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Abstract

Background: Lactic acid bacteria are commonly marketed as probiotics based on their putative or proven health-
promoting effects. These effects are known to be strain specific but the underlying molecular mechanisms remain
poorly understood. Therefore, unravelling the determinants behind probiotic features is of particular interest since it
would help select strains that stand the best chance of success in clinical trials. Bile tolerance is one of the most
crucial properties as it determines the ability of bacteria to survive in the small intestine, and consequently their
capacity to play their functional role as probiotics. In this context, the objective of this study was to investigate the

comparative proteomics.

probiotic potential.

natural protein diversity within the Lactobacillus plantarum species with relation to bile tolerance, using

Results: Bile tolerance properties of nine L. plantarum strains were studied in vitro. Three of them presenting
different bile tolerance levels were selected for comparative proteomic analysis: L. plantarum 299 V (resistant),

L. plantarum LC 804 (intermediate) and L. plantarum LC 56 (sensitive). Qualitative and quantitative differences in
proteomes were analyzed using two-dimensional electrophoresis (2-DE), tryptic digestion, liquid chromatography-
mass spectrometry analysis and database search for protein identification. Among the proteins correlated with
differences in the 2-DE patterns of the bacterial strains, 15 have previously been reported to be involved in bile
tolerance processes. The effect of a bile exposure on these patterns was investigated, which led to the
identification of six proteins that may be key in the bile salt response and adaptation in L. plantarum: two
glutathione reductases involved in protection against oxidative injury caused by bile salts, a cyclopropane-fatty-
acyl-phospholipid synthase implicated in maintenance of cell envelope integrity, a bile salt hydrolase, an ABC
transporter and a FOF1-ATP synthase which participate in the active removal of bile-related stress factors.

Conclusions: These results showed that comparative proteomic analysis can help understand the differential
bacterial properties of lactobacilli. In the field of probiotic studies, characteristic proteomic profiles can be identified
for individual properties that may serve as bacterial biomarkers for the preliminary selection of strains with the best

Background

Research efforts are currently underway in order to bet-
ter understand the host-microbe interactions that occur
in the human gastrointestinal (GI) tract [1,2]. Evidence
suggests that the upset of the GI microflora balance
underlies many diseases and that therapies often start
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with the restoration of a healthy balance [3]. In this
respect, probiotics (i.e. “live organisms that, when admi-
nistered in adequate amounts, confer a health benefit on
the host” [4]) are gaining widespread recognition as new
prevention strategies or therapies for multiple GI dis-
eases [5].

Lactic acid bacteria (LAB) are indigenous inhabitants
of the human GI tract [6]. They also have a long history
of traditional use in many industrial and artisanal plant,
meat, and dairy fermentations. Based on their putative
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or proven health-promoting effects, these bacteria are
commonly marketed as probiotics [7]. Some LAB strains
have clearly been shown to exert beneficial health effects
[8]. However, these effects are known to be strain speci-
fic [9], and the underlying molecular mechanisms
remain poorly understood [10]. The level of evidence
provided varies greatly depending on studies, and effects
associated with most of the marketed products remain
unsubstantiated. Current legislations agree to call for
scientific substantiation of health claims associated with
foods, mainly through well-designed human intervention
clinical studies [11]. Therefore, scientific evidence that
would help understand the mechanisms behind the
activities of probiotics and narrow down the expensive
and time-consuming clinical trials to strains that stand
the best chance of success are of great interest. Such
evidence may include data from epidemiological studies,
from in vivo and in vitro trials, as well as from mechan-
istic, genomic and proteomic studies.

Proteomics plays a pivotal role in linking the genome
and the transcriptome to potential biological functions.
As far as probiotics are concerned, comparative proteo-
mics can be used in the identification of proteins and
proteomic patterns that may one day serve as bacterial
biomarkers for probiotic features [12]. Comparison of
differentially expressed proteins within the same strain
in different conditions have been performed, shedding
light on bacterial adaptation factors to GI tract condi-
tions, such as bile [13-16], acidic pH [18,19], and adhe-
sion to the gut mucosa [20,21]. On the other hand,
2-DE coupled with mass spectrometry (MS) has been
used to analyze bacterial protein polymorphisms and to
distinguish between closely related pathogenic organ-
isms [22-25], but this approach has rarely been
employed to compare strains based on their probiotic
features. We previously reported the first study of this
kind which highlighted key proteins involved in the
adhesion properties of Lactobacillus plantarum to
mucin [12]. Recently, hydrophobicity and cell agglutina-
tion properties in Bifidobacterium longum were investi-
gated through the protein patterns of four strains [26].
Both studies focused on cell surface properties related
to adhesion. To our knowledge, proteomics has not
been used to compare intra-species strains as regards
other GI tract adaptation factors.

