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Abstract

Background: The sequences of the 16S rRNA genes extracted from fecal samples provide insights into the
dynamics of fecal microflora. This potentially gives valuable etiological information for patients whose conditions
have been ascribed to unknown pathogens, which cannot be accomplished using routine culture methods. We
studied 33 children with diarrhea who were admitted to the Children’s Hospital in Shanxi Province during 2006.

Results: Nineteen of 33 children with diarrhea could not be etiologically diagnosed by routine culture and
polymerase chain reaction methods. Eleven of 19 children with diarrhea of unknown etiology had Streptococcus as
the most dominant fecal bacterial genus at admission. Eight of nine children whom three consecutive fecal
samples were collected had Streptococcus as the dominant fecal bacterial genus, including three in the
Streptococcus bovis group and three Streptococcus sp., which was reduced during and after recovery. We isolated
strains that were possibly from the S. bovis group from feces sampled at admission, which were then identified as
Streptococcus lutetiensis from one child and Streptococcus gallolyticus subsp. pasteurianus from two children. We
sequenced the genome of S. lutetiensis and identified five antibiotic islands, two pathogenicity islands, and five
unique genomic islands. The identified virulence genes included hemolytic toxin cylZ of Streptococcus agalactiae
and sortase associated with colonization of pathogenic streptococci.

Conclusions: We identified S. lutetiensis and S. gallolyticus subsp. pasteurianus from children with diarrhea of
unknown etiology, and found pathogenic islands and virulence genes in the genome of S. lutetiensis.

Keywords: Microbial communities, 16S rRNA gene analysis, Streptococcus lutetiensis, Genome analysis,
Pathogenic island
Background
In the developing world, every child under 5 years of age
experiences approximately three episodes per year of
diarrhea [1]. Although more than 200 viral, bacterial,
and parasitic causes of diarrhea have been identified to
date, only a few etiological agents cause the vast majority
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of diarrheal diseases in children in the developing
world. These include rotavirus, diarrheagenic Escherichia
coli, Campylobacter jejuni, Shigella spp., non-typhoidal
Salmonella, Giardia lamblia, Cryptosporidium spp.
and Entamoeba histolytica [2]. Unfortunately, a
large proportion of cases of diarrheal disease are of
unknown etiology. There are many reasons for this
problem, including fragility of causative agents, exacting
growth requirements, and lack of recognition of some
organisms as enteric pathogens.
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Here, we used the previously described strategy of
16S rRNA gene polymerase chain reaction (PCR) and
sequencing technology [3] to analyze quantitatively the
densities of different bacterial species in fecal samples
of patients with diarrhea of unknown etiology at different
times relative to hospital admission, and analyzed the
features of the dominant species.

Methods
Study design
Children with diarrhea without antibiotic treatment who
were admitted to the Children’s Hospital, Shanxi Province,
China from August 17 to 30, 2006 were screened
for enteric pathogens, including Shigella, Salmonella,
enterotoxigenic E. coli, enteroinvasive E. coli (EIEC), en-
teropathogenic E. coli (EPEC), Shiga-toxin-producing E.
coli, enteroaggregative adherence E. coli (EAEC), and com-
mon diarrhea viruses, including group A rotavirus, human
calicivirus (HuCV), enteric adenovirus (Adv) and human
astrovirus (HAstV). The targeted virulence genes of en-
teric bacterial pathogens included heat-labile (LT), heat-
stable (ST) enterotoxins, Shiga-like toxin (SLT), bundle
forming pili (bfpA), enteric attaching and effacing locus
(eaeA), EAEC specific probe, and the genes encoding inva-
sive plasmid antigens (ipaBCD) [4-7]. The group A ro-
taviruses were detected by commercially available
enzyme-linked immunosorbent assay (ELISA) according
to the manufacturer’s instructions (Oxoid, Basingstoke,
UK). Total viral DNA and RNA were extracted from fecal
specimens prepared in phosphate-buffered saline at 10%
(wt/vol) using the QIAamp MinElute Virus Spin Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s
recommendations. HuCV, enteric Adv and HAstV were
detected by PCR as described previously [8-10]. G. lamblia
and Ent. histolytica were detected using direct microscopy
with a saline preparation of the specimen. The clinical
history and physiological findings of each patient were
documented on standardized case report forms. Fecal
samples from five healthy and five hospitalized children
at the same location but with no apparent diarrhea were
analyzed as controls. Libraries of the 16S rRNA gene
were constructed for each fecal sample, with a minimum
size of 100 analyzable sequences [11].

