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Abstract

Background: Microbial ecologists now routinely utilize next-generation sequencing methods to assess microbial
diversity in the environment. One tool heavily utilized by many groups is the Naïve Bayesian Classifier developed by
the Ribosomal Database Project (RDP-NBC). However, the consistency and confidence of classifications provided by
the RDP-NBC is dependent on the training set utilized.

Results: We explored the stability of classification of honey bee gut microbiota sequences by the RDP-NBC utilizing
three publically available ribosomal RNA sequence databases as training sets: ARB-SILVA, Greengenes and RDP. We
found that the inclusion of previously published, high-quality, full-length sequences from 16S rRNA clone libraries
improved the precision in classification of novel bee-associated sequences. Specifically, by including bee-specific
16S rRNA gene sequences a larger fraction of sequences were classified at a higher confidence by the RDP-NBC
(based on bootstrap scores).

Conclusions: Results from the analysis of these bee-associated sequences have ramifications for other
environments represented by few sequences in the public databases or few bacterial isolates. We conclude that for
the exploration of relatively novel habitats, the inclusion of high-quality, full-length 16S rRNA gene sequences
allows for a more confident taxonomic classification.
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Background
Microbial ecology studies routinely utilize 454 pyrose-
quencing of ribosomal RNA gene amplicons in order to
determine composition and functionality of environmen-
tal communities [1-6]. Where it was once costly to gen-
erate libraries of a few hundred 16S rRNA gene
sequences, so called next-generation sequencing meth-
ods now allow researchers to deeply probe a microbial
community at relatively little cost per sequence. Taxo-
nomic classification is a key part of these studies as it
allows researchers to correlate relative abundance of par-
ticular sequences with taxonomic groupings. These
kinds of informative data can also allow for hypothesis
generation concerning the community function in the
context of a given biological or ecological question. A
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large number of groups [1-6] utilize the Ribosomal Data-
base Project’s Naïve Bayesian Classifier (RDP-NBC) [7]
for the classification of rRNA sequences into the new
higher-order taxonomy, such as that proposed in Ber-
gey's Taxonomic Outline of the Prokaryotes [8]. Bayesian
classifiers assign the most likely class to a given example
described by its feature vector based on applying Bayes'
theorem. Developing such classifiers can be greatly sim-
plified by assuming that features are independent given
class (naïve independence assumptions). Because inde-
pendent variables are assumed, only the variances of the
variables for each class need to be determined and not
the entire covariance matrix. Despite this unrealistic as-
sumption, the resulting classifier is remarkably success-
ful in practice, often competing with much more
sophisticated techniques [9,10]. The practical advantages
of the RDP-NBC are that classification are straightfor-
ward (putting sequences in a predetermined taxonomic
context), computationally efficient (building a statistical
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model based on k-mers in the training set), can analyze
thousands of sequences, and does not require full-length
16S sequences (making it an appropriate tool for next
generation sequencing based studies). The RDP-NBC re-
lies on an accurate training set – on reference sequences
used to train the model and a taxonomic designation file
to generate the classification results. Recently the effects
of training sets on RDP-NBC performance were investi-
gated [11]; the size and taxonomic breadth of the train-
ing set had a significant impact on classification, such
that improvements in the confidence of classification of
previously “unclassified” sequences were made with a
larger, more diverse training set [11].
For environments that lack cultured isolates or are

relatively underexplored, researchers are often unable to
find an appropriate training set to reveal the taxonomic
identity of the extracted sequences [11-13]. However, if
previous clone libraries have generated full length, high-
quality 16S rRNA gene sequences, then these sequences
can be utilized in a training set and taxonomy frame-
work, potentially increasing the precision of the classifi-
cation provided by the RDP-NBC. Our primary goal in
this study was to test the effect of training set on the RDP-
NBC-based classification of Apis mellifera (European
honey bee) gut derived 16S rRNA gene sequences. In-
sect guts are relatively underexplored and host novel
bacterial groups for which there do not exist close, cul-
tured relatives, making taxonomic assignments for 16S
sequences and metatranscriptomic data difficult [14-16].
We also sought to improve the classification of sequences
from the honey bee gut by the RDP-NBC through the
creation of training sets that include full-length
sequences identified as core honey bee microbiota as
part of a phylogenetic framework first put forward by
Cox-Foster et al., 2006 and extended by Martinson
et al., 2010 [17,18]. Below we compare the precision
and reproducibility of classification of the honey bee gut
microbiota using six different training sets: RDP, Green-
genes, arb-silva, and custom, honey bee specific data-
bases generated from each.