Yet, the ability to survive exposure to bile is one of
the commonly used criteria to select potential probiotic
strains, since bile is a major challenge for bacteria enter-
ing the GI tract [4]. In addition to affecting membrane
characteristics, bile has numerous other effects on bac-
terial cells including detergent action, DNA damage,
acid, oxidative and osmotic stresses [27]. Thus, when it
comes to the study of bile stress, the overall bile, oxida-
tive, acid, detergent and salt (BOADS) stresses should
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be taken into account. Although mechanisms of survival
to bile stress are not fully understood, several genes and
molecules involved in this process have been indentified
in lactobacilli [28].

The latter remain the most prominent group of pro-
biotic bacteria, despite the increasing use of other gen-
era such as bifidobacteria. Widely studied with regard to
numerous properties, they represent a suitable bacterial
model. Among the most common species, L. plantarum
is part of a number of ethnic as well as commercial pro-
biotic preparations where it has a long history of safe
use [29]. In addition, it is an important member of the
GI tract microbiota and is a flexible and versatile species
with one of the largest genomes known within LAB [30].

The present paper investigates the natural protein
diversity within the L. plantarum species with relation
to bile tolerance and subsequent ability to resist GI tract
conditions. This investigation is based on the study of
the proteomic profiles of three L. plantarum strains
selected according to their in vitro bile tolerance
properties.

Results

In this study, three strains showing different levels of
bile tolerance ability in vitro were chosen out of nine
L. plantarum subsp. plantarum cultures (Table 1). The
selected strains were cultured in non-stressing condi-
tions so as to investigate their inherent proteome differ-
ences, with a specific focus on proteins that may play a
role in bile tolerance processes. In addition, changes in
protein expression during bile salt exposure were ana-
lyzed in order to assess the effective involvement of the
proteins of interest in the bile stress response of the
three strains.

Bile salt tolerance

L. plantarum strains were exposed to bile stress using
increasing Oxgall concentrations. The effects of 0.5%,

Table 1 Sources of bacterial strains

Bacterial strain® Provider Origin

LC 56 Aerial® Corn silage

LC 660 Aerial® Grass silage

WHE 92 Aerial® Munster cheese

LC 800 Aerial® Horseradish

LC 804 Aerial® Olives

CECT 748" CECT® Pickled cabbage

CECT 749 CECT® Pickled cabbage

CECT 4185 CECT® Silage of vegetable matter
299 V Probid Human intestinal mucosa

a
b,
C
d

Identification based on PCR amplification targeting the recA gene [51].
Aerial, lllkirch, France.

Spanish Type Culture Collection, Valencia, Spain.

Probi, Lund, Sweden.
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1.0%, 1.8% and 3.6% Oxgall (w/v) on the maximum
growth rates were investigated (Table 2). Two-way ana-
lysis of variance (ANOVA) revealed significant effects of
both the bile concentration and the strain (p < 0.05).
A stepwise increase in the Oxgall concentration resulted
in a gradual decrease in the maximal growth rate for all
strains except L. plantarum CECT 748" and CECT 749
(p < 0.05). Strains could be assigned to three groups
according to their bile sensitivity. L. plantarum 299 V
and LC 660 showed the best ability to grow in Oxgall-
supplemented culture broth with relative growth rates
that ranged from 85.5 + 3.0 to 97.1 + 1.4%, as compared
to standard conditions. L. plantarum LC 56 was the
most sensitive strain to bile salts, with relative growth
rates from 19.9 + 3.7 to 58.2 + 0.5%. The six other
strains tested were moderately bile tolerant and had
relative growth rates in the range of 66.8 + 2.5 to 81.7 +
1.0%. L. plantarum LC 56 (highest decrease in growth
rate), L. plantarum LC 804 (intermediate decrease in
growth rate) and L. plantarum 299 V (smallest decrease
in growth rate) were used for comparative proteomic
analysis in standard conditions and following bile salt
exposure.