Analyzing dominant fecal bacterial species by 16S rRNA
gene sequence technology
All fecal samples were collected in triplicate; one for
timely isolation and detection of the enteric pathogens;
one stored at −20°C for 16S rRNA sequence analysis;
and one stored in 20% glycerol at −80°C for isolation of
the putative pathogens suggested by the 16S rRNA gene
analysis.
The DNA was extracted from a 200-mg fecal sample,

which was measured and adjusted to 100 ng/μl of each
sample for PCR. The universal eubacterial primers 27 F-
519R (5’-agagtttgatcmtggctcag-3’ and 5’-gwattaccgcggckg
ctg-3’) were used to amplify a 500-bp region of the 16S
rRNA gene. LaTaq polymerase (TaKaRa, Dalian, China)
was used for PCR under the following conditions: 95°C
for 5 min, followed by 20 cycles of: 95°C for 30 s, 52°C
for 30 s, and 72°C for 1 min; and a final elongation step
at 72°C for 10 min.
The PCR products were extracted from sliced gels and

cloned into the pGEMR-T Easy Vector System (Promega,
Madison, WI, USA). They were then transformed into
competent E. coli JM109. A total of 130 white clones for
each fecal sample were randomly selected for enrichment.
The purified plasmid DNA was used for sequence
analysis. To verify the repeatability, we repeated the
16S rRNA gene analysis of feces at admission for nine
children with diarrhea of unknown etiology. The 16S
rRNA gene sequences were analyzed for chimeric
constructs using the Chimera Check program within
the Ribosomal Database Project.
Species-level identification was performed using a 16S

rRNA gene sequence similarity of ≥99% compared with
the prototype strain sequence in the GenBank. Identifica-
tion at the genus level was defined as a 16S rRNA gene
sequence similarity of ≥97% with that of the prototype
strain sequence in the GenBank, and the sequences were
listed by genus. The sequences matched attributable to
either E. coli or Shigella sp. were listed as E. coli/Shigella sp.

Isolation of suggested fecal-dominant Streptococcus
Strains of Streptococcus were isolated from fecal samples
using KF Streptococcus Agar(Oxiod, Hampshire, United
Kingdom), and identified using the MicroScan WalkAway
SI 40 system(Dade Behring,West Sacramento, CA, USA).
The full length of the 16S rRNA gene sequence was
obtained for confirmation of identification. Pulsed-field
gel electrophoresis was performed according to the protocol
for Streptococcus suis [12]. The DNA was digested with
40 U SmaI (TaKaRa, Dalian, China). A dendrogram of
isolates was drawn using BioNumerics software (version
4.0, Applied Maths BVBA, Belgium). Clustering of patterns
was performed using the unweighted pair group with
arithmetic averaging (UPGMA).

Genome sequencing and analysis of Streptococcus lutetiensis
The genome of S. lutetiensis 033 isolated from Patient 033
was sequenced using a combination of 454 sequencings
with a Roche 454 FLX and paired end sequencing derived
from the pUC18 library using an ABI 3730 Automated
DNA Analyzer (Applied Biosystems, Foster City, CA, USA).
The genome was predicted using Glimmer software [13].
All putative open reading frames (ORFs) were annotated
using non-redundant nucleotides and proteins in the
NCBI, Swissport and KEGG databases. BLASTN and
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Artemis Comparison Tool (ACT) were used for the
pair alignment. Orthologous gene clusters were searched
for using the orthoMCL pipeline. We clustered these
orthologous genes according to their presence or absence
in different genome sequences among Streptococcus spp.,
and then a phylogenic tree was constructed using the
neighbor-joining method. Genome islands were defined as
having abnormal GC content with at least five continuous
genes. The homologous genes within each island were
compared with the references using BLASTN with an
e-value cutoff at 1×10–5.

