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Analysis of β-lactamase phenotypes and carriage
of selected β-lactamase genes among Escherichia
coli strains obtained from Kenyan patients during
an 18-year period
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Abstract

Background: Although β-lactam antibiotics are heavily used in many developing countries, the diversity of
β-lactamase genes (bla) is poorly understood. We screened for major β-lactamase phenotypes and diversity
of bla genes among 912 E. coli strains isolated from clinical samples obtained between 1992 and 2010
from hospitalized and non-hospitalized patients.

Results: None of the isolates was resistant to carbapenems but 30% of all isolates were susceptible to
cefepime, cephamycins and piperacillin-tazobactam. Narrow spectrum β-lactamase (NSBL) phenotype was
observed in 278 (30%) isolates that contained blaTEM-1 (54%) or blaSHV-1 (35%) or both (11%). Extended
Spectrum β-lactamase (ESBL) phenotype was detected in 247 (27%) isolates which carried blaCTX-M-14 (29%),
blaCTX-M-15 (24%), blaCTX-M-9 (2%), blaCTX-M-8 (4%), blaCTX-M-3 (11%), blaCTX-M-1 (6%), blaSHV-5 (3%), blaSHV-12 (5%),
and blaTEM-52 (16%). Complex Mutant TEM-like (CMT) phenotype was detected in 220 (24%) isolates which
carried blaTEM-125 (29%), while blaTEM-50, blaTEM-78, blaTEM-109, blaTEM −152 and blaTEM-158 were detected in lower
frequencies of between 7% and 11%. Majority of isolates producing a combination of CTX-M-15+OXA-1+ TEM-1
exhibited resistance phenotypes barely indistinguishable from those of CMT-producers. Although 73 (8%) isolates
exhibited Inhibitor Resistant TEM-like (IRT) phenotype, blaTEM-103 was the only true IRT-encoding gene identified
in 18 (25%) of strains with this phenotype while the rest produced a combination of TEM-1+OXA-1. The
pAmpCs-like phenotype was observed in 94 (10%) isolates of which 77 (82%) carried blaCMY-2 while 18%
contained blaCMY-1.
Isolates from urine accounted for 53%, 53%, 74% and 72% of strains exhibiting complex phenotypes such as
IRT, ESBL, CMT or pAmpC respectively. On the contrary, 55% isolates from stool exhibited the relatively more
susceptible NSBL-like phenotype. All the phenotypes, and majority of the bla genes, were detected both in
isolates from hospitalized and non-hospitalized patients but complex phenotypes were particularly common
among strains obtained between 2000 and 2010 from urine of hospitalized patients.

Conclusions: The phenotypes and diversity of bla genes in E. coli strains implicated in clinical infections in
non-hospitalized and hospitalized patients in Kenya is worryingly high. In order to preserve the efficacy of β-
lactam antibiotics, culture and susceptibility data should guide therapy and surveillance studies for β-lactamase-
producers in developing countries should be launched.
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Background
β-lactam antibiotics are an important arsenal of agents
used against both Gram-negative and Gram-positive
bacteria. Resistance to this class of antimicrobials is
therefore of immense clinical significance. It is import-
ant to investigate the epidemiology of strains that are re-
sistant to β-lactam antibiotics especially in Sub-Saharan
Africa where treatment with alternative or more effective
agents may be beyond the reach of majority of patients.
Before treatment using β-lactam antibiotics is initiated,
proper and timely identification of the β-lactamase
phenotype is of critical importance. Failure or delay to
do this may lead to therapeutic failure and death of
patients [1]. In order to guide therapy and in order to
understand the molecular epidemiology of β-lactamase-
producers, a combination of susceptibility profiling, PCR
and sequencing techniques may be required [2-4]. These
techniques are not always available or affordable in
resource-poor settings. Therefore, the prevalence of β-
lactamases in developing countries is largely undeter-
mined and the use of β-lactam antibiotics in such coun-
tries remains largely empiric.
Based on resistance to β-lactam/β-lactamase inhibitor