Comparative proteomic analysis of L. plantarum strains in
standard growth conditions

L. plantarum LC 56, LC 804 and 299 V were cultured
under non-stressing conditions and cell proteins were
extracted. Protein loads of 150 ug representing total
proteomes of each of the three strains were separated by
2-DE. Three independent biological replicates were car-
ried out per strain. Figure 1(A-C) shows representative

Table 2 Effect of bovine bile concentration on the
relative growth rates of L. plantarum strains

Strains Relative growth rate* (% p) with Oxgall concentrations
(% [w/v])
Control 0.5 1.0 1.8 3.6
299 V 100 971 +14° 963 +12% 935+29° 912+ 23°
LC 660 100 939 + 08 942 +20° 896+ 1.7° 855+ 30°
CECT 748 100 817 +10° 803 +06° 805+ 18° 79.1 + 09°
CECT 100 785 +22% 783 +07° 745+ 26 716+ 2.1°
4185 c c
WHE 92 100 791 % 245 762 £11° 723 +43° 669 + 0.5%
LC 804 100 762+ 179 766 +09° 728+ 13° 684 + 15°
LC 800 100 740 £36% 679+ 16% 663+ 207 665 + 16°
CECT 749 100 696 + 19° 689+ 329 681+ 149 668 + 24°
LC 56 100 582 + 050 455+ 25° 394+ 14° 199+ 37

*Data are expressed as a percentage of the growth rate (h™') obtained in the
absence of bile, which was assigned a value of 100%. Means + standard
deviations of three independent experiments with three replicates per assay
are given. Means in the same column with different letters (a through f) differ
(p < 0.05).
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2-DE patterns for the three strains when cultured in
standard conditions. Inter-strain discrepancies between
inherent proteomic patterns were investigated with
regard to the different bile tolerance abilities of the
strains, so as to pinpoint proteins that may be impli-
cated in the bile tolerance process.

Although the overall inherent protein patterns of the
three L. plantarum strains were similar, 90 out of an
average of 400 detected protein spots displayed differ-
ent abundance levels in standard conditions (Addi-
tional file 1). The corresponding gel spots were excised
and subjected to tryptic digestion followed by liquid
chromatography-mass spectrometry (LC-MS) analysis
and proteomic database search using Phenyx and
OMSSA to elucidate their identity and likely function.
Proteins in a total of 80 spots were identified, some of
which were found in more than one spot, indicating
the presence of protein isoforms. Proteins fell into 13
functional categories, covering most of the biochemical
functions encountered in bacterial cells. Sequence
alignment analysis focused on the three sequenced L.
plantarum strains WCFS1, J]DM1 and ATCC 14917
revealed a systematic occurrence of the corresponding
genes with high levels of similarity (> 98%, results not
shown).

Among the proteins with differential abundance
levels between strains that were identified in non-stres-
sing conditions, 15 have previously been reported to be
involved in BOADS stress tolerance processes (Table
3): (i) five proteins (o-small heat shock protein 1
(Hsp1), spot 1; bile salt hydrolase 1 (Bshl), spot 11;
glucose-6-phosphate 1-dehydrogenase (Gpd), spot 26;
GroEL chaperonin (GroEL), spot 76; FOF1 ATP
synthase subunit 6 (AtpH), spot 90) were exclusively
detected or significantly more abundant (p < 0.05) in
the resistant strain (299 V); (ii) three proteins (glycine/
betaine/carnitine/choline ABC transporter (OpuA),
spot 18; glutathione reductase 1 (GshR1), spot 24; and
ATP-dependent Clp protease proteolytic subunit, spot
77) were present at the same level in both resistant
and intermediate strains (299 V and LC 804), but not
observed in the sensitive strain (LC 56); (iii) two pro-
teins (o.-small heat shock protein 3 (Hsp3), spot 4; and
bifunctional GMP synthase (GuaA), spot 80) were pre-
sent solely or to a higher extent in the intermediate
strain; (iv) one protein (glutathione reductase 4
(GshR4), spot 19) showed the same expression level in
the resistant and sensitive strains, while it was barely
detected in the intermediate strain; (v) two proteins
(stress-induced DNA binding protein (Dps), spots
34 and 41; cyclopropane-fatty-acyl-phospholipid
synthase (Cfa2), spots 64 and 72) displayed different
expression levels between strains depending on the
considered isoform; and (vi) two proteins (dTDP-4-
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Figure 1 2-DE gels of whole cell proteomes from L. plantarum LC 56, LC 804 and 299 V cultured in standard and bile-stressing
conditions. The figure shows representative 2-DE gel pictures (pH range: 4-7) of whole-cell protein lysates from early stationary phase of L.
plantarum LC 56 (A and D), LC 804 (B and E), and 299 V (C and F) cultured without (A-C) and with (D-F) 3.6% (w/v) Oxgall. Spots exhibiting
differential expression between strains in standard growth conditions and identified by LC-MS analysis are labeled (A-C), with a focus on
expression changes after bile exposure for proteins previously reported as being involved in bile tolerance processes (D-F).
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Table 3 Impact of a 3.6%-Oxgall exposure on specific proteomic patterns putatively related to bile tolerance