Nucleotide sequence accession numbers
The GenBank accession numbers reported in this study
are CP003025 for the genome sequence of S. lutetiensis
strain 033; and JN581988 and JN581989 for the 16S rRNA
gene sequences of S. gallolyticus subsp. pasteurianus
strains 017 and 035, respectively.

Ethics statement
Feces samples were acquired with the written informed
consent from the parents of the children with diarrhea
and normal children. This study was reviewed and
approved by the ethics committee of the National Institute
for Communicable Disease Control and Prevention, China
CDC, according to the medical research regulations of the
Ministry of Health, China (permit number 2006-16-3).

Results
Detection of enteric pathogens in feces of children with
diarrhea
From August 17 to 30, 2006, fecal samples were obtained
from 33 children with diarrhea admitted to the Children’s
Hospital, Shanxi Province, China (Additional file 1:
Table S1). Thirty-two of 33 children with diarrhea
yielded negative culture for common enteric bacterial
pathogens, such as Salmonella, Vibrio or diarrheagenic
E. coli. Shigella sonnei was isolated from one patient
(Figure 1). The 16S rRNA gene sequences of fecal samples
were also negative for Salmonella, Vibrio or Yersinia spp.
Eleven children with diarrhea were diagnosed with
Shigella or diarrheagenic E. coli, including two with EAEC,
one with EPEC, and eight with EIEC/Shigella, according
to virulence gene detection results (Figure 1). These 11
children belonged to a group of 26 who had the 16S rRNA
gene sequence of E. coli/Shigella sp.
The 16S rRNA gene sequence of Bacteroides fragilis

was detected in five children with diarrhea, but its
virulence gene heat-labile protein toxin was not
detected. Twelve of 33 children with diarrhea were
positive for the Clostridium 16S rRNA gene sequence,
but the virulence gene toxin A or B of Clostridium
difficile was not detected. Three samples were positive for
group A rotavirus by ELISA and none tested positive for
HuCV, Adv and HastV (Figure 1).

Dominant fecal bacteria in children with diarrhea of
unknown etiology
We divided the 33 children with diarrhea into three groups
based on the etiological diagnosis. Group A included 14
children who were infected with diarrheagenic E. coli or
Shigella species and rotaviruses. Group B included
10 children with diarrhea of unknown etiology with
only one fecal sample collected at admission. Group
C included nine children with diarrhea of unknown
etiology from whom three fecal samples were collected,
including one at admission, one during recovery, and one
after recovery (Figure 1). The 16S rRNA gene sequencing
data revealed that 11 of 19 children with diarrhea of
unknown etiology had Streptococcus as the dominant
fecal bacterial genus at admission. Among the remaining
eight children, Escherichia (n = 4), Klebsiella (n = 2),
Enterococcus (n = 1) or Ruminococcus (n = 1) was the
most dominant bacterial genus (Figure 1).
We analyzed fecal samples from five healthy and five

hospitalized children at the same location but with no
apparent diarrhea as controls. None of the genera
Escherichia, Enterococcus, Klebsiella, Ruminococcus and
Streptococcus was dominant within the control fecal
samples taken from five healthy children. None of five
hospitalized children at the same location but with no
apparent diarrhea had Streptococcus as the dominant genus,
although one of them had the percent of Streptococcus to
34.96% in fecal microbiota. There were no species in the
Streptococcus bovis group in the 10 children in the control
group (Additional file 2: Figure S1).
In nine children with diarrhea of unknown etiology in

