acid identity in the oriC region with the corresponding M. paratuberculosis sequence.

M. avium M. leprae M. tuberculosis M. smegmatis S. coelicolor C. glutamicum
gidB 97% (98%) 66% (75%) 73% (83%) Not Found 50% (64%) 51% (64%)
dnaN 100% (100%) 85% (88%) 86% (91%) 80% (89%) 51% (67%) 48% (69%)
rpmH 97% (100%) 91 % (95%) 91% (93%) 91% (95%) 81% (87%) 89% (93%)
Unknown (AAF33691) 100% (100%) 73% (82%) 85% (88%) Not Found 64% (71%) Not Found
dnaA 99% (99%) 87% (89%) 88% (90%) 78% (84%) 68% (78%) 53% (67%)
recF 97% (98%) 78% (87%) 76% (85%) 73% (84%) 55% (70%) 53% (71%)
gyrB 99% (100%) 90% (95%) 90% (94%) 88% (92%) 65% (79%) 72% (82%)
rnpA 94% (97%) 62% (76%) 60% (74%) Not Found 41% (57%) 38% (56%)
unknown (AAF33696) 100% (100%) 78% (85%) 79% (88%) 70% (82%) 39% (51%) 33% (47%)
unknown (AAF33697) 98% (98%) Not Found 64% (73%) Not Found Not Found Not Found
unknown (AAF33698) 99% (99%) 75% (81%) 82% (88%) Not Found 34% (50%) 42% (62%)

Figures are reported as percent identity with percent similarity indicated in parenthesis. Blastp was done at the NCBI site except for M. avium,
which was done at the TIGR site using tblastn. Not found indicates that the gene sequence is not available in public databases.

tis coding sequence, gnd, has similarity to the 6-
phophogluconate dehydrogenase genes in E. coli, but the
mycobacterial protein is predicted to be about 200 amino
acids shorter than the E. coli homolog. The length of non-
coding intergenic regions between rpmH - dnaA and
dnaA - dnaN is well conserved among the bacteria shown
in figure 2. In many bacteria where a functional oriC has
been identified, this gene order is conserved and oriC is
adjacent to the dnaA gene [9,10,19].

The amino acid sequence of each gene product was com-
pared with the corresponding sequence in M. paratubercu-
losis for all species in this study (Table 2). The data show
that while gene order is conserved, the percent identity de-
clines in comparisons with mycobacteria other than M.
avium. This percent identity declines even further in com-
parisons with non-mycobacterial sequences such as S. coe-
licolor and Corynebacteria glutamicum (Table 2).

Conserved functional motifs in the M. paratuberculosis
putative oriC

Fuzznuc (EMBOSS; http://www.hgmp.mrc.ac.uk/Soft-
ware/EMBOSS/index.html) was used to identify potential
DnaA boxes in the M. paratuberculosis oriC region. The
Gram-positive organisms in this study harbor 10 - 30
DnaA boxes (with 1 - 3 mismatches from the consensus
sequence TTGTCCACA) flanking the dnaA sequence
[8,20-23] and 35 were found surrounding the M. paratu-
berculosis dnaA gene (Fig. 3). In addition, a hexameric se-
quence thought to be recognized by ATP-DnaA (AGATCT)
was found in the 3' non-coding sequence adjacent to dnaA
(Fig. 3b). The significance of additional dnaA boxes in M.
paratuberculosis is likely necessary to open the DNA helix
of this GC rich organism (69% GC content).