Functional Protein Stress”?  Gene® Spot Normalized volume with 3.6% Oxgall® Variation factor: bile
category number vs. standard
conditions®
LC 56 LC 804 299 V LC 56 LC 804 299V
Translation, Ribosomal protein B [14] lp_0737 62 0.049 + 0.004 - - -3.2 - -
ribosomal structure S30EA
and biogenesis
Posttranslational a-Small heat shock O [55] lp_0129 1 0952 + 0059 1.008 = 0.190 0.597 + 0.082 34 114 2.1
modification, protein (hspT)
protein turnover,
chaperones
lp_3352 4 - 1172 £ 0159 0744 £ 0171 - 1.7 22
(hsp3)
Chaperonin GroEL B [14] 1p_0728 76 27427 + 1216 14137 £0.142 11931 + 0715 3.7 19 -1.0*
(groEL)
ATP-dependent Clp D [56] Ip_0786 77 - 0360 + 0.072  0.282 + 0.020 - 20 1.7
protease (clpP)
Energy production FOF1 ATP synthase B [44] lp_2367 90 - 0.243 + 0051 0.110 £ 0.012 - 4.3 1.2%
and conversion subunit delta
Glutathione O [57] Ip_3267 19 0.179 £ 0023 0011 +£0001 0210+ 0008 -1.8 -1.8 -13
reductase (gshR4)
lp_0369 24 - 0314 +£ 0.025 0.148 + 0.009 - 1.1%* -16
(gshR1)
Carbohydrate Glucose-6-phosphate B [14], O Ip_2681 26 - 0.098 + 0.005 0.116 + 0.025 - -1.2% -14
transport and 1-dehydrogenase  [58] (gpd)
metabolism
Amino-acid Glycine/betaine/ B [48],S Ip_1607 18 - 0.034 + 0003 0.081 + 0.007 - -16 15
transport and carnitine/choline [58] (opuA)
metabolism ABC transporter
Nucleotide Bifunctional GMP A [35] lp_0914 80 0.039 +£ 0003 0.104 £ 0009 0209 + 0016 -76 -18 125
transport and synthase/glutamine (guaA)
metabolism amidotransferase
protein
Inorganic ion Stress-induced DNA O [59] lp_3128 34 0278 £ 0026 0.074 £ 0.003 1212 +0.124 26 2.0 1.0*
transport and binding protein (dps)
metabolism
41 0957 + 0077 - - 25 - -
Cell wall/ Bile salt hydrolase B [49] lp_3536 1" - - 0.061 + 0.008 - - -26
membrane/ (bshT)
envelope
biogenesis
dTDP-4-Dehydro- O, D [60] 1p_1188 42 0.151 + 0.010 - - 1.1%* - -
rhamnose 3,5- (rfbC)
epimerase
Cyclopropane-fatty- A [42,43] Ip_3174 64 0.0312 £ 0.002 0.069 + 0.007 - -6.9 -2.5 -
acyl-phospholipid (cfa2)
synthase
72 - 0.046 + 0.004 0.052 + 0.001 - -26 1.0*

a) Reported implication of the protein in bile (B), oxidative (O), acid (A), detergent (D) and/or salt (S) stress tolerance with the corresponding references.

b) Gene accession number in the NCBI database for L. plantarum WCFS1 with the general symbol of the gene in brackets.

<) Normalized relative volumes, expressed as a percentage of total valid spots. Values are means + standard deviations; n > 3 for each strain. -, not detected.
d) r = volume with bile salt/volume without bile salt for the considered strain. When r > 1, variation factor = r. When r < 1, variation factor = -1/r.

* means of volumes with and without Oxgall are not statistically different (Student’s t test for paired samples, p < 0.05).

These patterns gather differentially expressed proteins in standard growth conditions among L. plantarum LC 56, LC 804, and 299 V that have previously been
reported to be involved in BOADS stress tolerance based on dedicated mutant analysis. The impact of exposure to bile is assessed through protein expression
comparison for early stationary cells cultured with and without Oxgall, using normalized relative volumes. Normalized volumes in standard conditions are listed
in Additional file 1.
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dehydrorhamnose 3,5-epimerase (RfbC), spot 42; and
ribosomal protein S30EA, spot 62) were only detected
in the sensitive strain. These 15 proteins belonged to 8
functional categories, including cell membrane biogen-
esis, molecular transport, energy metabolism, as well as
chaperone activity.

