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Abstract

was attenuated and easily cleared by mice.

a crucial role in oxidative stress response in S. suis.

\.

Background: Metal ions are important micronutrients in cellular metabolism, but excess ions that cause toxic
reactive oxygen species are harmful to cells. In bacteria, Fur family proteins such as Fur, Zur and PerR manage the
iron and zinc uptake and oxidative stress responses, respectively. The single Fur-like protein (@annotated as PerR) in
Streptococcus suis has been demonstrated to be involved in zinc and iron uptake in previous studies, but the
reports on oxidative stress response and gene regulation are limited.

Results: In the present study, the perR gene deletion mutant AperR was constructed in Streptococcus suis serotype
2 strain SC-19, and the mutant strain AperR exhibited less sensitivity to H,0, stress compared to the wild-type. The
dpr and metQIN were found to be upregulated in the AperR strain compared with SC-19. Electrophoretic mobility
shift assays showed that the promoters of dpr and metQIN could be bound by the PerR protein. These results
suggest that dpr and metQIN are members of the PerR regulon of S. suis. dpr encodes a Dps-like peroxide resistance
protein, and the dpr knockout strains (Adpr and AdprAperR) were highly sensitive to H,O,. MetQIN is a methionine
transporter, and the increased utilization of methionine in the AperR strain indirectly affected the peroxide
resistance. Using a promoter—-EGFP gene fusion reporting system, we found that the PerR regulon was induced by
H,0,, and the induction was modulated by metal ions. Finally, we found that the pathogenicity of the perR mutant

Conclusions: These data strongly suggest that the Fur-like protein PerR directly regulates dpr and metQIN and plays

Background

Iron and zinc are recognized as important micronutrients
for bacteria, but excess of iron can catalyze the Fenton
reactions, resulting in formation of toxic hydroxyl radicals
[1]. Similarly, an excess of zinc ions can also trigger the
formation of hydroxyl radicals [2]. Besides hydroxyl radi-
cals, reactive oxygen species (ROS) such as superoxide
radical and H,O, are inevitably generated as byproducts
of aerobic metabolism in bacteria [3]. Additionally, during
infection, ROS can be generated by the innate immune
system[4]. ROS can cause damage to many macromole-
cules including DNA, proteins and lipids [5,6]. It is clear
that oxidative stress and metal homeostasis are closely
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related. However, bacteria have evolved efficient mechan-
isms to maintain metal ion homeostasis and protect them-
selves from oxidative damage [7].

Fur family proteins are present widely in bacteria and
play crucial roles in cellular processes. This family con-
tains more than six different proteins. They are the sen-
sors of iron (Fur and Irr) [8] [9], zinc (Zur) [10],
manganese [11] and nickel (Nur) [12], and the peroxide
regulon repressor (PerR) [13]. In the Gram-negative
Escherichia coli, there are two Fur family proteins Fur
and Zur. In contrast, there are three Fur-like proteins
(Fur, Zur and PerR) in many Gram-positive bacteria
such as Bacillus subtilis, Clostridium acetobutylicum and
Staphylococcus aureus. In B. subtilis, Fur regulates iron
uptake and siderophore biosynthesis; Zur regulates two
ABC zinc transporters; and PerR regulates the oxidative
stress response [13,14].
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Streptococcus suis is economically a very important
Gram-positive and facultative anaerobic bacterium that
causes severe diseases in pigs and humans. As an emer-
ging zoonotic pathogen, S. suis serotype 2 has become
the predominant causative agent of adult human menin-
gitis in Vietnam and Hong Kong [15]. Two large out-
breaks of human infections were reported in China in
1998 and 2005, resulting in 229 infections and 52 deaths
[16,17]. Like other bacterial pathogens, S. suis may also
encounter both oxidative stress and metal starvation
during infection. Thus, the regulation on the responses
to oxidative stress and metal starvation by Fur-like pro-
teins could be particularly important for S. suis survival
in vivo and pathogenesis. However, only a single gene
encoding a Fur-like protein has been found in each
sequenced genome of S. suis, even in the genomes of
most species of the genus Streptococcus. For example,
the single Fur-like protein is encoded by SSU05_0310 in
S. suis serotype 2 strain 05ZYH33 (GenBank accession
no. CP000407). This protein has been defined as a zinc
uptake regulator (Zur) [18], as well as an iron uptake
regulator (Fur) in S. suis [19], but the research on its
function in oxidative stress response is limited, whereas
its homolog in Streptococcus pyogenes has been demon-
strated to be a peroxide regulon repressor PerR [20-22].
In this study, the role of this Fur-like protein in peroxide
resistance was confirmed in S. suis serotype 2. Therefore,
we renamed this protein as PerR. At the same time, two
target operons, dpr (dps-like peroxide resistance protein)
and metNIQ (methionine ABC-type transporter), were
identified and proved to play important roles in oxida-
tive stress response.