Group C, eight had Streptococcus as the most dominant
fecal bacterial genus at admission, one with S. lutetiensis,
two with S. gallolyticus subsp. pasteurianus, two with
Streptococcus salivarius, and three with Streptococcus sp.
(Figures 1 and 2, Table 1). We divided these nine children
in Group C into two, according to the most dominant
fecal bacterial species at admission. Group C1 included
one child whose most dominant species was E. coli. The
percentage of E. coli in the fecal microflora of Patient 036
(age 7 months) was increased from 87.10% at admission
to 90.91% during treatment, and then dropped to 28.90%
after recovery (Figure 2B), based on 445 analyzed 16 s
rRNA gene sequences.
Group C2 included eight children with diarrhea, who

were further divided into three subgroups, based on the
most dominant fecal bacterial species at admission.
Group C2a included two children who had S. salivarius
as the most dominant fecal bacterial species. Group C2b
included three children who had Streptococcus sp. as the
most dominant species. Group C2c included three
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children who had S. bovis group as the most dominant
species (Figure 2A and B).
For Patient 011 (age 2.5 years) in Group C2a, the

percentage of S. salivarius in the fecal microflora was
reduced from 78.95% at admission to 31.43% during
recovery (Figure 2B), based on 442 sequences analyzed.
Patient 021 (age 8 months) had the percentage of S.
salivarius in the fecal microflora of 58.56% at admission,
which increased to 60.0% during recovery and then to
76.67% after recovery (Figure 2B).
Group C2b had Streptococcus sp. as the dominant fecal

species at admission. For Patient 016 (age 9 months), the
percentage of Streptococcus sp. in fecal microflora was
reduced from 51.28% to 15.65% during recovery (3 days
of treatment), and then to 4.67% after recovery (12 days
of treatment) (Figure 2B), based on 456 16S rRNA gene
sequences analyzed. For Patient 019 (age 4 months), the
percentage of Streptococcus sp. in fecal microflora was
reduced from 40.54% at admission to 7.08% during
recovery (6 days of treatment) and then to 1.77% after
recovery (11 days of treatment) (Figure 2A and B),
based on 448 16S rRNA gene sequences analyzed. For
Patient 023 (age 5 months), the percentage of Strepto-
coccus sp. in fecal microflora was reduced from 26.05%
at admission to 13.56% during recovery (5 days of
treatment) and then to zero after recovery (9 days of
treatment) (Figure 2B), based on 440 16S rRNA gene
sequences analyzed.
All three patients in Group C2c had S. bovis group as

their most dominant fecal bacterial species at admission.
For Patient 033 (age 2 months), the percentage of S.
bovis group in fecal microflora was reduced from 26.84%
at admission to zero during recovery (3 days of treat-
ment) (Figure 2B). It was not detected in feces sampled
at discharge from the hospital, after 5 days of treatment.
For Patient 017 (age 1.5 years), the percentage of S. bovis
group in fecal microflora was reduced from 39.82% at
admission to zero during recovery (3 days of treatment)
(Figure 2B). It was not detected in feces sampled at
discharge from hospital, after 5 days of treatment. For
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Patient 035 (age 8 months), the percentage of S. bovis
group in fecal microflora was reduced from 42.73% at
admission to zero after 4 days of treatment (Figure 2B).
It was not detected in the feces sampled at discharge
from hospital, after 9 days of treatment.
Isolation and identification of the S. bovis group from
feces
We attempted to culture the dominant bacterial species
as identified by the 16S rRNA gene analysis from the
feces of all nine patients in Group C (Figures 1 and 2).
Four patients (016, 019, 021 and 023) had negative
cultures even on non-selective blood agar; possibly
because antibiotics had been given before the hospital
consultation.
Patient 017 had seven isolates belonging to the S. bovis

group in the feces samples collected at admission,
Patient 033 had 19, and Patient 035 had 10. According
to the results of the MicroScan WalkAway SI 40 system,
all isolates of the S. bovis group were identified as
biotype II (mannitol fermentation negative). We then
amplified, cloned, and sequenced the major portion of
the 16S rRNA gene from each isolate. The strains
isolated from Patient 033 were identified as S. lutetiensis
and those from Patients 017 and 035 were S. gallolyticus
subsp. pasteurianus. A dendrogram comparing represen-
tative 16S rRNA gene sequences of the isolated S. bovis
group strains with other Streptococcus species mapped
our isolates within the S. bovis group (Figure 3).
Chromosomal DNA from the 36 strains of the S.