antibiotics, bacteria strains may be conveniently categor-
ized into various resistant phenotypes [5]. Strains exhi-
biting Narrow Spectrum β-lactamase Phenotypes
(NSBLs) normally produce TEM-1 and/or SHV-1
enzymes that effectively degrade penicillins but are sus-
ceptible to other classes of β-lactams [6]. However,
mutations on the promoter region of the gene encoding
TEM-1 may result to over-production of these otherwise
narrow-spectrum enzymes. This overproduction may in
turn confer resistance to other classes of β-lactams be-
sides penicillins [7-10]. Point mutations on these
enzymes may also generate inhibitor resistant enzymes
such as the Inhibitor Resistant TEMs (IRTs) that degrade
penicillins but are not impeded by β-lactamase inhibitors
such clavulanic acid or sulbactam [4,11]. Extended
Spectrum β-Lactamases (ESBLs) may also be derived
from TEM- and SHV-type enzymes. ESBLs exhibit a
wide hydrolytic ability to different generations of cepha-
losporins but remain susceptible to β-lactamase inhibi-
tors [12]. Complex Mutant TEMs (CMTs) are also
derived from TEM-1 or TEM-2 and degrade most β-
lactams but are susceptible to β-lactamase inhibitors in-
cluding tazobactam. The CMTs are also susceptible to
cephamycins and carbapenems [13]. Plasmid–encoded
AmpC (pAmpC) such as CMYs mediate resistance to
most classes of β-lactams except to fourth generation
cephalosporins and carbapenems [14]. The β-lactamases
with the worst clinical implications are those that de-
grade carbapenems, the most potent class of β-lactam
antibiotics available today. Some carbapenemases such
as the Klebsiella pneumoniae carbapenemases (KPC)
degrade virtually all classes of β-lactams [15-17]. Some
carbapenemases such as metallo-β-lactamases (MBLs)
are however susceptible to aztreonam, a monobactam
[18]. It is therefore clear that determination of β-
lactamase phenotypes may not only aid the choice of
agents to treat patients but may also guide the screening
of bla genes and therefore save costs in surveillance
studies. Understanding molecular epidemiology of bla
gene is also important because majority of broad-
spectrum resistant enzymes, especially the ESBLs and
CMYs are encoded in conjugative plasmids that may be
acquired across species barrier. Therefore, such genes
have a high potential for spread via horizontal gene
transfer mechanisms [19-22].
The phenotypic diversity of β-lactamase-producers in

Kenya is poorly described and the diversity of bla genes
has not been properly investigated [23-28]. The aim of
the current study was to determine the β-lactamase phe-
notypes and carriage of bla genes of critical importance
in E. coli obtained from blood, stool and urine obtained
from hospitalised and non-hospitalised patients seeking
treatment in Kenyan hospitals during an 18-year period
(1992 to 2010).

Results
Phenotypic diversity of β-lactamase-producers
None of the 912 isolates tested in this study were resist-
ant to carbapenems. Cefepime, (a fourth generation
cephalosporin), cefoxitin (a cephamycin), and
piperacillin-tazobactam (TZP), were effective against
majority (60%) of these isolates. The NSBL-like pheno-
type was the most dominant phenotype in our collection
and was observed in 278 (30%) of the 912 isolates com-
pared to 73 (8%), 247 (27%), 220 (24%) and 94 (10%) of
isolates found to exhibit IRT-, ESBL-, CMT and
pAmpC-like phenotypes respectively, Table 1. Based on
resistance phenotypes, 247 ESBL-producers fit into two
sets. The first set comprised of 142 isolates exhibiting
resistance to combinations of aztreonam and multiple
cephalosporins including ceftazidime. The other set of
105 isolates were resistant to the same panel of antibio-
tics but not to ceftazidime. The 220 isolates with a
CMT-like phenotype were resistant to all generations of
cephalosporins but were susceptible to cephamycins and
carbapenems. Resistance to all β-lactamase inhibitors in-
cluding TZP was observed in 160 (73%) of the CMT-
producers. Among 40 isolates with a CMT-like pheno-
type that had intermediate resistance to TZP, tiny ghost
zones (≤ 3 mm) were observed between amoxicillin-
clavulanic acid (AMC) and ceftazidime (CAZ) and/or
Cefotaxime (CTX). These isolates therefore exhibited a
combination of both ESBL- and CMT-like phenotypes.
The most resistant strains were those exhibiting a
pAmpC-like phenotype. These 94 isolates comprising



Table 1 β-lactamase phenotypes encountered among the 912 strains analyzed

Antibiotics to which isolates were resistant

Penicillins, 1st &
2nd generation
cephalosporins

3rd Generation
cephalosporins &
Monobactams

4th Generation
cephalosporins

inhibitors Cephamycins Most probable Phenotypea Total (%) n= 912

AMP, KF, AMX − − − − NSBL 103 (11)