Results

Identification of a fur-like protein in S. Suis and other
streptococci

In the genome of 05ZYH33 (a strain of S. suis serotype
2), the Fur-like protein encoded by SSU05_0310 had
been first identified as a Zur [18], and we found that
SSUO05_0310 is the sole gene encoding a Fur-like protein
in S. suis 05ZYH33. The SSU05_0310 protein consisted
of 151 amino acids and contained a DNA-binding motif
(Figure 1A). To identify the Fur-like proteins in other
streptococci, a BLAST homology search using the se-
quence of SSU05_0310 was performed among the
sequenced genomes of the members of genus Streptococ-
cus. All streptococci had a single conserved Fur-like pro-
tein except that no Fur-like protein was found in
Streptococcus pneumoniae. All the Fur-like proteins in
streptococci and their homologs (Fur, Zur and PerR) in B.
subtilis, S. aureus and C. acetobutylicum were used for
cluster analysis, the result showed that the Fur-like pro-
teins in streptococci clustered in the PerR group (Fig-
ure 1B). Furthermore, through sequence analysis, the key
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amino acid residues of PerR for H,O, response and metal
ions binding were highly conserved in SSU05_0310 pro-
tein (Figure 1A) [23]. Consequently, we named the single
Fur-like protein in S. suis as PerR.

Roles of PerR in H,0, resistance in S. Suis

Our sequence analysis suggested that PerR might be
involved in the oxidative stress response in S. suis, and
therefore we constructed a perR knockout strain (AperR)
and a functional complementing strain (CAperR). The
growth of the wild-type, mutant and complementary
strains showed no obvious difference in TSB medium
with 5% newborn bovine serum (data not shown).

To characterize the roles of perR in the susceptibility
of S. suis to peroxide stress, the sensitivity of the wild-
type strain SC-19, mutant strain AperR and comple-
menting strain CAperR to H,O, was compared using an
inhibition zone assay. As shown in Figure 2A, the strains
SC-19 and CAperR (about 16.3 mm and 16.1 mm in
diameter) exhibited larger inhibition zones than the
AperR strain (about 12.7 mm in diameter) when 4 pl of
1 M H,0, was used. To determine further the difference
in H,O, sensitivity, quantitative analysis was performed.
As shown in Figure 2B, after H,O, (10 mM) treatment,
the perR mutant strain showed a higher survival rate
than the wild type. The survival rate of the complemen-
tary strain CAperR was similar to that of the wild-type
strain. These results indicated that inactivating S. suis
perR led to reduced sensitivity to H,O,.

Transcriptional regulation by PerR in S. Suis

PerR has been recognized as an important regulator in
bacteria. In order to identify members of the PerR regulon
in S. suis, according to the consensus sequence of the
PerR-box in S. pyogenes and B. subtilis (NTANAAN-
NATTNTAN) [21,22], we screened for putative PerR-boxes
in the —500 to +50 sequences of all the genes/operons in
the S. suis 05ZYH33 genome. 12 predicted binding sites
and 19 supposed target genes and operons were identified.
The transcriptional levels of all 19 supposed target genes
and operons (including dpr, metQ, relA and pmtA) contain-
ing prospective PerR-box in the promoters were compared
between the strains SC-19 and AperR by real-time RT-PCR
(Table 1). Only three genes dpr (Dps-like peroxide resist-
ance protein), relA (GTP pyrophosphokinase) and metQ
(methionine transporter) were significantly upregulated
(=two-fold) in AperR (Figure 3A). Electrophoretic mobility
shift assay (EMSA) showed that the His-tagged recombin-
ant PerR protein could bind to the promoters of dpr and
metQIN, but not to those of relA, pmtA and gidA (gidA
was used as the negative control, the results of relA and
pmtA were not shown) (Figure 3B). These results suggest
that the dpr gene and metQIN operon were directly regu-
lated by PerR. The PerR boxes in the promoters of dpr and
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Figure 1 Fur-like proteins are conserved among the genus Streptococcus and are close to PerR. (A) Multiple alignment of PerR protein
from S. suis 052YH33 with the Fur family proteins PerR, Zur and Fur in B. subtilis str. 168. The DNA-binding motif is marked in the gray box. Nine
conserved amino acid residues in PerR are marked with gray bottom colour. Five residues (H37, D85, H91, H93 and D104) are the candidate
amino acid ligands for Fe?* or Mn?* and four cysteine residues (C96, C99, C136 and C139) are for Zn’*, H37 and H91 are the sites of H,O»-
mediated oxidation. These amino acid residues in S. suis PerR protein are conserved except that N is taking the place of H in site 93, this change
also exists in S. pyogenes. (B) A phylogenetic tree of Fur-like proteins from selected streptococci and other Gram-positive bacteria was constructed
based on a multiple sequence alignment using DNAMAN. Fur-like proteins in each streptococcus are represented by the abbreviation of strain
name. BS, B. subtilis 168, CA, C. acetobutylicum ATCC 824, SA, S. aureus Mu50, SAG, S. agalactiae 2603 V/R, SD, S. dysgalactiae GGS_124, SE, S. equi
MGCS10565, SG, S. gordonii CH1, SM, S. mutans NN2025, SP, S. parauberis KCTC 11537, SPY, S. pyogenes M1 GAS, SS, S. suis 052YH33, SSG, S.
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metQIN are shown in Figure 3C. To confirm regulation by
PerR in S. suis, a transcriptional reporter plasmid pSET4s:
Pg,-EGEFP was inserted into the genomes of strains SC-19
and AperR. When cultured in TSB with 5% newborn bo-
vine serum, stronger green fluorescence was observed in
strain AperREGFP compared to SC-19:EGFP by fluores-
cence microscopy. The mean fluorescence intensity (MFI)
was measured by flow cytometry (MFI of AperREGEFP:
56.85 + 1.015, MFI of SC-19:EGFP: 25.29 + 1.965).