bovis group from the three patients were digested with
restriction enzyme SmaI and analyzed using pulsed-field
gel electrophoresis (PFGE). Strains from each patient
(seven from Patient 017, 19 from Patient 033 and 10 from
Patient 035) were found to have unique restriction
patterns.
Genome sequence and comparison of the S. bovis group
with S. lutetiensis strain 033
We sequenced the entire genome of the S. lutetiensis
strain 033 and compared it withits close relatives, S.
gallolyticus subsp. pasteurianus and S. gallolyticus subsp.
gallolyticus [14]. To the best of our knowledge, this is
the first time the genome of S. lutetiensis has been



Table 1 Features of study samples from children with diarrhea of unknown etiology

Patient information Clinical presentation Stool routine analysis

Patient and feces
number

Sampling date
(after onset)

Times of
stool/day

Characteristics
of stool

Temperature (°C) WBC* RBC* Occult blood

011-1 1 5 Watery Normal + ++ +

011-3 3 5 Loose

011-4 5 2 Formed

016-1 1 3-4 Bloody and mucoid 39.0°C ++ + +/−

016-3 3 3 Watery

016-6 ** 12 2 Formed

017-1 16 10 Watery Normal + ++ +/−

017-3 18 6 Watery

017-5 20 6 Watery

019-1 133 8-9 Bloody and mucoid Normal ++ ++ +

019-6 138 3 Loose

019-7** 143 3 Loose

021-1 33 6 Watery Normal + + -

021-4 35 5 Watery

021-7 38 4-5 Loose

023-1 20 6 Loose 38.7°C ++ - -

023-5 24 3 Formed

023-6** 28 2-3 Formed

033-1 5 5 Watery Normal - - -

033-3 7 2 Formed

033-5 9 2 Formed

035-1 1 5 Bloody and mucoid 38.3°C + ++ +

035-4 4 2-3 Formed

035-6 ** 9 2-3 Formed

036-1 7 6 Loose Normal ++ + +

036-2 8 3 Loose

036-3 9 2 Loose

* +: 6–10/ high power field (HPF) ++: >10/HPF.
**: Fecal samples collected at patient discharge from hospital.
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completely sequenced. The genome of strain 033
contained 1,975,547 bp with a GC content of 37.7%.
It had 60 tRNAs and 18 rRNAs (six operons). Fifty-five
tandem repeated regions were identified in the genome
with the highest number of tandem repeats duplicated
104 times (at 3,744 bp, genome position from
844,798 to 848,542). A total of 2,015 ORFs >300 bp
(100 aa) were identified. Of these, 86.2% matched
clusters of orthologous groups (COGs) in the database
with e-values <1×10–5 (Figure 4).
Twenty genomic islands (GIs) in the genome of S.

lutetiensis 033 were identified. Of these, five were
antibiotic-resistance islands and two were putative
pathogenicity islands (Figure 4). Notably, GI-7 was
found to contain four glycosyl transferase genes, four
pilin-related genes, and >10 transposase genes or puta-
tive transposase genes that have been reported to be
associated with virulence in Streptococcus pneumoniae,
Neisseriaceae, and others [15-17]. GI-18 encodes a
colonization-associated adhesion factor previously
described in S. suis [18]. GI-6 encodes the capsule
polysaccharide (CPS) genes that are associated with
the virulence of pathogenic streptococci; for example,
S. pneumoniae and S. suis (Figure 5C) [19-21]. Five GIs
were unique to S. lutetiensis and have not been identified
in other species of this genus. Two were phage related,
one encoded a cellobiose phosphorylase-like protein, one
encoded an ATPase, and one had an unknown function.
We found the hemolytic toxin cylZ in S. lutetiensis that
activates the neutrophil signaling pathways in the brain



S. gallolyticus subsp. pasteurianus 035

S. gallolyticus subsp. pasteurianus 017

S  gallolyticus subsp. pasteurianus EU163502.