The dnaA gene is divided into four functional domains
based on analysis of several dnaA mutants [24]. These do-
mains consist of (1) an area near the N-terminus thought
be involved in ability of the DnaA protein to aggregate,
(2) ATP binding, (3) a domain that maps to a region near
the C-terminus and is involved in DNA binding, (4) and
a final domain of unknown function, but may bind DnaB.
The conserved ATP-binding site that is found in domain
I1I in other bacteria was also located in M. paratuberculosis
(Fig. 3b). An AT-rich stretch of 19 nucleotides (74% A+T),
which in other bacteria serves as the site of local unwind-
ing of DNA after DnaA-DNA interaction, was located in
non-coding sequence adjacent to dnaA (Fig. 3b). The non-
coding sequences flanking dnaA are slightly AT-rich in
general, relative to the rest of the genome sequence,
consistent with findings in other gram-positive bacteria
(38% - 40% A/T, vs. ~33% in the entire sequence).

A vast majority of all M. paratuberculosis K-10 genomic
sequence have considerable nucleotide similarity to se-
quences from the human pathogenic isolate M. avium 104
As a basis for all nucleotide comparisons between M. avi-
um and M. paratuberculosis in this study, an alignment of
the 16s TRNA gene was performed. That analysis revealed
a 100% nucleotide identity over the entire 1,472-bp gene
(data not shown). Likewise, the oriC region in M. paratu-
berculosis was found to share a high level of nucleotide
identity (~98%) with M. avium. Calculation of the rates of
total nucleotide diversity (3) and synonymous substitu-
tion per synonymous site (ds) and non-synonymous sub-
stitution per non-synonymous site (dn) revealed patterns
of variation within the range observed from sequence data
outside the oriC region. These calculations showed a high
degree of similarity between the two sequences and a pre-
dominance of synonymous over non-synonymous substi-
tutions (Fig. 1). The patterns of nucleotide substitution
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501 ACGGGCCCCATGCTAGCGGGGGGAGGCTAGCCAATGGATCCGACAACGCTGAGTAGGTGAAGGGACGCTA

Figure 3

Non-coding sequences flanking M. paratuberculosis dnaA harbor 35 DnaA boxes. Nucleotide sequence of the rpmH-dnaA inter-
genic region (A) and dnaA-dnaN intergenic region (B) are shown. Sequences matching the DnaA box consensus(TTGTC-
CACA) with | — 3 mismatches are marked with an arrow. In (B), an A/T-rich region is underlined and the potential ATP-DnaA

recognition site is boxed.

varied considerably between genes in this region of the ge-
nome. For instance, there was complete nucleotide identi-
ty in the rpmH and recF genes and only 94% identity in the
gene rnpA. To verify that these observed differences were
real and not as a result of sequencing errors in the yet
unfinished M. avium genome, we confirmed the data by
resequencing the entire 11 kb region from an isolate clone
of M. avium and obtained identical results (not shown).

We next determined if the nucleotide identities would re-
main consistently high when M. paratuberculosis sequenc-
es outside the oriC region were compared with M. avium.
Sequencing of the M. paratuberculosis K-10 cattle isolate is
nearing completion in our laboratories and TIGR http://
www.tigr.org is in the finishing stages of M. avium isolate
104. Beginning with nucleotide number 1 in the dnaA
coding region of each genome, a comparison of 2 million

bases of M. paratuberculosis with 2 million bases from M.
avium by Pustell DNA matrix analysis [25], indicates that
genomic similarity continues outside the surrounding
oriC region (Fig. 4). When evaluating similarities between
two sequences of this size, a matrix comparison is the
method of first choice. In addition, the matrix method
displays matching regions in the context of the sequence
as a whole, making it easy to determine if the regions are
repeated or inverted. For example, figure 4 shows a large
56.6 kb genomic inversion of the region surrounding nu-
cleotide 350,000. The DNA identity matrix also identified
sequences that were present in one genome, but absent in
the other as shown by the broken diagonal lines (Fig. 4).
These data show remarkable similarity over large regions
in both mycobacterial genomes.
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M. paratuberculosis K-10 genome
Figure 4