AMP, AMX, KF OXA − − − − NSBL 175 (19)

AMP, AMX, KF OXA − − AMC, AMS − IRT 65 (7)

AMP, KF, AMX, − − AMC, AMS − IRT 8 (1)

AMP, AMX, KF, CXM CTXb, AZTb − − − ESBL 105 (12)

AMP, AMX , KF, CXM CTX, CAZ*, AZT − − − ESBL 75 (8)

AMP, AMX, OXA KF, CXM CTXb, CAZb, AZT FEP AMS − ESBL 67 (7)

AMP, AMX, OXA KF, CXM CTX, CAZ*, AZT FEP AMC, AMS − CMT 40 (4)

AMP, AMX, OXA, KF, CXM CTX, CAZ, AZT FEP AMC, AMS, TZP − CMT 180 (20)

AMP, AMX, OXA KF, CXM CTX, CAZ, AZT FEP AMC, AMS, TZP FOX pAmpC 94 (10)

Resistance phenotypes of the 912 isolates investigated.
a: β-lactamase phenotypes observed in different isolates were defined as follow:- Narrow spectrum β-lactamases (NSBLs) were resistant to penicillins but were susceptible to other classes of β-lactam antibiotics.
Isolates exhibiting the inhibitor resistant TEM phenotype (IRT) were those capable of degrading penicillins, were not inhibited by β-lactamase inhibitors but were susceptible to other classes of β-lactam antibiotics. The
ESBL-producers were resistant to penicillins, 2nd and most 3rd generation cephalosporins, and exhibited intermediate resistance to 4th generation cephalosporins and were fully susceptible to cephamycins,
carbapenems and β-lactamase inhibitors. The complex mutant TEMs (CMTs) were resistant to most β-lactams and β-lactamase inhibitors including TZP but were susceptible to cephamycins and carbapenems. Isolates
with the pAmpC phenotypes were resistant to all generations of β-lactam antibiotics, were susceptible to carbapenems and were either susceptible or exhibited intermediate resistance to 4th generation
cephalosporins.
b: appearance of zones of synergy between a given cephalosporin or monobactam and amoxicillin-clavulanic acid (AMC).
(−) isolate with a given phenotype were susceptible to a given set of antibiotics.
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about 10% of all the isolates in our collection were re-
sistant to most generations of cephalosporins and β-
lactamase inhibitors including TZP but were susceptible
to carbapenems.

Distribution of β-lactamase-producers
All the β-lactamase phenotypes reported in this study
were observed in isolates from all specimen-types
obtained during the 1990s and 2000s and from both
hospitalized and non-hospitalized patients, Table 2.
While majority of isolates from stool exhibited the rela-
tively susceptible NSBL-like phenotype, isolates from
urine accounted for 55%, 53%, 57% and 72% of strains
with complex resistances such as IRT-, ESBL-, CMT-
and pAmpC-like phenotypes respectively. Majority of
isolates from hospitalized patients, especially those diag-
nosed with UTIs, exhibited such complex phenotypes
compared to those obtained from patients seeking out-
patient treatment. These complex resistances were also
more common among isolates obtained in recent years
(2000–2010).

Carriage of bla genes
Carriage of blaTEM-1 or blaSHV-1 was associated with the
NSBL-like phenotype in 54% and 35% of the 155 isolates
exhibiting this phenotype respectively. The two genes
were also found together in 11% of the NSBL-producers,
Table 3. The only IRT-encoding gene identified in this
study was blaTEM-103 that was detected in 18 (25%) of
the 73 isolates with an IRT-like phenotype. The other 55
(75%) of isolates with this phenotype carried a combin-
ation of blaTEM-1+blaOXA-1 genes. Majority (78%) of the
247 isolates with an ESBL-like phenotype tested positive
for CTX-M-type ESBLs. While blaCTX-M-14 and blaCTX-
M-15 were detected in 29% and 24% of these isolates re-
spectively, blaCTX-M-1, blaCTX-M-3, blaCTX-M-9 and
blaCTX-M-8 were detected in lower frequencies of 6%,
11%, 2% and 4% respectively, Table 3. Isolates which car-
ried blaCTX-M-1 alone exhibited intermediate resistances
to aztreonam and cefotaxime and were fully susceptible
to ceftazidime. The blaTEM-52 that was detected in 22
(16%) of ESBL-producers was the only TEM-type ESBL
Table 2 Clinical background of strains exhibiting different β-l
Specimen-type