S. gallolyticussubsp.pasteurianus ATCC43144 *

S. gallolyticus subsp.gallolyticus ATCC43143 *

S. gallolyticus subsp. gallolyticus BAA-2069 *

S. gallolyticus subsp. gallolyticus EU163500

S. gallolyticus UCN34
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Figure 3 Phylogenetic analysis of isolated strains of the S. bovis group and other major streptococcal species based on complete
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respectively, with a window size of 10 kb.
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endothelium and contributes to the development of
meningitis identified in S. agalactiae [22]. The gene for
sortase (SrtA), also identified in the genome of S.
lutetiensis, was found to be associated with adhesion to
epithelial cells and with colonization of pathogenic
streptococci [23-25] (Table 2).
Together with the biochemical tests, the results of 16S

rRNA gene sequencing with 48 complete genomes for
streptococci, two draft genomes (Streptococcus infantarius
subsp. infantarius BAA-102 and S. gallolyticus UCN34),
and four segment 16S rRNA genes (EU163500, EU163502,
EU163503, and EU163504) in the S. bovis group were
selected for an evolutionary study. The reference strain
of S. lutetiensis (accession number: EU163503) was
found to be the nearest strain to the S. lutetiensis genome
sequence in our study, showing the same 16S rRNA
gene sequences. Compared with the nearest species S.
infantarius subsp. infantarius BAA-102 and EU163504,
strain 033 had two and three nucleotide differences in
the 16S rRNA genes, respectively.
An entire genome comparative analysis was performed

on the four completed genomes of S. gallolyticus subsp.
gallolyticus BAA-2069, S. gallolyticus subsp. gallolyticus
ATCC43143, and S. gallolyticus subsp. pasterurianus
ATCC43144 in the S. bovis group. The S. lutetiensis
sequenced genome in our study was found to be
phylogenetically related to the genome of S. gallolyticus
subsp. pasterurianus ATCC43144; and 94.1% of the genes
were found in the homologous genes in ATCC43144
(Figure 5A) [14]. Although large-scale genome rearrange-
ments, inversions and deletions were observed, the four
genomes displayed the same collinear structure (Figure 5B).
We found 15.2% of the genes of S. gallolyticus subsp.
pasterurianus and 34.9% of the genes of S. gallolyticus
subsp. gallolyticus were not present in S. lutetiensis,
suggesting that the genome of S. lutetiensis strain 033 was
similar to that of S. gallolyticus subsp. pasterurianus
(Figure 5A).

Discussion
Selective media are routinely used to isolate particular
pathogens from mixtures of bacterial species from the
feces of patients with diarrhea. However, they cannot be
used to isolate putative bacterial agents of diarrhea of
unknown etiology. The important feature of the direct
sequencing of the 16S rRNA gene in the fecal samples is
the ability to identify most of the existing bacterial
species [33]. Using this technique, we analyzed the
dynamics of the fecal bacteria flora in nine patients with
diarrhea of unknown etiology. We examined three fecal
samples per patient, at admission, during recovery, and
after recovery. We speculated that the putative causative
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Figure 5 Genome analysis of S. lutetiensis strain 033. Comparative analysis of all completed genomes of the S. bovis group (S. gallolyticus
subsp. gallolyticus BAA-2069, S. gallolyticus subsp. gallolyticus ATCC43143, and S. gallolyticus subsp. pasterurianus ATCC43144). (A) Venn diagram of
homologous genes in four complete genomes. The number of homologous genes is noted in each circle: red for BAA-2069, blue for 033, green
for ATCC43143, and purple for ATCC43144. (B) Local collinear block of the chromosome sequences of four genomes. The red blocks represent
similar regions within nucleotide sequences, and the blue block represents a region similar to the complementary strands. GIs in our 033 genome
are shown in the green block near the genome. (C) Organization of GI-6 encoding CPS. GC contents calculated using each 1 kb with a 500-bp
step. The direction of the arrows represents the coding strand of the ORFs. The genes in the GIs are marked with blue (unknown functions) and
yellow (known functions).
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enteric pathogens were dominant in the intestine when
infection was established. The number of causative path-
ogens in the intestine may decrease during treatment
and after recovery.
Eight of nine patients (Group C2) who provided all