The effects of H,O, on the transcriptional regulation
were tested. Bacteria were stimulated by 10 uM H,0,
for 10 min, the expression levels of dpr and metQIN
were analyzed by qRT-PCR. As shown in Figure 4A, dpr
and metQIN was obviously induced in SC-19 but not in
AperR (cultured in TSB). Then, the EGFP reporter
strains were used, the MFI of strains SC-19:EGFP and
AperR:EEGFP in chemical defined medium (CDM) was
measured. As shown in Figure 4B, for the strain SC-19:
EGEFP, growth in medium with 50 uM zinc and 50 pM
manganese led to a low green fluorescence level, and no
obvious induction by H,O, (10 pM) could be detected.

In contrast, when grown in medium with 50 pM zinc
and 50 uM iron, SC-19:EGFP expressed a relatively high
level of EGFP, and the MFI was about two-fold higher
after induction by H,O, for 1 h. The MFI of strain
AperR:EEGFP was high and had no significant change in
each condition. These results suggest that PerR regu-
lated the target operons by binding to the promoter re-
gion, and the derepression was induced by H,O, and
influenced by metal ions.

Roles of dpr in H,0, resistance in S. Suis

H,O, sensitivity analysis suggested that PerR was
involved in oxidative stress response and we have found
that dpr was directly regulated by PerR in S. suis. dpr
encodes a peroxide resistance protein, previous study
has found that dpr mutant was highly sensitive to H,O,
[24]. To test the role of dpr in H,O, resistance, the dpr
gene was inactivated in strains SC-19 and AperR. The
resultant mutant strains Adpr and AperRAdpr were sub-
jected to the H,O, sensitivity assay. Both dpr mutant
strains exhibited <1% survival after incubation with
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Figure 2 S. suis sensitivity to peroxide stress. (A) The H,0, sensibility was tested by disk diffusion assay. 1 M H,O, was used. (B) The survival
rates of wild-type (WT), AperR, CAperR, Adpr and AperRAdpr at every 15 min in TSB with 10 mM of H,O, challenge. Three independent

10 mM H,0, (Figure 2B). Inactivation of dpr led to near
loss of H,O, defensive capability in both Adpr and
AperRAdpr strains. However, there was no obvious dif-
ference in the survival rate between Adpr and
AperRAdpr, suggesting that the increased H,O, resist-
ance of the perR mutant probably results of the dere-
pression of dpr.

Role of methionine in H,0, resistance in S. Suis
Expression of the methionine ABC transporter metQIN
was upregulated in the AperR, therefore, methionine up-
take may have been increased in the mutant. To verify
this hypothesis, the methionine utilization by strains SC-
19 and AperR was investigated by measuring the reduced
amount of methionine in the CDM. There was no obvi-
ous different in the growth rate of strains SC-19 and
AperR, but the amount of methionine utilization in the
mutant was increased by 25.13% compared to the wild
type in cells grown to late-log phase (Figure 5A). These
data indicated that the derepression of metQIN led to
increased accumulation of methionine in strain AperR.
To investigate the role of methionine in oxidative
stress, the H,O, sensitivity of strains in CDM with

different concentrations of methionine was tested. As
shown in Figure 5B, strain SC-19 showed the lowest sur-
vival rate in CDM lacking methionine, and the survival
rates were increased when methionine was added. The
same phenomenon was observed in strain AperR, except
that AperR showed higher survival rates at every methio-
nine concentration. These results indicated that the re-
sistance to HyO, in S. suis was related to methionine.

Role of PerR in pathogenicity in S. Suis
An experimental infection model in mice was designed
to assess the role of PerR in pathogenicity. In the wild-
type group, all of the mice presented severe clinical signs
associated with septicemia and septic shock during the
first day post-infection and then died from septicemia in
this group. In contrast, the mice in the AperR group pre-
sented with partial clinical signs, three of eight infected
mice survived during 1 dpi, and finally one mouse was
alive at 7 dpi. Thus, as previously report [25], the mutant
strain AperR was slightly attenuated in pathogenicity
according to survival rate and clinical signs.