Total Stool Urine Blood

NSBL 278 153 (55) 39 (14) 86 (31)

IRT 73 18 (25) 38 (53) 17 (22)

ESBL 247 65(26) 130 (53) 52 (21)

CMT 220 21 (10) 163 (74) 36 (16)

pAmpC 94 13 (14) 68 (72) 13 (14)

Number (%) of isolates exhibiting a given phenotype among those obtained from d
and 2000s period.
identified in this study. The carriage and diversity of
SHV-type ESBL genes was also low in which case, only
blaSHV-5 and blaSHV-12 ESBL-encoding genes were
detected in 3% and 5% of the ESBL-producers respect-
ively. Resistance to ceftazidime among the ESBL-
producers was attributed mainly to carriage of blaCTX-M-15

or a combination of blaCTX-Ms + blaOXA-1+blaTEM-1 genes.
A significant proportion (39%) of isolates containing
blaCTX-Ms or blaSHV-type ESBLs in the absence of blaOXA-1
or blaTEM-1 were susceptible to ceftazidime.
The blaTEM-125 was detected in 29% of the 124 isolates

exhibiting a CMT-like phenotype and was therefore the
most common CMT-encoding gene detected in this study.
Other CMT genes: - blaTEM-50, blaTEM-78, blaTEM-152 and
blaTEM-158 were detected in much lower prevalences of 8%,
7%, 11%, and 8% respectively, Table 3. Carriage of CMT
genes did not account for CMT-like phenotypes in 30% of
isolates with this phenotype. Nine of such isolates tested
positive for a combination of blaTEM-14 + blaOXA-1+blaTEM-1

while 14 strains carried a combination of blaTEM-15 +
blaOXA-1+blaTEM-1. Another 15 isolates tested positive for a
combination of a blaTEM-52 (a TEM-type ESBL gene), and
blaOXA-1. Production of OXA-1 and TEM-1 enzymes in
the presence of CTX-M enzymes apparently masked the
ESBL-phenotype that is otherwise conferred by CTX-M
enzymes. Therefore, isolates producing a combination of
such enzymes could hardly be distinguished from genuine
CMT-producers. The blaCMY-2 that was present in 77
(72%) of all isolates in our collection was the most com-
mon pAmpC-encoding genes detected in this study. The
CMYs were also detected in strains co-producing TEM-1
and SHV-type ESBLs suggesting a possible co-evolution of
penicillinases, ESBLs and AmpCs genes in the same isolate.
While majority of blaOXA-1 genes were detected in strains
bearing ESBL genes such as blaCTX-Ms or blaTEM-52, the
blaOXA-2 were detected in strains carrying blaCMYs Table 3.
None of the isolates investigated tested positive for bla-PER-
like, blaACC-like, blaVEB-like, or blaDHA-like genes.

Distribution of bla genes
We also analyzed for the distribution of bla genes
among strains obtained from different specimen-types
actamase phenotypes

Patient category Year of isolation

Inpatient Outpatient 1990s 2000s

82 (29) 196 (71) 186 (67) 91 (33)

60 (82) 13 (18) 28 (38) 45 (62)

170 (69) 77 (31) 79 (32) 168 (68)

163 (74) 57 (26) 62 (28) 158 (72)

87 (92) 7 (8) 12 (13) 82 (87)

ifferent specimen-types and different category of patients during the 1990s



Table 3 Combination of β-lactamases detected in 586 strains analyzed

NSBL IRT ESBL CMT pAmpC

β-lactamase genes n= 155 n= 73 n=140 n=124 n=94

TEM-1 84 (54) − − − −

SHV-1 54 (35) − − − −

TEM-1 and OXA-1 − 55 (75) − − −

TEM-1 + SHV-1 17 (11) − − − −

SHV-5 − − 4 (3) − −

SHV-12 − − 7 (5) − −

CTX-M-1 +OXA-1 − − 9 (6) − −

CTX-M-3 − − 15 (11) − −

CTX-M-8 − − 6 (4) − −

CTX-M-9 − − 3 (2) − −

CTX-M-14 − − 41 (29) − −

CTX-M-14 + TEM-1 +OXA-1 − − − 9 (7) −

CTX-M-15 − − 34 (24) − −

CTX-M-15 + TEM-1 +OXA-1 − − − 14 (11) −

TEM-103 − 18 (25) − − −

TEM-109 − − − 9 (7) −

TEM-50 − − − 10 (8) −

TEM-52 − − 22 (16) − −

TEM-52 +OXA-1 − − − 15 (12) −

TEM-78 − − − 9 (7) −

TEM-125 − − − 36 (29) −

TEM-152 − − − 14 (11) −

TEM-158 − − − 10 (8) −

CMY-1 +OXA-2 − − − − 16 (17)