Methods
Generating a bee-specific seed alignment
Sequences that corresponded to accession numbers pub-
lished in analyses of bee-associated microbiota and that
were near full length (at least 1250 bp) were used to gen-
erate the seed alignment for our subsequent analyses (A
total of 5,713 sequences were downloaded and 5,158
passed the length threshold) [18-22]. These sequences
were clustered at 99% identity, reducing the dataset to 276
representatives. This set of sequences is referred to as the
honey bee database (HBDB) throughout and were aligned
using the SINA aligner (v 1.2.9, [23]) to the arb-silva SSU
database (SSURef_108_SILVA_NR_99_11_10_11_opt_v2.
arb) and visually inspected using ARB [24]. We refer to
this custom seed alignment as the arb-silva SSU+honey
bee alignment (ASHB). To generate a phylogeny we
used the ASHB as input to RAxML (GTR+ γ with
1,000 bootstrap replicates) using a maximum likeli-
hood framework (Stamatakis 2006). This phylogeny was
used to inform the taxonomic designations (see below).
In addition, we used the RAxML evolutionary place-
ment algorithm to identify the placement of short
reads within this framework (raxmlHPC-SSE3 –f v –m
GTRGAMMA –n Placement). Alignment (ASHB) and
phylogeny are available in TreeBase at http://purl.org/
phylo/treebase/phylows/study/TB2:S13210?x-access-
code=52f01c46c780bc323ba5d1d50ea58fd6&format=html).
Generating a taxonomy file for bee-associated sequences
Fine scale taxonomic placement (below phylum level)
for relatively novel bacterial groups is difficult to accom-
plish and subject to some debate [13]. In order to taxo-
nomically classify these sequences we utilized the
phylogenetic framework generated above (Figure 1) and
also queried the RDP (using the RDP-seqmatch tool) for
nearest cultured representatives. We used cultured iso-
lates (identified by the RDP-seqmatch tool) to root our
phylogeny, generated by the 276 honey bee representa-
tive sequences. Based on percent identity to the cultured
representative, each sequence in the honey bee dataset
was assigned to either the class or the genus level. If the
cultured representative was >95% identical to the bee
derived sequence, we placed the novel bee sequence in
the genus of the cultured representative. If, however, a
cultured isolate was not found with identity above 95%
for the bee sequence, but they grouped in a clade con-
taining a cultured representative, the bee sequences were
placed in the same class and we noted incertae sedis in
the taxonomy file. In addition to this de novo generation
of taxonomic information for the bee associated
sequences, if phylogenetic information (as established
by Cox-Foster et al., 2006) was available for any of the
Genbank submissions, that information was also
included in the taxonomy. For example, names of bee
specific groups such as “alpha-2.1” and “beta” (recur-
ring in many bee studies) often appear in the full gen-
bank accession for these sequences. Occasionally the
Genbank records list an organism’s full taxonomic
designation without considering its placement in the
phylogenetic framework previously identified for
honey bee guts. For example, Lactobacillus apis has a
Genbank taxonomy that does not consider it part of
the firm-4 group. In our taxonomy, we did not re-
move the genus and species name but instead con-
sider this sequence to be part of the firm-4 clade at
the family level.
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Figure 1 Phylogenetic relationships for the bacterial species included in the honey bee specific database (with bootstrap support
indicated above branches if > 75%). Class level designations are highlighted in red while lower rank taxonomic designations are indicated
using arrows on nodes. Specific clades identified previously in honey bees are colored in blue while novel clades identified here, including
cultured isolates and well-described genera (such as Wolbachia), are colored in yellow.
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Processing of pyrosequencing amplicons from
honey bee guts
Raw .sff files corresponding to 16S rRNA gene ampli-
cons from the honey bee gut were downloaded from the
DDBJ (DRA000526). The sequences were the result of
an amplification of the V1/V2 hypervariable 16S regions
with primers 27 F and 338IIR [25]. All data extraction,
pre-processing, analysis of operational taxonomic units
(OTUs), and classifications were performed using mod-
ules implemented in the Mothur software platform [26]
as in [25] except where noted below. Information about
which colony each sequence came from was retained
throughout sequence processing so we could make stat-
istical inferences based on the ecological framework
tested previously [25]. Unique sequences were aligned
using the “align.seqs” command and the Mothur-
compatible Bacterial SILVA SEED database modified to
include the ASHB. Out of 70,939 sequences, a total of
4,480 unique, high-quality sequences were retrieved
from honey bee guts using this pipeline. Operational
taxonomic units (OTUs) were generated using a 97%
sequence-identity threshold, as in [25].