To investigate the reason of the reduced pathogenicity
in perR mutant, mice were intraperitoneally infected with
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Predicted target genes® Gene names Function of genes

Predicted PerR-box qRT-PCR® EMSA results

NTANAANNATTNTAN

SSU05_0022 aromatic amino acid aminotransferase ATAAAACTATTATAA -2.5(0.6)
SSU05_0209 hypothetical protein CTATAATCATTTTAT +1.1 (0.2)
SSU05_0308 hypothetical protein GTAAAATTATTATAA -1.1(0.1)
SSU05_0309 pmtA cation transport ATPase TTAGAATTATTATAATTATAACGATTATAA —1.1 (0.1) negative
SSU05_0618 MATE efflux family protein TTAAAATAATTATAA -42(1.1)
SSU05_1264 SAM-dependent methyltransferase ATAGAATTATTATAA -1.1(03)
SSU05_1265 sulfatase ATAGAATTATTATAA -18(0.3)
SSUO05_1341 lacl Lacl family transcriptional regulator TTAGAATCATTCTAG —-1.8(04)
SSU05_1689 dpr peroxide resistance protein TTATAATTATTATAA +9.3 (1.1) positive
SSU05_1691 phosphotyrosine protein phosphatase TTATAATTATTATAA —1.7 (04)
SSU05_1771 metQ lipoprotein transporter ATACAATGATTGTAA +4.0 (0.2) positive
SSUO5_1855 escA ABC transporter ATP-binding protein ATATAATTATTATAA -16.1 (5.2)
SSU05_1856 HIT-family protein ATATAATTATTATAA —-1.6(04)
SSU05_2094 relA GTP pyrophosphokinase GTATAATGATTGTAG +2.1 (06) negative
SSU05_2095 cpdB 2'3"-cyclic-nucleotide 2'-phosphodiesterase GTATAATGATTGTAG -30(1.1)
SSU05_2112 hypothetical protein GTATAATGATTATAC -1.5(0.6)
SSU05_2113 rarA recombination factor protein GTATAATGATTATAC +1.7 (0.5)
SSUO05_2191 rimH rRNA large subunit methyltransferase ATAAAATAATTGTAA -1.3(0.3)
SSU05_2192 htrA trypsin-like serine protease ATAAAATAATTGTAA +1.2(0.3)

aS. suis ORF number of S. suis 05ZYH33

PFold-change (standard deviation) of expression in AperR compared to expression in wild-type

the same dose of SC-19 and AperR. Bacteria were recov-
ered from blood, lung, brain and spleen. At 7 dpi, the
numbers of AperR harvested from blood and each tissue
were significantly decreased compared to those of the
wild-type strain. At 11 dpi, the AperR was nearly cleared
from mice, but the wild-type strain could still be recov-
ered (Table 2). Statistical significance of the difference was
determined by student t-test. The result suggested that
the viability of perR mutant was reduced in the host.

Discussion
As a pathogen, S. suis may encounter both oxidative
stress and metal starvation during infection. Fur family
proteins play important roles in metal ion homeostasis
and oxidative stress responses in many bacteria. A single
Fur-like protein was identified in S. suis, and in the rest
of the genus Streptococcus, except for S. pneumoniae.
The Fur-like protein in S. suis has been shown to regu-
late the zinc and iron uptake genes [18,19]. In our study,
the function of this Fur-like protein in oxidative stress
response was characterized. We suggested that, in
addition to its role in regulating zinc and iron uptakes,
another important role of this Fur-like protein was to
act as an oxidative stress response regulator in S. suis,
and reannotated this Fur-like protein as PerR.

A recent research has found that the fur (perR) knock-
out mutant in S. suis serotype 2 strain P1/7 was more

sensitive to H,O, [25]. However, in our study, an oppos-
ite result was observed, that deletion of perR in S. suis
serotype 2 strain SC-19 resulted in increased resistance
to H,O,. Deletion of PerR has been found to cause a
high resistance ability to H,O, in B. subtilis [13], C. acet-
obutylicum [26] S. aureus [27], and in the single Fur
containing S. pyogenes [21], and these results accord
with our test in S. suis.

As a negative regulator, the high resistance to H,O, in
perR mutant may result from derepression of the PerR
regulon. In many bacteria, one important member of
PerR regulon for H,O, resistance is catalase [28]. How-
ever, all lactic acid bacteria including S. suis lack cata-
lase, it is interesting to identify other potential PerR
targets for H,O, resistance in S. suis. qRT-PCR and
EMSA tests showed that dpr and metQIN were directly
regulated by PerR, and the expression of dpr and met-
QIN could be induced rapidly by physiological level of
H,0,. These results suggested that one mechanism for
oxidative stress response by PerR was derepression of
PerR targets dpr and metQIN. Previous study found that
feoAB was regulated by Fur (reannotated as PerR in our
study) in S. suis P1/7 strain [19], however, in our study
the PerR protein could not bind with feoAB promoter as
well as we did not found a PerR-box in the promoter re-
gion (data not shown), suggesting that it is an indirectly
regulation.
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compared to its parental strain SC-19. Relative abundance of the transcripts was determined by real-time RT-PCR from the total RNAs derived
from strains AperR and SC-19 in mid-log phase. gapdh was used as the internal control. (B) Different concentration of PerR proteins binds to dpr
and metQIN promoters (500 bp and 300 bp respectively), gidA promoter (300 bp) was used as the negative control. (C) The structure of the dpr
and metQIN promoters. -10 and —35 regions of the promoters are shown by the boxes. The start codon is labeled by blod fonts. The predicted

PerR-box is underlined.