CMY-1 − − − − 1 (1)

CMY-2 − − − − 5 (5)

CMY-2 + SHV-5 + TEM-1 − − − − 14 (15)

CMY-2 + SHV-12 − − − − 12 (13)

CMY-2 +OXA-2 − − − − 46 (49)

Combination of bla genes detected in isolates exhibiting different β-lactamase phenotypes.
(−) isolate with a given phenotype did not test positive for a given set of bla genes.
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and among those obtained from hospitalized and non-
hospitalized patients, Figure 1. Majority of bla genes
were present in all specimen-types regardless of their
clinical backgrounds. However, blaCTX-M-3 was only
detected in isolates from urine while blaTEM-78 was not
detected among isolates from blood. blaTEM-109 and
blaCTX-M-8 on the other hand, were exclusively detected
among isolates obtained from hospitalized patients. All
bla genes described in this study were found in isolates
obtained from both the 1990s and 2000s except blaCMY-1

that was exclusively detected among isolates obtained
during the 2000–2010 period.
Discussion
In this study, we describe the diversity of β-lactamase
genes in a large collection of E. coli from different types
of clinical specimen obtained from hospitalized and
non-hospitalized patients in Kenya. This study suggests
that carbapenems and to a less extent, cefepime, cepha-
mycins and piperacillin-tazobactam may still be potent
against majority of the isolates investigated. Although we
do not rule out that the panel of bla genes in our strains
is wider than what is reported in this study, there was a
general agreement between phenotypic data and the
panel of bla genes detected in the strains analysed. The