DNA matrix analysis of a contiguous 2 million nucleotide section of the M. avium (y-axis) and M. paratuberculosis (x-axis)
genomes. Four 500,000 nucleotide matrices are shown with the nucleotide segments indicated above each plot. A long unbro-
ken diagonal line from the upper left corner to the lower right corner indicates that the sequences are collinear. The diagonal
line (in blue) that runs from the lower left to the upper right at the 350,000 nucleotide region indicates that one sequence is
the reverse complement of the other. The arrows (in red) show sequences present in M. avium but absent in M. paratuberculo-
sis and the arrowhead (in green) shows a sequence represented only in M. paratuberculosis. The initial nucleotide in the dnaA
coding sequence was defined as number one in both genomes for this analysis. The parameters for this DNA identity matrix
include: a window size of 30, a minimum percent score of 80, and a hash value of 4.

Finally, we analyzed 548 recombinant clones from a ran-
domly sheared M. paratuberculosis small insert library in
order to obtain specific rates of nucleotide substitutions.
Sequences from these clones represented over 350,000 bp
of unique (non-overlapping) M. paratuberculosis genomic
DNA and comprised 7% of the estimated 5 Mb genome
sequence. From this analysis, we estimated the rates of to-
tal synonymous and non-synonymous substitutions for
200 fragments that were aligned in-frame and then ana-
lyzed with the program NAGV2 [26] using the methods of
Nei and Gojobori [27]. The results of these analyses show
that the average nucleotide diversity between the two spe-
cies is 2.59% + 0.06% (range 0% to 18.8%; median,
1.85% + 0.05%). The results also show that the average

rates of synonymous substitution per synonymous site are
3.38% + 1.32% (range, 0% to 19.5%; median, 3.5% =+
1.5%). In contrast, the rates of non-synonymous substitu-
tion per non-synonymous site were 1.89% =+ 0.05%
(range, 0% to 12.9%; median 1.3% + 0.05%). These re-
sults not only indicate that the two subspecies have a high
degree of nucleotide identity (>97%), but also suggest
that the patterns of substitution have favored synony-
mous substitutions as can be expected from positive
selection.

Discussion
With the genome sequencing projects of M. paratuberculo-
sis and M. avium nearing completion, we have been able
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to compare large amounts of sequence data for the first
time. Our results show substantial nucleotide identity
above even that reported previously in the literature [2-
4]. Paradoxically, the overall nucleotide identity between
these phenotypically distinct mycobacteria appears simi-
lar to that observed with two phenotypically identical
Helicobacter pylori isolates at >98% nucleotide identity
[28].

The high nucleotide identity shared between M. paratuber-
culosis and M. avium directly conflicts with their divergent
phenotypic characteristics. Because of strong similarity in
the oriC region, alternative hypotheses should be tested to
explain the growth rate differences between M. avium and
M. paratuberculosis. Genomic rearrangements and the
presence of unique genes identified by matrix analysis in
this study are two such possibilities that could account for
some of the phenotypic differences. We have recently re-
ported on M. paratuberculosis coding sequences that are
absent in M. avium [29]. From an analysis of 48% of the
M. paratuberculosis genome, only 27 predicted coding se-
quences were found to be absent in M. avium. Therefore,
an estimated total of 50-60 M. paratuberculosis coding se-
quences might be absent in M. avium following a whole
genome analysis. This extremely low number of unique
M. paratuberculosis genes is in stark contrast to E. coli where
the MG1655 isolate contains 528 genes not found in the
EDL933 isolate [30]. Further analysis of this limited
number of unique coding sequences will be critical in de-
veloping specific diagnostic reagents. Finally, a detailed
analysis of coding sequences unique to each respective
mycobacterial genome and their genetic regulatory net-
works will be necessary to understand the molecular basis
for growth rate and other phenotypic differences.