Taxonomic classification and generation of a
custom database
To create custom training datasets for Mothur, one
requires a reference sequence database and the corre-
sponding taxonomy file for those sequences. We down-
loaded three pre-existing, Mothur-compatible training
sets: 1) the RDP 16S rRNA reference v7 (9,662 sequences),
2) the Greengenes reference (84,414 sequences), and 3)
the SILVA bacterial reference (14,956 sequences) each
available on the Mothur WIKI page (http://www.mothur.
org/wiki/Main_Page). The datasets are each comprised of
both an unaligned sequence file and a taxonomy file. We
modified each of these to include the honey bee database
(HBDB) to create RDP+bees, GG+bees and SILVA+
bees. Using each of these six alternative datasets, we clas-
sified the honey bee gut microbiota sequences using the
RDP-II Naive Bayesian Classifier [7] and a 60% confidence
threshold. In addition, we also tested the ability of the
HBDB alone to confidently classify these short reads.
Blastn searches were performed using the blast + package
(version 2.2.26) using default parameters.
Results and discussion
The effect of pre-existing training sets on the
classification of honey bee gut sequences
In order to explore how three heavily utilized pre-
existing training sets perform on honey bee gut micro-
biota, we systematically tested the RDP-NBC in the
classification of a 16S rRNA gene pyrosequencing data-
set from the honey bee gut. The RDP, Greengenes, and
SILVA training sets differ in size, in diversity of
sequences, and partly in taxonomic framework. The lar-
gest of these datasets, the Greengenes reference, is by far
the most diverse, comprised of 84,414 sequences includ-
ing multiple representatives from each taxonomic class.
With regards to taxonomic framework, the RDP relies
on Bergey's Taxonomic Outline of the Prokaryotes (2nd
ed., release 5.0, Springer-Verlag, New York, NY, 2004) as
its reference. In contrast, the Greengenes taxonomy
assigns reference sequences to individual classifications
using phylogenies based on a subset of sequences but
also includes NCBI’s explicit rank information [27]. Fi-
nally, SILVA, like the RDP, uses Bergey’s Manual of Sys-
tematic Bacteriology (volumes 1 through 4), Bergey's
Taxonomic Outlines (volume 5), and the List of Prokary-
otic names with Standing in Nomenclature [28]. In all
three taxonomic references, six taxonomic ranks are
predominantly utilized for classification: Domain,
Phylum, Class, Order, Family and Genus (although the
training set taxonomies differ with regards to the preva-
lence of suborders, subclasses, etc.). We chose to utilize
the SILVA taxonomic nomenclature for the HBDB with-
out observable conflicts across all three training sets for
these specific bacterial groups (Figure 2B).
Training set had a significant impact on both the pres-

ence and also the predicted abundance of particular
taxonomic groups within honey bee guts (Figure 2A).
Across all training sets, a total of 10 bacterial classes
were predicted to be represented in the bee gut includ-
ing 27 distinct orders, although certain orders were
prevalent only in results from specific datasets, notably
Acidobacteriales and Pasteurellales (found predomin-
antly in the Greengenes taxonomic classification) and
Bacillales and Aeromonadales (found predominantly in
the SILVA results). When comparing classification
results at the order level, 3,145/4,480 (70%) of the
sequences were classified differently by all three training
sets, suggesting a severe inability of the RDP-NBC to
place the novel sequences within known cultured iso-
lates and databases. The incongruence between the clas-
sifications provided by each training set was magnified
as the taxonomic scale progressed from phylum to genus
(Table 1). A systematic analysis of congruence between
all three training sets for each unique sequence classi-
fied revealed that only 595 (~13%) of the sequences
concurred in their complete taxonomic classification,
down to genus, regardless of training set (Table 1). At
the genus level, between the three training sets, RDP
and SILVA were the most similar in their classification,
agreeing 1017/4480 times. The results provided by the
GG based classification were different from those pro-
vided by either the SILVA or the RDP datasets, dis-
agreeing ~99% of the time with regards to genus
(Figure 2A).
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Figure 2 The effect of training set on the classification of sequences from the honey bee gut visualized by a heat map. Unique
sequences (4,480) were classified using the NBC trained on either RDP, GG, or SILVA (A), three custom databases including near full length honey
bee-associated sequences RDP+ bees, GG+bees, SILVA+ bees (B), or the near full length honey bee-associated sequences alone (C). Family-level
taxonomic designations are shown and where taxonomic classifications occur across all three datasets, these are highlighted in bold lettering.
Where a classification is unique to one training set, this is highlighted in red font. The average bootstrap score resulting from the classification is
provided for each taxonomic assignment.
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Resultant classification differences could be the prod-
uct of either 1) differences in the taxonomic framework
provided to the RDP-NBC for each sequence or 2) dif-
ferences in the availability of sequences within different
lineages in the training sets used on the RDP-NBC prior
to classification. Systematic phylogeny-dependent in-
stability with regards to classification of particular
sequences could suggest that representation of related
taxonomic groups within the training set is particularly
low. To explore the source of classification differences,
we investigated the pool of sequences for which training
sets altered the classification. In total, 1,335 sequences
were unstable in their classification across all three train-
ing sets at the order level (Table 1), meaning that they