Dps family proteins have been identified in many bac-
teria including S. suis. In B. subtilis and S. pyogenes, the
Dps homolog MrgA is derepressed when H,O, oxidizes
PerR [21,29]. Usually, If the Fe** is present, H,O, could
be nonenzymatically cleaved into highly toxic hydroxyl
radicals by Fenton reaction (H,O,+ Fe** — OH + OH +
Fe®*). However, Dpr can prevent the Fenton-reaction by
storing iron and converting Fe** to Fe®*-mineral
(FeOOH) in a ferroxidase dependent way, resulting in
avoiding formation of hydroxyl radicals. In addition, Dpr
can bind DNA to protect DNA from oxidative damage
in most bacteria but not in S. suis [30-32]. According
with previous study, H,O, resistance was markedly
reduced in Adpr [24]. In our experiment, we found that
the double mutant AperRAdpr was also highly sensitive
to H,O, (Figure 2B). Although other PerR targets might
be derepressed in AperR, H,O, resistance ability was not
obviously increased. It suggested that, in catalase nega-
tive S. suis, Dpr was especially crucial for H,O,

resistance, and the main reason for increased H,O, re-
sistance in AperR was derepression of dpr.

All amino acid residues of protein are susceptible to oxi-
dative stress. However, methionine sulfoxide can be
reduced to methionine by methionine sulfoxide reductase
(Msr). During this reaction, Methionine helps the organ-
isms to reduce H,O, to H,O (Met+H,05— Met
(O) + H,0O; Met(O) + Th(SH), — Met + Th(S-S) + H,O)
[33]. In most species, such as humans, mice, yeast and
bacteria, the cyclic oxidation and reduction of methionine
residue plays an important role in defense against oxida-
tive stress [33-36]. In our study, the metNIQ operon was
found to be regulated by PerR. However, the metNIQ op-
eron is repressed via the S-box system in B. subtilis and in
some other bacteria [37]. In contrast, we did not find the
S-box in the promoter of metNIQ operon in S. suis, but it
was replaced by a PerR-box (Figure 3C). A recent report
also found that metNIQ operon was regulated by PerR in
S. pyogemes via microarray assay [38]. It seems, that
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metQIN is negatively regulated by Fur-like protein, is spe-
cial in the streptococci. We found that metQIN operon
could be induced by H,O, in SC-19, and in metQIN dere-
pressed AperR, methionine utilization was increased.
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Additionally, methionine concentration was found to be
related to H,O, resistance. These results suggested that,
via controlling the methionine transport, methionine up-
take could be regulated by PerR. Thus, oxidative stress re-
sponse was indirectly affected.

Metal ions level played an important role in oxidative
stress response, especially iron level. In our study, using
the transcriptional reporter system, we found that PerR
represses the regulon by binding to the promoters, and
derepression of the regulon could be induced by H,O,
when abundant Fe** was added. In B. subtilis, the regu-
latory mechanism of PerR has been well studied from
the standpoint of its structure, revealing that PerR is a
dimeric zinc protein with a regulatory site that coordi-
nates either Fe** or Mn**. PerR can bind Fe** or Mn**
and then repress transcription of its targets, however Fe**
can catalyze the oxidation of key histidine in PerR, leading
to inactivation of PerR [23,39]. PerR in S. suis may have a
similar regulatory mechanism to that of B. subtilis PerR.
According to our results and previous studies, we sum-
marized the putative PerR mediated oxidative stress re-
sponse pathway in S. suis and showed it in Figure 6.

PerR has been found to be necessary for full virulence of
S. pyogenes [20]. Our investigation found that the patho-
genicity of perR mutant strain was attenuated. The
decreased pathogenicity might be due to the reduced via-
bility of mutant in the host. The fact that the viable num-
ber of mutant recovered from mice was much less than
that of the wild-type, also supported this explanation. It
seems that deletion of perR may lead to inappropriate ex-
pression of PerR-regulated genes and affect the normal
growth. For example, knockout of perR led to iron starva-
tion and the growth was inhibited in B. subtilis [28]. It
was reported that, because Dpr could store iron, the cyto-
solic iron would be efficiently scavenged when dpr was ec-
topic overexpressing in S. suis [31]. It suggested that in
AperR, the derepressed dpr would lead to cytosolic iron
starvation and affect the growth.

Figure 5 Roles of methionine in the H,0, resistance. (A) The amount of uptaken methionine in the wild type (WT) and AperR in cells grown
to late-log phase. (B) The effects of the methionine to H,O, resistance. Survival rates of wild-type (WT) and AperR in CDM with 5 mM of H,0,
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Table 2 Survival of SC-19 and AperR in different organs in mice

Source Strain Bacteria recovered from blood and tissues (x10° CFU) ?
4 dpi 7 dpi® 11 dpi®

Blood SC-19 4494324 2374171 044 +0.04
AperR 410+241 0.09+0.05 0

Lung SC-19 422+145 148+0.11 1.03+159
AperR 166+ 1.11 0.07+0.04 0

Brain SC-19 5.07+3.07 142+0.20 162+133
AperR 3.84+£296 0.13+0.12 0.01+0.01

Spleen SC-19 0.15+0.09 035+0.11 0.03+0.02
AperR 022+0.22 0.04+0.04 0

@ Mean + standard deviation of 4 independent experiments. Date is expressed as CFU/ml blood, or CFU per tissue.
b p<0.05 for comparison of SC-19 versus AperR CFU at 7 and 11 dpi (student’s t-test).