Bile influence on expression levels of proteins reportedly
involved in bile tolerance

Cells were cultured in stressing conditions using 3.6%
Oxgall for 14 h (strain 299 V), 16 h (strain LC 804) and
20 h (strain LC 56), which allowed the harvesting of all
cells at the early-stationary phase, as in non-stimulating
conditions (data not shown). As protein expression is
growth-phase dependent, having cells in a comparable
physiological state was in fact key in this investigation.
Analysis of changes in protein expression during bile salt
exposure was focused on the 15 proteins previously
reported to play a role in BOADS stress tolerance. Figure
1(D-F) illustrates representative 2-DE patterns for the
three strains when cultured with 3.6% Oxgall. While
these patterns looked similar to each other, they were
quite different from those obtained in standard condi-
tions, suggesting quantitative changes for most of the
protein spots observed. Table 3 reports changes in spot
intensities between standard and bile stress conditions
for the 15 proteins of interest in this study. Thirteen out
of the 15 proteins linked to BOADS stress tolerance in
previous studies appeared to respond to the presence of
bile (absolute value of fold-change factor r > 1.5, as pre-
viously described [14]), suggesting a direct involvement
of these proteins in the bile tolerance process of the stu-
died L. plantarum strains. These proteins could be
divided into three groups. Three proteins showed higher
expression levels in stressing conditions: Hspl, spot 1
(2.1 <r < 34); Hsp3, spot 4 (1.7 < r < 2.2); and ClpP, spot
77 (1.7 < r < 2.0). Conversely, two other proteins were
repressed when challenged with Oxgall: Bsh1, spot 11 (r
= -2.6); and ribosomal protein S30EA, spot 62 (r = -3.2).
The third group includes eight proteins with modifica-
tions in expression levels that depended on strains
(OpuA, spot 18; GshR4, spot 19; GshR1, spot 24; GroEL,
spot 76; GuaA, spot 80; and AtpH, spot 90) or resulted in
a different expression of protein isoforms (Dps, spots 34
and 41; Cfa2, spots 64 and 72). The expression levels of
two proteins (Gpd, spot 26; and RfbC, spot 42) however
were not impacted following exposure to 3.6% Oxgall
(absolute value of variation factor r < 1.5), suggesting a
minor role for these in the bile tolerance process of the
considered L. plantarum strains.

Discussion
This paper reports the application of 2-DE and MS ana-
lysis to investigate LAB proteins that are key in the bile
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tolerance process, a major factor when it comes to pro-
biotics adaptation to the GI tract. Although 2-DE has
known limitations and only explores part of bacterial
proteomes as compared to other gel-less analyses [31], it
is a widely used and affordable technique which proved
to be valuable in discriminating strains according to
their bacterial features [22-25]. With regard to probiotic
research, two previous studies used a similar approach
to explore adhesion properties of L. plantarum [12] and
B. longum [26]. However, this is the first time that an
attempt is made towards getting a broad picture of bile
tolerance at the species level rather than focusing on a
single strain.

L. plantarum, a versatile species with marketed pro-
biotic strains, was chosen as a model for this study. An
in vitro test was used to assess bile tolerance of nine
strains, including L. plantarum 299 V, a probiotic with
outstanding bile resistance properties [32]. These prop-
erties were confirmed in our study, as this strain showed
the best ability to grow in bile supplemented culture
broths. Considerable variations in growth rates were
observed between strains, with the highest effect of bile
on L. plantarum LC 56, which is in accordance with
previous reports showing a strain-specific behavior of
LAB with regard to bile tolerance [33,34]. Strains LC 56
(weak bile tolerance), LC 804 (intermediate bile toler-
ance) and 299 V (strong bile tolerance) were selected
for the proteomic investigation. For that purpose, we
focused on the whole cell proteomes, since the ability of
an organism to tolerate bile may require a wide array of
proteins implicated in either membrane- or cytosol-
based functions and mechanisms [27].