Table 1 The taxonomic classification for 16S rRNA gene
sequences improves with the addition of custom
databases

Taxonomic
Level

Congruent
Classifications
(No. sequences)

Incongruent
across all three
training sets

Congruent
Classifications
with HBDB

Kingdom 4,480 0 4,480

Phylum 4,465 0 4,478

Class 4,453 4 4,479

Order 2,579 1,335 4,669

Family 1,870 2,784 4,216

Genus 595 2,552 –*

*HBDB sequences were not taxonomically assigned to genus so this level of
taxonomic classification was excluded.
The number of 16S rRNA gene sequences from honey bee guts with identical
or completely divergent classifications across three widely used training sets
(RDP, Greengenes, SILVA) is shown. As the taxonomic levels become more
fine, there is an increase in the discordance/errors in taxonomic placement
across all three datasets. The addition of honey bee specific sequences greatly
improves the congruence across all datasets (last column).
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were classified as different orders in each of the
three published training sets (RDP, GG, and SILVA).
These discrepancies were found to correspond to
classifications in three major classes: the α-proteobac-
teria, γ-proteobacteria and bacilli. Sequences classified as
Bartonellaceae by the Greengenes taxonomy were either
classified as Brucellaceae (RDP), Rhizobiaceae (RDP),
Aurantimonadaceae (SILVA), Hyphomonadaceae (SILVA)
or Rhodobiacea (SILVA). Within the γ-proteobacteria,
those sequences classified as Orbus by the RDP training set
were identified as Pasteurellaceae (GG), Enterobacteriaceae
(GG), Psychromonadaceae (GG), Aeromonadaceae (GG
and SILVA), Succinivibrionaceae (GG and SILVA), Alter
omonadaceae (SILVA), or Colwelliaceae (SILVA). The
number of incongruent classifications for sequences
identified as Lactobacillaecae by Greengenes were even
more astonishing as they were classified as different
phyla by use of the RDP or SILVA training sets; these
sequences were classified as Aerococcaceae (RDP),
Carnobacteriaceae (RDP), Orbus (RDP), Succ inivibrio
naceae (RDP), Bacillaceae (RDP or SILVA), Leucono
stocaceae (SILVA), Listeriacae (SILVA), Ther moactino
mycetaceae (SILVA), Enterococcaceae (SILVA), Gracili
bacteraceae (SILVA), Planococcaceae (SILVA), Desulfo
bacteraceae (SILVA).
Training set composition could be affecting the classi-