Table 4 Primers used for screening for β-lactamase genes

Target Gene Primer name 5'-3' sequence T°C Size (bp) Gene accession number

blaTEM TEM-F ATGAGTATTCAACAT TTC CG 55 840 EF125012-related

TEM-R CCAATGCTTAATCAG TGA GG

blaSHV SHV-F TTCGCCTGTGTATTATCTCCCTG 50 854 AF148850-related

SHV-R TTAGCGTTGCCAGTGYTCG

blaCTX-M concensus MA1 ATGTGCAGYACCAGTAARGTKATGGC 60 593 Y10278-related

MA2 TGGGTRAARTARGTSACCAGAAYCAGCGG

CTX-M group I CTXM1-F3 GAC GAT GTC ACT GGC TGA GC 55 499 X92506-related

CTXM1-R2 AGC CG C CGA CGC TAA TAC A

CTX-M group II TOHO1-2 F GCG ACC TGG TTA ACT ACA ATC C 55 351 X92507-related

TOHO1-1R CGG TAG TAT TGC CCT TAA GCC

CTX-M group III CTXM825F CGC TTT GCC ATG TGC AGC ACC 55 307 AF189721-related

CTXM825R GCT CAG TAC GAT CGA GCC

CTX-M group IV CTXM914F GCT GGA GAA AAG CAG CGG AG 62 474 AF252622-related

CTXM914R GTA AGC TGA CGC AAC GTC TG

blaCMY (consensus) CF1 ATGATGAAAAAATCGTTATGC 55 1200 U77414-related

CF2 TTGCAGCTTTTCAAGAATGCGC

blaCMY-1 group CMY-1 F GTGGTGGATGCCAGCATCC 58 915 AJ291609-related

CMY-1R GGTCGAGCCGGTCTTGTTGAA

blaCMY-2 group CMY-2 F GCACTTAGCCACCTATACGGCAG 58 758 AF305559-related

CMY-2R GCTTTTCAAGAATGCGCCAGG

blaOXA-1 OXA-1 F ATGAAAAACACAATACATATCAACTTCGC 62 820 JO2967-related

OXA-1R GTGTGTTTAGAATGGTGATCGCATT

blaOXA-2 OXA-2 F ACGATAGTTGTGGCAGACGAAC 62 602 AF300985-related

OXA-2R ATYCTGTTTGGCGTATCRATATTC

blaPER-concensus PER-F ATGAATGTCATTATAAAAGC 55 925 Z21957-related

PER-R AATTTGGGCTTAGGGCAGAA

blaACC-like ACC-F AGCCTCAGCAGCCGGTTAC 53 818 AJ133121-related

ACC-R GAAGCCGTTAGTTGATCCGG

blaVEB-concensus VEB-F ATTTAACCAGATAGGACTACA 55 1000 Z21957-related

VEB-R CGGTTTGGGCTATGGGCAG

blaDHA-concensus DHA-F TGATGGCACAGCAGGATATTC 55 997 EF406115-related

DHA-R GCTTTGACTCTTTCGGTATTCG

Primer combinations used for screening and sequencing bla genes. The consensus primers were used for screening and sequencing purposes except for blaCTX-M,
and blaOXA that were sequenced using group-specific primers. CTX-M group I primers detect genes encoding CTX-M −1, -3, -10 to −12, -15, -22,- 23, -28, -29 and
−30 while primers for CTX-M group II primers detect genes encoding CTX-M-2, -4, -7, and −20. Group III primers detect only CTX-M-8 while group IV primers
detect genes encoding CTX-M-9, -13, -14, -16 to 19, -21, and 27.
T°C: annealing temperature.
Y = T or C, R =G or A, S =G or C, K =G or T.
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diversity of bla genes encountered in isolates from
blood, stool and urine specimen of hospitalized patients
was almost identical to the panel of genes encountered
in corresponding specimens from non-hospitalized
patients. This partially suggests a possible exchange of
strains between hospitalized and non-hospitalized
patients or a flow of genes among strains from different
clinical backgrounds. Based on the resistance profiles,
we identify ESBL-, CMT- and pAmpC-producers as the
most important set of strains whose spread in hospital
and community settings should be closely monitored. If
the prevalence of isolates with such highly resistant
strains continues to rise, majority of β-lactam antibiotics
may cease to be effective agents for management of
community- and hospital-acquired infections in Kenya.
It is highly likely that heavy use of antibiotics to treat

different infections, and urethral tract infections (UTI)
in particular, has selected for isolates carrying multiple



a

b

c

Figure 1 Occurrence of bla genes among isolates from different clinical backgrounds. 1a: Occurrence of bla genes among isolates from
blood, stool and urine, 1b: Occurrence of bla genes among isolates from inpatient and outpatient populations: 1c: Occurrence of bla genes
among isolates obtained in the 1990s and 2000s periods.
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bla genes such as those encountered in this study. Since
the antibiotic-use policy is rarely enforced in Kenya, and
since most prescriptions are issued without culture and
susceptibility data, β-lactam antibiotics are likely to be
glossily misused. This may partially explain why complex
phenotypes such as ESBL-, CMT- and pAmpC-like phe-
notypes were observed even among isolates from stool.
The current study also shows that 41% of the isolates
were resistant to at least one β-lactamase inhibitor. High
resistances to inhibitor antibiotics may emerge as a re-
sult of over-reliance on amoxicillin-clavulanic acid to
treat different infections in Kenya even without a valid
prescription. It is however interesting to note that the
prevalence of inhibitor resistant bla genes is still very
low among strains exhibiting an IRT-like phenotype.
Similar studies conducted in Spain reported a similar
low prevalence of IRTs [29,30]. The only true IRT
reported in this study was TEM-103 while majority
(75%) of isolates with an IRT-like phenotype carried a
combination of blaTEM-1 + blaOXA-1. These two genes
were also frequently detected in isolates exhibiting a
combination of an ESBL- and CMT-like phenotypes.
However, blaOXA-1 and blaTEM-1 were also detected in
isolates susceptible to inhibitors. We speculate that be-
sides conferring resistance to narrow spectrum penicil-
lins, some TEM-1 and OXA-1 may be implicated in
resistance to other classes of antimicrobials such as vari-
ous generations of cephalosporins and possibly, β-lactam
/β-lactamase inhibitor combinations. These hypothesis is
partially based on findings from a recent study con-
ducted in Kenya that described novel blaOXA-1 enzymes
in Salmonella strains that contain promoter mutations
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that confer resistance to broad-spectrum β-lactam anti-
biotics including β-lactamase inhibitors [23]. Further-
more, studies conducted elsewhere have also reported
resistance to multiple β-lactam antibiotics due to pro-
moter mutations that result to over-production of TEM-
1 enzymes [30]. It is therefore important to further in-
vestigate genetic basis of resistance and the role of these
otherwise narrow-spectrum β-lactamases (TEM-1 and
OXA-1) in mediating resistance to advanced classes of
β-lactam antibiotics in developing countries.
In the current study, we found a high diversity of