The differentially expressed proteins among the three
selected strains cultured in standard conditions all
appeared to be encoded by highly conserved genes in
the L. plantarum species. These core-genome proteins
are of great interest in the search for bacterial biomar-
kers as their relative abundance is likely to be assessed
for any L. plantarum strain. In our case, 10 proteins dis-
played increasing levels of expression from the sensitive
strain (LC 56) to the resistant one (299 V), suggesting a
positive correlation of these proteins with bile resistance.
Conversely, 4 proteins showed decreasing levels of
expression as the considered strain was more tolerant to
bile, indicating a link with bile sensitivity. Therefore,
these proteins might represent potential biomarker can-
didates of bile tolerance in L. plantarum and should be
further studied, especially the ones with unknown func-
tions (protein of unknown function lp_2652, spot 31;
putative alkaline shock proteins 1 and 2, spots 3 and 2
respectively).

Particular interest was in differentially expressed pro-
teins with a reported putative involvement, not specifi-
cally in bile tolerance, but in the overall BOADS stress
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tolerance, since the deleterious effects of bile not only
include a detergent action, but also low-pH, oxidative
and osmotic stresses [27]. This led to the identification
of 15 proteins likely to be implicated in bile tolerance of
the selected strains. Two of these proteins (GuaA and
ribosomal protein S30EA) have previously been nega-
tively correlated to constitutive acid [35] and bile [14]
tolerance, respectively, suggesting they could impart
bacterial sensitivity to theses stress factors. Interestingly,
they were not detected (ribosomal protein S30EA) or
naturally underexpressed (GuaA) in the resistant strain.
On the other hand, the 13 remaining proteins have been
linked to BOADS stress resistance in previous studies.
Ten of them were overexpressed in the resistant or
intermediate strains, while only one of them displayed
higher expression levels in the bile sensitive strain.
These results showed that the natural protein diversity
observed among L. plantarum strains cultured in stan-
dard conditions can reflect their ability to tolerate bile.
The more resistant a strain is to bile, the more it natu-
rally expresses proteins that can help in the bile resis-
tance process, but also the less it produces proteins that
may impart sensitivity to this stress. These proteins
could therefore constitute an inherent and characteristic
proteomic profile that is indicative of bile tolerance.

To confirm the putative involvement of the 15 pro-
teins of interest in the bile tolerance process and get an
overview on how bile salts affect their levels of expres-
sion, proteomic analysis of strains response to bile expo-
sure was performed. Thirteen proteins appeared to be
directly implicated in bile stress adaptation, since their
expression was significantly affected by exposure to bile
salt (p < 0.05). Five of them (ClpP, Dps, GroEL, Hspl,
and Hsp3) are general stress-response proteins involved
in repair and protection of proteins and DNA. They
were up-regulated in response to bile challenge, which
is in accordance with previous findings [14,16,36-38].
This set of proteins intervenes in numerous stress-man-
agement response systems, suggesting they have unspe-
cific contributions to bile stress tolerance, which may
result in multifaceted stress-dependent mechanisms of
action, as this was recently reviewed for Dps [39]. Two
other proteins (GuaA and ribosomal protein S30EA) are
part of regulatory systems modulating protein transla-
tion during environmental stresses. GuaA, involved in
guanine nucleotide metabolism, indirectly governs intra-
cellular GTP level responsible for translation efficiency
[35], while ribosomal protein S30EA limits protein
synthesis by reducing translation initiation [40]. Both
proteins were down-regulated in the sensitive strain fol-
lowing bile exposure, which is consistent with previous
studies [14,38]. All in all, 7 out of the 13 proteins
directly involved in bile tolerance of the three-selected
L. plantarum strains were not dedicated to one of the
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damaging effects of bile, but covered a wide range of
environmental stresses instead.

In contrast, other factors contribute in a specific way
to bile tolerance. This is the case of GshR1 and GshR4
which help protect the cell against oxidative injury [41].
This coincides with the lower global levels of glu-
tathione reductases in the sensitive strain in both stan-
dard and stimulating conditions found in our study.
Another protein, the Cfa2, catalyzes the cyclopropane
ring formation in phospholipid biosynthesis, which may
help maintain integrity of the cell envelope. In Escheri-
chia coli, the cytoplasmic membrane of a cfa-mutant
displayed increased overall permeability to protons com-
pared to the native strain [42]. This could for instance
explain the higher acid sensitivity of a cfa-mutant of L.
acidophilus NCFM [43]. In our study, a Cfa2 isoform
was absent in the sensitive strain, while another isoform
was not detected in the resistant one, suggesting differ-
ent functional properties of the isoforms with regard to
bile tolerance.