Other potential explanations include the presence of glo-
bal regulators, insertion sequences, transcription-transla-
tion rates, genomic rearrangements and ribosomal RNA
operons. Each respective genome possesses insertion ele-
ments (IS900, IS1311) at unique loci that could distinctly
affect growth difference or other phenotype by insertional
mutation. Foley-Thomas et al. [31] compared the expres-
sion of the luciferase gene in M. paratuberculosis with the
fast-growing M. smegmatis and concluded that the rates of
transcription and translation may not account for the
slow growth of M. paratuberculosis.

We present evidence for at least one large-scale genomic
rearrangement between these two subspecies. This rear-
rangement consists of a 56.6 kb inversion that contains
approximately 61 predicted coding sequences (Bannan-
tine and Kapur, unpublished). Genomic rearrangements
such as that described could have a profound effect on
phenotype. The presence of multiple copies of ribosomal
RNA operons within a genome can be directly attributed
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to faster growth rate. The increased gene dosage results in
more ribosomes and therefore increased protein transla-
tional capacity. However, only one rRNA operon is
present in each subspecies and this is also true for the fast
growers Mycobacterium abscessus and Mycobacterium chelo-
nae [32]. These fast growing mycobacteria have multiple
promoters that increase the transcriptional rate of the
rRNA operon to overcome gene dosage limitations [32].
The rRNA operon promoter structures have not been
mapped by primer extension for either M. paratuberculosis
or M. avium, but if M. avium had multiple functional rRNA
operon promoters, that may account for the growth rate
differences.

The genetic organization of the origin of replication has
been characterized in several Gram-positive pathogens in-
cluding B. subtilis, S. coelicolor, M. tuberculosis, M. avium, M.
leprae, and M. smegmatis [8]. The results of our investiga-
tion on the oriC region of M. paratuberculosis show that
each of the 15 primer pairs, designed from M. avium se-
quence data, resulted in the successful amplification and
subsequent sequencing of an ~11 kb region of the M.
paratuberculosis genome. The sequenced region encodes 11
putative proteins, several of which show a high level of
identity to proteins that are known or predicted to be in-
volved in DNA replication. However, we found a cluster
of substitutions in a region of rnpA (data not shown). It is
noteworthy that in this region of the gene, each of the nu-
cleotide substitutions results in an amino acid replace-
ment. While mutations in this region of the gene are
known to result in dramatic differences in ability of bacte-
ria to respond to environmental stresses [33], the func-
tional significance of these differences between M. avium
and M. paratuberculosis are at present unknown. While
these sequencing efforts have revealed a conserved gene
order in the oriC of Gram-positive bacteria [11], the nucle-
otide and amino acid identity between M. paratuberculosis
and M. avium in this region is much stronger when
compared to other mycobacteria and other Gram-positive
bacteria (see Table 2). It is well recognized that the char-
acterization of gene organization in the oriC region as well
as the complete genome sequence will provide a spring-
board for addressing questions such as the nature of the
slow growth rate of M. paratuberculosis as compared to the
genetically related rapidly-growing mycobacteria.
Progress on these research fronts will improve our chances
of understanding and controlling infections caused by M.
paratuberculosis and related pathogens.

The conservation of functional sequence motifs in the
oriC of other Gram-positive organisms has provided clues
to the mechanism of bacterial replication. For instance,
DnaA monomers bind to specific, non-palindromic 9-nu-
cleotide sequences called DnaA boxes, and this interac-
tion is thought to initiate replication. The oriC of Gram-
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positive bacteria typically contains 10 — 30 of these DnaA
boxes, often found in non-coding regions flanking the
dnaA gene. The interaction of DnaA with DnaA boxes pro-
motes the local unwinding of a nearby AT-rich region,
providing an entry site for the DnaB/DnaC helicase com-
plex. The dnaA gene itself is divided into four domains
that differ in the extent of sequence homology [34]. Do-
main IV is responsible for DnaA box recognition and do-
main III is a highly conserved region containing the ATP-
binding site [13,35]. Domain I participates in cooperative
DnaA protein-DNA interactions [36].