Conclusions

These data strongly suggest that the Fur-like protein
PerR regulates the oxidative stress response in S. suis.
Two members of PerR regulon dpr and metQIN were
identified in S. suis, dpr played a crucial role in H,O, re-
sistance and metQIN might indirectly affect the H,O,
resistance by controlling the methionine uptake. Mice
infection model showed that the pathogenicity of perR
mutant strain was attenuated.

Methods

Bacterial strains, plasmids, and growth conditions

All the bacterial strains and plasmids used in this study
are listed in Table 3. S. suis serotype 2 strain SC-19 was
isolated from diseased pigs in Sichuan province, China in
2005 [40]. S. suis was grown in tryptic soy broth (TSB) or
on tryptic soy agar (TSA; Difco, Detroit, MI, USA) plates
containing 5% newborn bovine serum (Sijiging,
Hangzhou, China). The CDM [41], modified when

necessary, was also used to culture S. suis. E. coli strains
DH5a and BL21 (DE3) were cultured in/on Luria—Bertani
broth or plates (Oxoid, Basingstoke, UK). When neces-
sary, antibiotics were added to the plates or broth at the
following concentrations: 100 pg/ml spectinomycin (Spc),
2.5 ug/ml erythromycin (Erm) or 5 pg/ml chlorampheni-
col for S. suis; 50 pg/ml Spc, 180 pg/ml Erm, 12.5 pg/ml
Chl or 50 pg/ml kanamycin [22] [22] for E. coli.

Expression and purification of the PerR protein

The whole coding sequence of perR was amplified from
the genomic DNA of S. suis SC-19 using primers 310 F/
310R (Table 4), which were designed according to the
SSU05_0310 sequence of S. suis 05ZYH33 (GenBank ac-
cession no. CP000407), and cloned into a prokaryotic
expression vector pET-28a (+) (Novagen, Shanghai,
China). The resultant plasmid pET28a:perR was con-
firmed by DNA sequencing and transformed into E. coli
BL21 (DE3) for expression of His-tagged recombinant

Met + H,0;—> MetO + H,0

Fer H,0, 3

FeOOH

H,0,+Fe* —*Fe’*+ OH+ OH

Figure 6 Schematic presentation of the PerR regulatory oxidative stress response in S. suis. (A) dpr is repressed by PerR, and derepression
of dpr could be induced by H,O,. Abundant Dpr stores iron to prevent Fenton reaction. (B) derepression of metQIN is induced by H,0,, leading
to increasing Met (methionine) and MetO (methionine sulfoxide) uptake. During Met cyclic oxidation and reduction, H,O, can be reduced to
H,0. (C) FeoAB is negatively regulated by PerR. (The broken lines indicate that the regulatory mechanisms were unclear).
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Strains or plasmids

Characteristics

Reference or source

Strains

SC-19 Virulent Chinese S. suis serotype 2 isolate, wild-type This work
AperR Gene perR inactive strain, Erm’ This work
CAperR Complemented AperR strain, Erm" Spc’ This work
Adpr Gene dpr inactive strain, Spc’ This work
AperRAdpr Gene perR and dpr inactive strain, Erm" Spc This work
SC-19:EGFP Pap-EGFP fusion inserted Wild-type, Spc’ This work
AperREGFP PaprEGFP fusion inserted AperR, Spc' This work
DH5aand BL21(DE3) Cloning and expression host In this lab
Plasmids

pSET4s Thermosensitive allelic replacement vector [42]
pSET2 E. coli-S. suis shuttle vector [44]
pET28a His tag fusion expression vector Novagen
pMIDG310 A plasmid containing a EGFP gene

pSET4s:: perR A mosaic plasmid designed to inactivate perR This work
pSET4s:dpr A mosaic plasmid designed to inactivate dpr This work
pSET2:CperR Recombinant plasmid used for functional complementation of AperR This work
pSET4s:EGFP Recombinant plasmid used for inserting a Pq,~-EGFP fusion This work
pET28a: perk Recombinant expression plasmid to produce Hisg-fused PerR protein This work
pAT18 A plasmid containing an erm [45]

protein PerR induced by 1 mM isopropyl-beta-D-thioga-
lactopyranoside at 18°C for 4 h. Purification of the re-
combinant protein was achieved using Ni-NTA agarose
(Bio-Rad. USA) under native conditions according to the
manufacturer’s instructions. Electrophoresis was carried
out with 12% SDS-PAGE.