Another specific mechanism of bile adaptation is the
active removal of bile-related stress factors. Such is the
case of the FOF1-ATP synthases which facilitate the
extrusion of protons from the cytoplasm by proton
motive force [28]. Previous findings reported that a bile-
adapted B. animalis strain was able to tolerate bile by
inducing proton pumping by a FOF1-ATP synthase,
therefore tightly regulating the internal pH [44]. In our
study, a representative FOF1-ATP synthase, AtpH, was
absent in the weak strain and was up-regulated in the
intermediate strain, which is consistent with the up-reg-
ulation of the corresponding gene reported for L. plan-
tarum WCFS1 when exposed to porcine bile [45]. ABC
transporters are also a major part of the efflux systems
involved in the transport of harmful-compounds and
cell detoxification [46]. A representative ABC transpor-
ter, OpuA, was more abundant in the resistant strain,
less abundant in the intermediate one, and not detected
in the sensitive one. This protein is known to be implied
in the L. plantarum response to osmotic stress, one of
the numerous deleterious effects of bile [47]. In addi-
tion, deletion of an opuA gene in Listeria monocytogenes
was shown to significantly increase bacterial sensitivity
to physiological concentrations of human bile [48]. This
protein is therefore likely to be a key determinant of the
high bile resistance of strain 299 V.

When it comes to bile tolerance, Bsh is probably what
first comes to mind, since it involves the direct hydrolysis
of bile salts. Although the ecological significance of
microbial Bsh activity is not yet fully understood, the sug-
gestion was made that it may play a major detoxification
role [27]. L. plantarum strains carry four bsh genes (bshl
to bsh4). Bsh2, bsh3 and bsh4 are highly conserved
among L. plantarum species, while bshl is not and seems
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to be the major determinant of the global Bsh activity of
L. plantarum strains. Besides, a bsh1-mutant of L. plan-
tarum WCES1 displayed a decreased tolerance to gly-
cine-conjugated bile salts [49]. In our study, a Bshl
homologue could only be found in the most resistant
strain in standard conditions, but its amount decreased
following the strain’s exposure to bile. This result con-
trasts with the bshlI gene up-regulation in L. plantarum
WCES1 following bile challenge [45]. Strains from L.
acidophilus and L. salivarius on the other hand did not
seem to up-regulate their Bshl production following bile
exposure [38,50]. Such discrepancy in regulation trends
of bsh genes suggests that, depending on the considered
strains and species, Bsh activity may or may not be a
major determinant of bile resistance.

Finally, it appeared that the six bile tolerance factors
described above may contribute in various ways to the
bile tolerance of L. plantarum strains. In particular,
strains appeared to regulate key proteins differently fol-
lowing exposure to bile, which suggests that several stra-
tegies coexist in the bile adaptation process of L.
plantarum species, some strains favoring certain specific
pathways, while others downplaying them.

Conclusions

This work used comparative and functional proteomics
to analyze cell-free protein extracts from three L. plan-
tarum strains with different bile resistance properties.
This approach showed that the natural protein diversity
among L. plantarum strains cultured in standard condi-
tions can reflect their ability to tolerate bile. The results
provided an overview of proteomic patterns related to
bile tolerance, and showed a clear effect of bile salts on
the level of expression of certain proteins within these
patterns. Particularly, 13 out of the 15 proteins of inter-
est were shown to be directly involved in the bile toler-
ance of L. plantarum, six of which could be part of
specific bile adaptation pathways, including protection
against oxidative stress (GshR1 and GshR4), mainte-
nance of cell envelope integrity (Cfa2), and active
removal of bile-related stress factors (Bshl, OpuA, and
AtpH). Also, analysis of changes in protein expression
gave insight into the way the different strains use these
pathways for their survival, suggesting complex, strain-
specific and probably conflicting molecular mechanisms
in the cell’s adaptation strategy to bile.

Finally, this study showed that comparative proteomic
analysis can help understand the differential bacterial
properties of LAB. In the field of probiotic studies, charac-
teristic proteomic profiles can be identified for individual
properties which may serve as bacterial biomarkers for the
preliminary selection of strains with the best probiotic
potential. This would certainly increase the chances of
success of clinical trials through a more focused approach.
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Methods

Strain characterization and standard culture conditions
Lactobacillus strains used in this study were identified at
the species level by recA PCR (data not shown) [51]. All
cultures were maintained as frozen stocks held at -80°C
in Cryobank cryogenic beads (Bio-Rad, Hercules, CA,
USA). For experimental use, strains were cultured anae-
robically (Anaerocult A system, Merck, Darmstadt, Ger-
many) at 37°C in Man-Rogosa-Sharpe broth (Biokar,
Beauvais, France) supplemented with 0.05% (w/v) L-
cysteine hydrochloride monohydrate (MRSC; Merck) to
early stationary phase, using three successive subcultures
(1% v/v inoculation; 12-15 h).