three specimens with unknown etiology at admission
had as the dominant Streptococcus genus in their fecal
samples. There is a report of a child who developed
hemolytic uremic syndrome with group A beta hemolytic
streptococcus-positive diarrhea [34]. Streptococci are also
numerous in the fecal microflora of patients with irritable
bowel syndrome patients [35]. So, the role of streptococci
in the fecal microflora of children with diarrhea deserved
further research.
Three patients from Group C2 had Streptococcus as

the dominant genus, and all showed a reduced the
percentage of Streptococcus sp. in fecal microflora of
during and after recovery. Two patients had S. salivarius as
the dominant species with one showing a reduced the
percentage of Streptococcus sp. in fecal microflora during
and after recovery. The other patient showed an increase.
Three patients had the S. bovis group as the dominant
species, and all showed a reduced the percentage of S. bovis
group in fecal microflora during and after recovery. This
observation suggests that the association of the S. bovis
group with diarrhea is worthy of further investigation.
S. bovis is divided into three biotypes, I (S. gallolyticus

subsp. gallolyticus), II/1 (S. lutetiensis and S. infantarius),
Table 2 Putative virulence genes detected in the genome of S

Virulence factors Genes related

Pneumcoccal cell surface adherence protein A pavA

Laminin-binding protein lmb

Pilus-associated adhesin rrgA

Sortase A srtA

Streptococcal lipoprotein rotamase A slrA

Streptococcal enolase eno

Pneumococcal surface antigen psaA

C3-degrading protease cppA

Serine protease htrA/degP

Trigger factor tig/ropA
and II/2 (S. gallolyticus subsp. pasteurianus), based
upon mannitol fermentation and β-glucuronidase ac-
tivities. S. gallolyticus subsp. gallolyticus is known to
be associated with endocarditis and colon carcinoma.
S. infantarius, S. lutetiensis and S. gallolyticus subsp.
pasteurianus are associated with non-colonic cancer
and meningitis. Children with signs of gastrointestinal
disturbance at presentation associated with S. bovis
were also reported [36].
The dominant species from the nine patients of group C

were cultured and four showed that they were negative.
Thirty-six strains of the S. bovis group were isolated from
three patients, and PFGE analysis showed that they had
their own unique restriction pattern, indicating that the
strains within individual patients were identical. The
isolates were identified as S. lutetiensis and S. gallolyticus
subsp. pasteurianus.
We determined and analyzed the full genome sequence

of the S. lutetiensis strain isolated from a child with
diarrhea. Two previously recognized pathogenicity
islands were identified in the genome. GI-6 was found
to encode a CPS gene cluster involved in the pathogen-
icity of S. suis [21]. GI-7 was found to encode glycosyl
transferase, the virulence factor in S. pneumoniae [17].
Eight additional virulence factors were identified in the
S. bovis group. These included the putative hemolytic
toxin cylZ and the sortase gene associated with adhesion
and colonization [22,24,25].
. lutetiensis strain 033

Putative function References

Fibronectin binding [26]

Colonization [22]

Colonization [18]

Adhesion to epithelial cells [27]

Colonization [28]

Plasminogen binding [29]

Adhesin [30]

Evasion of innate immunity [31]

Biogenesis of Streptolysin S [14]

Stress tolerance and biofilm formation [32]
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Conclusions
We studied the dynamics of the fecal microbial community
in children with diarrhea of unknown etiology and found
for the first time that strains of the S. bovis group were
among the predominant bacteria in some of the patients
at admission, and showed a reduction in numbers during
treatment and recovery. In addition, we report the first
genome sequence of a S. lutetiensis isolate, identifying
putative pathogenic islands and virulence genes. However,
it was hard to detect all the infectious agents and
there were many non-infectious factors that may cause
diarrhea; therefore, additional studies are needed to
clarify the potential contribution of these bacteria to
diarrhea in children.
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