Construction of strains
To knockout the gene perR from S. suis SC-19, a thermo-
sensitive homologous suicide vector pSET4s:perR carry-
ing the left arm, right arm and the Erm resistance cassette
(erm") was constructed. The two arms were amplified
from the chromosomal DNA of SC-19 by using primers
310 L0O1/310 LO2 and 310R01/310R02 (Table 4), respect-
ively. The erm" was amplified from the plasmid pAT18 by
using primers ermF/ermR (Table 4). The recombinant
plasmid pSET4s::perR was electrotransformed into SC-19,
and the strains were selected on Spc and Erm plates as
described previously [42]. The suspected mutant strain
AperR was verified by PCR, RT-PCR and Southern blot
analysis. To construct a functional complementary strain
for AperR, the complete coding sequencing of perR with
its upstream promoter was amplified and cloned into the
E. coli-S. suis shuttle vector pSET2. The resultant plasmid
pSET2:perR was electrotransformed into the mutant
strain AperR. The resultant complementary strain was
designated as CAperR.

To monitor the regulation to dpr promoter, pSET4s:
P4p-EGFP, a thermosensitive plasmid containing the

transcriptional reporter system was constructed as fol-
low: a 500-bp fragment containing the dpr promoter
was amplified from SC-19 genomic DNA using primers
PdprF/PdprR and cloned between the EcoRI and BamHI
sites of the plasmid pSET4s, resulting in a plasmid
pSET4s:Pg4p,. The EGFP gene coding sequence was amp-
lified from pMIDG301 (kindly donated by Dr Paul Lang-
ford, London, UK) using primers EGFPO1/EGFP02 and
cloned between the BamHI and PstI sites of the plasmid
pSET4s:Pyp,. The resultant plasmid pSET4s:Pgp,-EGFP
was electrotransformed into S. suis SC-19 and AperR, re-
spectively. The fragment containing the dpr promoter
was used as the homologous arm, through a single cross
event, the thermosensitive plasmid pSET4s:Pgp,-EGFP
was inserted into the genome at 28°C and the rest of
plasmids in the strains were lost for continuous passage
culture at 37°C. Spc was used in the whole process. The
resultant strains were confirmed by PCR.

GFP assays

The CDM lacking zinc, iron and manganese was used as
the basal medium. Overnight cultured S. suis strains SC-
19:EGFP and AperR:EGFP were washed three times using
the basal CDM, and then diluted 1:100 in the basal CDM
supplemented with 50 uM Zn>* and Fe** (or Mn**) and
50 pg/ml Spc. Cells were cultured at 37°C for 3-4 h to
early mid-log phase (ODgo = 0.3). The cells were induced
by 10 uM H,O, four times at every 15 min. One hour
later, 1 ml of each sample was obtained and washed with
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Primers Sequence Restriction site target

General PCR amplification

310 F CGTACAGTCGACTTAGTTCTGGCAATCAGGACA Sall perR

310R CGTATCGGATCCATGGAACTCCATTCTCACTTC BamH

310 LO1: TAGTAAGCTTCACAGTTGGACCTTGGTT Hind Ill Left arm of perR
310 LO2 TCACCTGCAGCGGCATTTGTCCTGATTG Pstl

310R01 TCACCTGCAGTTAGCATTGAAGTGAGAATGG Pstl Right arm of perR
310R02 AGGTGAATTCTTGCTACTGTAATGGTCG EcoRl

ermF TCACCTGCAGGAGTGTGTTGATAGTGCA Pstl erm’

ermR AGGTCTGCAGCTTGGAAGCTGTCAGTAG Pstl

C310F TCACCTGCAGGATGATGTGGCTGTGTTG Pstl perR and its promoter
C310R TAGTGGATCCAAGTCATGTCCGTCGTAG BamHI

PdprF TCAGAATTCTCGGGCTATAGGTAAAAG EcoRl Promoter of dpr
PdprR TCAGGATCCATATCACCCTTTCTTTTATT BamHI

EGFP 01 TCAGGATCCATGAGTAAAGGAGAAGAAC BamHI EGFP gene

EGFP 02 TCACTGCAGTGCTATTTGTATAGTTCATC Pstl

1772P01 TCCAGGACTGGTGGCGAC Promoter of 1772
1772P02 AAAATGATCTCCTTAAATTA

relAPO1 CATATCTCTACTCTTCCTC Promoter of relA
relAPO2 AGCTAGTGTGAGTGCTAC

gidAPO1 CATGTTGTTCTCTCCTTC Promoter of gidA
gidAPO2 TTGAGGTCAATGAGGTAG

Real-time RT-PCR

0309 F GCAACACTTTCTGCCATCA pmtA

0309R GGTCGCACCTACAACTTCA

1771 F CGCACCAATCCGTCTTTA metQ

1771R TTTCGTTTGTTGGGTCGT

2094 F TAAGACCGACGAATCCC relA

2094R TCATCCGCGACAGCT

1689 F TTTATCAGTAGCCCATTCA dpr

1689R AAACGCTCACTCATCTCA

1539 F AGAAGGCAAGTTGGAAG sodA

1539R GTAGTTTGGACGGACATT

0155 F AGAAGTAAACGCTGCTAT gapdh

0155R CAAACAATGAACCGAAT

PBS three times, green fluorescence was observed by
fluorescence microscopy, and the mean fluorescence in-
tensity (MFI) was assayed by flow cytometry. To remove
the background of green fluorescence, strain SC-19 was
used as the negative control.