fication results by the RDP-NBC presented above. We
explored this possibility by analyzing one particularly
striking incongruity between training sets: the classifica-
tion of sequences as Orbus. Only the RDP training set
resulted in the classification of honey bee microbiota
short reads as Orbus and these sequences were used as
queries in a blast search against all three training sets
(RDP, SILVA, and GG). On average, these Orbus-classified
sequences were 93% identical to top hits in the RDP
training set. They did not find close homologs in the
SILVA training set either, the closest top scoring hits being
86% identical (on average). In contrast, in the GG training
set, top hits that were 98.6% identical were found and
these sequences were classified as γ-proteobacteria, with-
out further taxonomic depth. This result suggests that
training set breadth is playing a role in the incongruity
observed here. In support of this hypothesis, a large num-
ber of short reads were unclassifiable using each training
set (1,167 unclassified by SILVA, 1,468 by GG, 2,818 by
RDP) and the RDP training set resulted in the least
confident classification out of all three with a majority
(62%) of the sequences unclassifiable at the 60% threshold.
Bootstrap scores resulting from RDP-NBC classifications
can be an indicator of sequence novelty [29]; sequences
with low scores at particular taxonomic levels may repre-
sent new groups with regards to the training set utilized.
The average bootstrap scores for each classification at the
family level for each of the three training sets was calcu-
lated (Figure 2A). Certain sequences were classified with
relatively low average bootstrap values, suggesting that
these sequences do not have close representatives in the
training sets. For example, a low average bootstrap score
was observed for the classification of sequences as Succi-
nivibrionaceae by SILVA or as Aerococcaceae by the RDP.
The use of custom sequences improves the stability of
classification of honey bee gut pyrosequences, regardless
of training set
In order to improve the classification of honey bee gut
derived 16S rRNA gene sequences, a custom database was
used to classify unique sequences. The taxonomic classifi-
cations in this custom database were generated either by
close identity (95%) to a cultured isolate or by the inclu-
sion of cultured isolates in the phylogeny. This phylogeny
mirrors those published by others for these bee-associated
sequences [18,19,30]; honey bee-specific clades were
recovered with bootstrap support >90% (Figure 1). The
addition of honey bee specific sequences to each training
set not only altered spurious taxonomic assignments for
certain classes (notably the δ-proteobacteria are not
present in results from these datasets, Figure 2B) but also
significantly improved the congruence between classifica-
tions provided for each training set (nearly 100% of se-
quence classification assignments concurred at the family
level, Figure 2B). In total, 8 different bacterial orders
including Caulobacterales, Rhizobiales, Methylophilales,
Neisseriales, Desulfobacterales, Desulfuromonadales,
Bacillales, and Pasteurellales were reclassified into the
six bee-specific families (Figure 2A,B). Importantly, the
large number of unclassifiable short reads observed pre-
viously was reduced to <100 sequences when the HBDB
was included in the training set (Figure 2B) and the



Table 2 Bacterial isolates with genus and species
designations that clade within the bee-specific groups

Bee-specific group Strain taxonomic designation

Alpha-2.2 Saccharibacter florica strain S-877

Alpha-2.1 Commensalibacter intestini strain A911

Alpha-1 Bartonella grahamii as4aup

Firm-5 Lactobacillus apis strain 1 F1

These isolates, and their existing taxonomic information, may inform research
into the function of the honey bee gut microbiota.

Table 3 Diversity of species and unique sequences found
within honey bee microbiota

Family Num. unique sequences OTUs (97% ID)

Enterobacteriaceae 1621 175

gamma-1 436 48

beta 532 35

Bifidobacteriaceae 363 32

firm-5 929 32

firm-4 253 21

alpha-2.1 90 15

alpha-1 65 13

Lactobacilliaceae 86 12

Flavobacteriaceae 2 2

Leuconostocaceae 2 2

Moraxellaceae 6 2

Sphingomonadaceae 2 2

Xanthomonadaceae 2 2

Actinomycetaceae 1 1

Aeromonadaceae 1 1

alpha-2.2 10 1

Clostridiaceae 2 1

Corynebacteriaceae 1 1

Cytophagaceae 1 1

Enterococcaceae 9 1

Incertae_Sedis_XI 1 1

Kineosporiaceae 1 1

Nakamurellaceae 1 1

Oxalobacteraceae 1 1

Prevotellaceae 1 1

For each family found with honey bee guts (based on SILVA +bees
classification) the number of unique sequences and the number of 97%
identical operational taxonomic units (OTUs) is shown.
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average bootstrap scores for these classifications were
generally above 90% (Figure 2B). When we classify these
short reads using the HBDB alone (that is, without the
inclusion of existing training sets), we see a similar
result – the majority of the sequences are classified at a
60% bootstrap threshold (Figure 2C). However, without
the additional breadth provided by the GG, SILVA, or
RDP training sets, nearly 15% of the short reads (650
out of a total of 4,480) are unclassifiable and average
bootstrap scores drop in value, suggesting that the di-
versity within the bee gut has not been exhaustively
characterized by previous 16S rRNA clone library based
studies. In contrast to the classifications provided by
the published training sets alone (where only 62% of the
classifications agreed at the family level across all three
training sets), the inclusion of the bee specific
sequences dramatically increased the congruence (94%
of the sequences agreed at the family level, Table 1). For
particular taxonomic orders with high representation
(>100 unique sequences) in the honey bee gut, there are
particularly few incongruences at the Family level
(Figure 2B). Only the RDP + bees training set identifies
sequences as Orbus classified as either Gamma-1 or
Enterobacteriales by the GG+ bees or SILVA+ bees
training sets. It is possible that this error is due to the
fact that the RDP training set was the smallest included
in this comparative analysis; size and diversity of the
training set affects the resulting assignments [11]. We
utilized an evolutionary placement algorithm imple-
mented in RAxML to identify the phylogenetic position
of short reads classified as Orbus by the RDP + bees
training set. Indeed, these Orbus-like sequences clade
within the gamma-1 group (Additional file 1). The
spurious placement of these short reads within Orbus
by RDP was therefore primarily due to the fact that
Orbus is the closest sequence to gamma-1 found within
the RDP training set.