CMTs, yet these enzymes have been reported only in a
few countries [13]. It is possible that the ease of access
to β-lactam/β-lactamase inhibitor combinations in
Kenya without valid susceptibility data has selected for
strains with CMT genes that are rarely reported from
other countries. In contrast, majority of CTX-M- and
SHV-type ESBLs and CMY-type pAmpCs genes identi-
fied are those with a global-like spread pattern [31-39].
Similarly, TEM-52, the only TEM-type ESBL reported in
this study, is frequently reported in USA [39] and Eur-
ope [40]. The wide dissemination of genes encoding
these ESBLs and pAmpCs is attributed to physical asso-
ciation between these genes and mobile genetic elements
such as ISEcp1, transposons and conjugative plasmids
[41-43]. Such genetic affiliations further underline the
potential of these genes described in this study to spread
to susceptible strains through horizontal gene transfer
mechanisms.

Conclusions
This study demonstrates the need to combine phenotypic
and molecular methods in order to understand import-
ant aspects of resistance to β-lactam antibiotics in devel-
oping countries. We recommend that measures be put in
place to minimize possible exchange of strains between
hospitalized and non-hospitalized patients. Prudent use
of β-lactam antibiotics in developing countries should be
advocated and in such countries, the existing empiric
treatment regimes should be revised occasionally in
order to reflect prevailing resistance phenotypes. Such
measures may help to preserve the potency of β-lactam
antibiotics and improve success of chemotherapy. Finally,
the diversity of bla genes described in this study is rela-
tively high and majority of genes in circulation among E.
coli strains investigated have a global-like spread. We
recommend that attempts be made to investigate the role
of Africa and other developing countries as sources or
destinations of β-lactamase-producing strains.

Methods
Bacterial strains
Between 1992 and 2010, our laboratory at the KEMRI
Centre for Microbiology Research received 912 E. coli
isolates from 13 health centres in Kenya. All the 912 iso-
lates were resistant to penicillins alone (e.g. ampicillin),
or a combination of penicillins and different classes of
β-lactam antibiotics. These isolates were from urine
(395), blood (202), stool (315) and were obtained from
confirmed cases of urethral tract infections (UTIs), septi-
caemia and diarrhoea-like illnesses respectively. Out of
the 912 isolates, 255 (28 %) were obtained between 1992
and 1999 while 657 (72 %) were obtained between 2000
and 2010. This difference was as a result of an increase
in isolation rates as a result of better detection and
screening techniques in recent years. These isolates were
obtained from 350 patients seeking outpatient treatment
and 562 were from hospitalised patients. Upon receipt,
the isolates were sub-cultured on MacConkey agar
(Oxoid, Basingstoke, U`K) and species identification
done using standard biochemical tests as described be-
fore [44]. Ethical clearance to carry out this study was
obtained from the KEMRI/National Ethics Committee
(Approval: SSC No. 1177).

Antimicrobial susceptibility profiles
Antimicrobial susceptibility tests were performed for all
the 912 isolates using antibiotic discs (Cypress diagnos-
tics, Langdorp, Belgium) on Mueller Hinton agar
(Oxoid, Basingstoke, United Kingdom). E. coli ATCC
25922 was included as a control strain on each test occa-
sion. Susceptibility tests were interpreted using the Clin-
ical and Laboratory Standards Institute (CLSI) guidelines
[45]. The antibiotics included in this panel were: - ampi-
cillin (AMP, 10 μg), oxacillin (OXA, 30 μg), amoxicillin
(AML, 30 μg ), cephalothin (KF, 30 μg), cefuroxime
(CXM 30 μg), cefotaxime (CTX, 30 μg) and ceftazidime
(CAZ, 30 μg). Other antibiotics included cefepime (FEP,
30 μg), aztreonam (AZT, 30 μg), and cefoxitin (FOX, 30
μg). β-lactam/β-lactamase inhibitor combinations
included amoxicillin/clavulanic acid (AMC, comprising
amoxicillin 20 μg and clavulanic acid 10 μg), ampicillin/
sulbactam (AMS) combinations in rations of 20 μg and
10 μg respectively, and piperacillin/tazobactam (TZP) in
potency ratio of 100/10 μg respectively. Imipenem (IM
30 μg) was used to test susceptibility to carbapenems.