H,0, sensitivity assays

The disk diffusion assay to test H,O, sensitivity was per-
formed as described previously [43]. The strain was cul-
tured under near-anaerobic conditions to mid-log phase
and 100-pl aliquots were spread on TSA plates. A sterile

5-mm-diameter filter disk containing 4 ul 1 M H,0,
was placed on the surface of the TSA plate. After incu-
bation at 37°C for 12 h, the size of the area cleared of
bacteria (inhibition zone) was measured.

For quantitative analysis, resistance of S. suis to H,O,
killing was tested as described previously [20], with
slight modifications. Overnight cultured bacteria were
diluted 100-fold into fresh TSB containing 5% newborn
bovine serum in sealed tubes at 37°C without shaking
(near-anaerobic conditions). When ODgy, of the cells
reached ~0.5, some cells were removed and incubation
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was continued at 37°C without agitation, and 10 mM
H,0O, was added to the other part of the bacterial cul-
ture. Samples were collected at every 15 min for 1 hour
after addition of H,O,. Appropriate bacterial dilutions
were plated on TSA plates for viability counts. Survival
rate was calculated by dividing the number of CFUs in
the H,O, challenge part with the number in the part
without H,O, challenge. For testing the effect of methio-
nine on H,0, resistance, overnight cultured bacteria
were diluted 100-fold in CDM with different concentra-
tions of methionine and then tested as above.

Amino acid analysis

Overnight cultured bacteria were washed three times
with CDM and resuspended in the medium containing
100 mg/l methionine (ODggo=0.1), and then incubated
at 37°C for ~4 h. When the growth of cultures reached
the late-log phase (ODggp =1.6), medium samples were
withdrawn from the bioreactor directly into a 2-ml tube.
Samples were filtered through 0.22-um filters. Amino
acid concentrations of the filtered samples were deter-
mined using Amino Acid Analyzer L-8900 (Hitachi,
Tokyo, Japan). All standards were commercial amino
acids (Ajinomoto, Japan).

Electrophoretic mobility shift assay (EMSA)

Binding of recombinant PerR protein to DNA fragments
containing the putative PerR-box was performed. The
DNA fragments of the candidate promoters were ampli-
fied from S. suis SC-19 genomic DNA and purified by
using the PCR Product Purification Kit (Sangon Biotech,
Shanghai, China). Binding reactions were carried out in
a 20-pul volume containing the binding buffer (20 mM
Tris—HCI, pH 8.0; 50 mM KCI; 5% glycerol; 0.5 mM
DTT; 25 pg/ml BSA, 100 ng poly dIdC), 0.1 ug promoter
DNA and different amounts of purified recombinant
PerR protein (0, 2, 4, and 8 pug). Binding reaction was
incubated at room temperature for 15 min. The loading
buffer was then added to the reaction mixtures and the
electrophoresis was carried out with 5% native polyacryl-
amide DNA retardation gels at 100 V for ~1 h. Finally,
the gels were stained with ethidium bromide. The 300-
bp promoter of gidA was used as negative control.

Real-time RT-PCR

Total RNAs of S. suis strains SC-19 and AperR were iso-
lated as follows: overnight cultured bacteria in TSB
medium with 5% newborn bovine serum was diluted
1:100 in fresh serum-containing TSB, and then incu-
bated at 37°C to the mid-log phase (ODgoo=0.5). Total
RNA was isolated and purified using the SV Total RNA
Isolation System (Promega) according to the manufac-
turer’s instructions. The contaminating DNA was
removed by DNase I treatment. Transcripts of the target

Page 11 of 12

genes were assessed by real-time RT-PCR using SYBR
Green detection (TAKARA. Dalian. China) in an ABI
7500 system. gapdh gene served as the internal control.
The primers using in the real-time RT-PCR are listed in
Table 4. Differences in relative transcript abundance
level were calculated using the 27*2“T method.

Mouse model of infection

All animal experiments were carried out according to
the Regulation for Biomedical Research Involving Ani-
mals in China (1988). To detect the role of PerR in viru-
lence in S. suis, a total of 24 female 6-week-old Balb/C
mice were divided into three groups (8 mice per group).
Animals in groups 1 and 2 were inoculated by intraperi-
toneal injection with 1 ml ~6.125 x 10’ CFU of either S.
suis SC-19 or AperR diluted in TSB. TSB medium was
used as a negative control for group 3. Mice were
observed for 1 week. To detect the role of FzpR PerR in
colonization, two groups of female 6-week-old Balb/C
mice were inoculated by intraperitoneal injection with
1 ml of 5x 107 CFU of either SC-19 or AperR diluted in
physiological saline. Blood, brain, lung and spleen were
collected from mice (4 mice in each group) at 4, 7 and
11 days post infection (dpi). The samples were homoge-
nized and subjected for bacterial viability count on TSA
plates.
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