The genetic relatedness of M. paratuberculosis with other
mycobacterial subspecies has been the root cause of the
lack of development of M. paratuberculosis-specific diag-
nostic tests. By comparing the genome sequences of both
M. paratuberculosis and M. avium, specific diagnostic tests
may be developed and a better understanding of the mo-
lecular differences that contribute to unique phenotypes
will be obtained. Finally, knowledge of the complete ge-
nome sequence of M. paratuberculosis is expected to facili-
tate the identification of diagnostic sequences in this
economically significant veterinary pathogen.

Conclusion

With the genomes of M. paratuberculosis and M. avium
nearly completed, investigators will be able to analyze the
similarities and differences between these genomes with
amazing detail. Through a comparative genomic analysis
of over 2 million nucleotides, we have shown that the two
subspecies, avium and paratuberculosis, are highly similar
at the gene and nucleotide level. This is in stark contrast to
the phenotypic differences that each displays.

Methods

Strains and growth media

A cattle isolate (K-10) of M. paratuberculosis [31] has been
chosen for genome sequencing studies. The organism was
grown in Middlebrook 7H9 broth supplemented with
OADC (Difco Laboratories, Detroit, MI), Tween 80, and
mycobactin ] (Allied Monitor, Fayette, MO) as described
by Bannantine et al. [37]. M. avium strain 104 was grown
in Middlebrook 7H9 broth. DNA was extracted using the
Qiagen QIAamp Tissue Kit (Chatsworth, CA).

Primer design and amplifications

A web-interfaced program, Primer3 http://www-ge-
nome.wi.mit.edu/cgi-bin/primer/primer3 www.cgi, was
used. Primers were designed based on available M. avium
strain 104 genomic sequence data http://www.tigr.org for
the amplification of 11 genes in a contiguous ~11 kb M.
paratuberculosis fragment surrounding the putative origin
of replication (oriC). By this strategy, a total of 15 primer
pairs were constructed for the amplification of 15 mini-
mally overlapping fragments of ~800 bp in length for this

http://www.biomedcentral.com/1471-2180/3/10

region of the M. paratuberculosis genome. Amplification
reactions included the high fidelity DNA polymerase, Pfu
(Stratagene, La Jolla, CA) and an annealing temperature of
58°C.

Library construction

A random 2.2-kb insert library of M. paratuberculosis K-10
has been constructed as follows. Total M. paratuberculosis
genomic DNA was isolated and randomly sheared using a
nebulizer and compressed nitrogen according to proto-
cols developed by Bruce Roe's laboratory http://www.ge-
nome.ou.edu. The resulting DNA fragments were
separated by gel electrophoresis and fragments in the
range of 2.1-2.2 kb were purified. After polishing the ends
of the fragments using Klenow (New England Biolabs,
Beverly, MA), they were cloned into Smal-restricted/CIAP
pUC18 vector. The resulting library was >90% recom-
binant and contained more than 50,000 independent re-
combinant clones.

DNA Sequencing and Analysis

The DMSO protocol (ABI Automated DNA Sequencing
Chemistry Guide, ABI, Foster City, CA) was implemented
for carrying out the sequencing reactions and data were
collected using ABI 377 automated DNA sequencers at the
Advanced Genetic Analysis Center at the University of
Minnesota. The data was analyzed using the DNAStar
(Madison, WI) package and Artemis [15]. Rates of synon-
ymous and non-synonymous substitution were calculated
by the un-weighted method of Nei and Gojobori [27].
Pustell DNA matrix analysis [25] was performed using
MacVector version 7.1 software.

Nucleotide Sequence Accession Number

The GenBank accession number for the M. paratuberculosis
11-kb oriC region is AF222789. The M. paratuberculosis
random sequences can be accessed via the M.
paratuberculosis  genome  project website:  http://

www.cbc.umn.edu/ResearchProjects/ AGAC/Mptb/Mptb-

home.html.
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