Detection and Interpretation of β-lactamase phenotype
Two strategies were used for detection of β-lactamase
phenotypes as detailed in the CLSI guidelines [45], and
in other related studies [46]. The first strategy was the
double-disc synergy test (m-DDST) in which the β-
lactam antibiotics were placed adjacent to the amoxicil-
lin/clavulanic (AMC) disc at inter-disc distances (centre
to centre) of 20 mm. A clear extension of the edge of
the disc zones towards the AMC (ghost zones or zones
of synergy) was interpreted as positive for ESBL produc-
tion. In the combined disc method (CDM), tests were
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first done using β-lactam antibiotics and then repeated
using discs containing combinations of β-lactam/β-lacta-
mase inhibitors. A result indicating a ≥ 5 mm increase in
zone diameter for the β-lactam/β-lactamase inhibitor
disc was interpreted as production of ESBLs [45,46]. The
results from the m-DDST and CDM methods were also
used for empiric categorization of strains into NSBL-,
IRT-, ESBL- CMT- and pAmpC-like β-lactamase pheno-
types as detailed before [5].

PCR detection of β-lactamase genes
Preparation of DNA used as template in PCR reactions
was obtained by boiling bacteria suspension from an 8
hr culture at 95 °C for 5 minutes. The supernatant was
stored at -20o C until further use. Subsequent PCR
amplifications were carried out in a final volume of 25
μL or 50 μL. A minimum of 5 μL of template DNA and
1 μL of 10 mM concentration of both forward and re-
verse primers were used in PCR reactions. Isolates from
our collection that had been found to carry various bla
genes in past studies [24,27,47], were used as positive
controls in PCR screening for genes of interest. Sterile
distilled water or E. coli strains susceptible to all β-
lactam antibiotics were used as negative controls. PCR
products were analyzed using electrophoresis in 1.5 %
agarose gels and stained with ethidium bromide.
Visualization of the PCR products was done under UV
light and the image recorded with the aid of a gel docu-
mentation system (Bio-Rad Laboratories, Hercules, CA,
USA).

Selection of isolates for further analysis
Isolates from each phenotype were selected for further
analysis using PCR and sequencing strategies. For phe-
notypes with a high number of isolates (i.e. more than a
hundred strains), at least 56% of the isolates were
selected for further analysis. In order to minimize bias,
the isolates selected from each phenotype were propor-
tion to the total number of isolates obtained during each
year of isolation (1992 to 2010). Similarly, the number of
isolates selected from urine, stool and blood specimen
was proportional to the total number of strains isolated
from each specimen-type obtained from both hospita-
lized and non-hospitalized patients. Using this criterion,
586 (64%) of the 912 isolates were selected for further
analysis. Regardless of the source phenotype, all the
selected isolates were investigated for carriage of the
complete panel of bla genes screened for in this study.

Screening for bla genes
The strains were screened for genes frequently reported
among members of family Enterobacteriaceae [11]. The
list of primers used is indicated in Table 4. Consensus
primers published in past studies were used for
screening for blaSHV and blaTEM [48,49], blaCTX-M [50]
and blaCMY [51]. Isolates positive using blaCTX-M consen-
sus primers were screened using primers specific for
CTX-M group I to IV as described in a previous study
[52]. Isolates positive using the blaCMY primers were ana-
lyzed using primers for blaCMY-1-like and blaCMY-2-like
genes [53]. Detection of other β-lactamase genes was
done as previously described for blaOXA-like [53,54],
blaPER-like [55] , blaACC-like [53], blaVEB-like [56], and
blaDHA-like genes [57].

Sequencing
Amplicons used as template in sequencing reactions
were purified using the QIAquick PCR purification kit
(Qiagen Ltd., West Sussex, UK). Bi-directional sequen-
cing of the products was done using the DiDeoxy chain
termination method in ABI PRISM 310 automatic sequen-
cer (PE Biosystems, Foster City, CA, USA). Consensus pri-
mers were used for sequencing except for blaCTX-M and
blaOXA genes that were sequenced using group-specific
primers. Translation of nucleotide sequences was done
using bioinformatics tools available at the website of the
National Center of Biotechnology Information on http://
www.ncbi.nlm.nih.gov. Alignment of the translated en-
zyme amino acid sequence was done against that of the
wild-type using the ClustalW program on http://www.ebi.
ac.uk [58]. Identification of enzyme mutations at amino
acid level was determined by comparing the translated
amino acid sequence with that of the wild-type enzyme
published at http://www.lahey.org/studies.
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