Biological significance
In the end, the goal of the classifications provided by the
RDP-NBC for next generation sequencing datasets is to
provide a sense of community structure that may be
relevant to function in the environment. There were few
incongruities between the HBDB-based taxonomies and
those in the existing training sets, primarily because
existing training sets did not include sequences identical
to these bee-specific groups. Across all three training
sets, only 14 sequences were found to be identical to
those in the HBDB. The Greengenes training set, for ex-
ample, included the majority of these identical sequences
(12/14) and many closely related sequences (>95% iden-
tical across the full length) Additional file 2). However,
rarely did our taxonomic designation differ from that in
the original training set largely due to the fact that we
were looking at the family level, including information
about whether or not the sequence had been found in
honey bees. As is obvious in Figure 1, certain bee-
associated clades include strains identified to the genus
and species level (Table 2). Because these strains are bac-
terial isolates that can be studied with regards to their
metabolic capabilities (in some cases, their genome
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sequences have been completed, see ncbi accession
#CP001562), we can begin to determine whether or not
there are functional differences relevant in the classification
of an organism as either “alpha-2.1” (Commensalibacter
intestini) or “alpha-2.2” (Saccharibacter florica). For ex-
ample, the pathogen Bartonella henselae sequence
CP00156 (B. henselae) clades with the alpha-1 sequences
(Figure 1), a group that often is found in honey bee col-
onies although the fitness effects on the host are unclear.
Additionally, the relevance of the taxonomic designation
below the family level for these bee-specific groups remains
to be determined.

Fine scale diversity within the honey bee gut
Using the RDP-NBC and the HBDB custom training
sets, a large number of diverse sequences within the
honey bee gut were classified in each of the honey bee
specific families (Table 3). Although our classification
schema does not designate different genera within bee-
specific bacterial families, the schema can be used to ex-
plore the relevance of fine-scale diversity (at the OTU
level) within the honey bee gut (as in [25]). The fine-
scale diversity identified previously as present in genetic-
ally diverse colonies was found to exist within
honey bee-specific bacterial families (Additional file 3),
suggesting that host genetic diversity may play a role in
shaping the diversity and composition of associated
microflora in colonies.

Conclusions
Insect-associated microbiota can be difficult to classify
using existing databases [15]; The lack of cultured iso-
lates or characterized species from insect environments
and also the enormous diversity of hosts for the micro-
bial communities is problematic. For example, when pre-
defined, publically available datasets are used to train the
RDP-NBC and classify sequences from the honey bee
gut, an environment for which there are no cultured
representatives, taxonomic classifications are unstable
and inconsistent (Figure 2A). In contrast, the HBDB cus-
tom training sets effectively and confidently classify the
bacteria in the honey bee gut. Results from our classifi-
cation are consistent with previous studies of the honey
bee gut using 16S rRNA clone libraries [17,18], suggest-
ing that the inclusion of environment-specific, high-
quality, full-length sequences in the training set can
dramatically affect the classification results produced by
the RDP-NBC. In addition, the larger, more diverse
training sets (SILVA+bees and GG+bees), provided
more stable and precise classifications, echoing results
of previous studies and suggesting that breadth and
depth in the RDP-NBC training set is crucial for more
confident taxonomic classifications [11]. This result
echoes those of other groups who have found that
representation in training sets markedly affects RDP-
NBC performance [11,29].

Additional files

Additional file 1: Table S1. Total number of operational taxonomic
units (97% ID) in either genetically uniform or genetically diverse colonies
and classified as one of the honey bee specific taxonomic groups.

Additional file 2: Table S2. Top scoring blastn hits between
full-length, bee specific sequences and the Greengenes training set.

Additional file 3: Figure S1. Phylogenetic placement of representative
short read classified as Orbus by the RDP +bees training set.
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