Bile salt tolerance

Tolerance to bile was assessed by investigating the ability
of strains to grow in the presence of different concentra-
tions of bovine bile (Oxgall, Sigma-Aldrich, St Louis,
MO, USA), as previously described [52]. Fresh cultures
were inoculated (0.1%, v/v) into MRSC broth containing
0.5%, 1.0%, 1.8%, and 3.6% (w/v) Oxgall and incubated
anaerobically at 37°C. Bacterial growth was monitored in
honeycomb plates (Oy Growth Curves AB, Helsinki, Fin-
land) by measuring the optical density at 600 nm (ODgg)
every 30 min for 48 h using an automated turbidimetric
system (Bioscreen C MBR, Oy Growth Curves AB).
Three independent experiments were carried out and
each assay was performed in triplicate. Comparison of
cultures was based on their growth rates in each broth,
expressed as a percentage of that of the control which
was assigned a value of 100% [52]. Using Statgraphics
plus 5.1 software (Manugistics, Rockville, MD, USA),
data were subjected to two-way ANOVA with strain and
bile concentration as variables. Multiple comparison test
using least significant difference procedure was carried
out to compare means for which the ANOVA test indi-
cated significant mean differences (p < 0.05).

Whole cell protein extraction

The following experiments (including 2-DE) were per-
formed for bacterial cells cultured in two different
broths (MRSC and MRSC supplemented with 3.6%
Oxgall). Early stationary phase cells from a 10-mL
broth culture were harvested and washed three times
with phosphate-buffered saline (PBS). Cell pellets were
resuspended in 2 mL of PBS and cryobeads of these
suspensions were prepared in liquid nitrogen. The
bacterial beads were ground in liquid nitrogen using a
cryogenic grinder (6870 Freezer/Mill, Spex CertiPrep,
Stanmore, UK) with three steps of 3 min at a rate of
24 impacts/s. After sample centrifugation (5000 g for
5 min, 4°C), supernatants were filtered through a
0.45-um pore size filter (Chromafil PET; Macherey-
Nagel, Diren, Germany). Protein purification was
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carried out with Trizol reagent (Euromedex, Souffel-
weyersheim, France) as previously described [12]. Pro-
tein concentrations were determined using Bradford
protein assay (Bio-Rad) according to the manufac-
turer’s instructions.

2-DE

Protein extracts (150 pg) were loaded onto 17-cm strips
with a pH range of 4 to 7 (Bio-Rad), focused for 60,000
V.h, and then separated on a 12% SDS-polyacrylamide
gel as reported previously [12]. The gels were stained
with Bio-Safe Coomassie (Bio-Rad) and scanned on a
GS-800 Calibrated Densitometer (Bio-Rad).

Image analysis

Image analysis of the 2-DE gels was performed using the
PD Quest 8.0.1 software (Bio-Rad). Three gels were pro-
duced from independent cultures of each strain and
only spots that were present on the three gels were
selected for inter-strain comparison. Spot intensities
were normalized to the sum of intensities of all valid
spots in one gel. For analysis of changes in protein
expression during bile salt exposure, a protein was con-
sidered to be under- or overproduced when changes in
normalized spot intensities were of least 1.5-fold at a
significance level of p < 0.05 (Student’s t test for paired
samples), as previously described [14]. Regarding pro-
teome comparison between strains, proteins were con-
sidered differentially produced when spot intensities
passed the threshold of a twofold difference (one-way
ANOVA, p-value < 0.05), as described previously [12].

LC-MS analysis

Spots of interest were subjected to tryptic in-gel diges-
tion and analyzed by chip-liquid chromatography-quad-
rupole time of flight (chip-LC-QTOF) using an Agilent
G6510A QTOF mass spectrometer equipped with an
Agilent 1200 Nano LC system and an Agilent HPLC
Chip Cube, G4240A (Agilent Technologies, Santa Clara,
CA, USA), as described previously [12].

Briefly, one microliter of sample was injected using an
injection loop of 8 uL, a loading flow rate of 3 puL/min
for 4 min and a solvent made of ultra-pure water and
acetonitrile (HPLC-S gradient grade, Biosolve, Valkens-
waard, The Netherlands) (97/3 v/v) with 0.1% formic
acid (98-100%, Merck). For the analytical elution, a 24
min gradient from 3 to 60% of acetonitrile in ultra-pure
water with 0.1% formic acid was applied at a flow rate
of 300 nL/min. ESI in positive mode with 1850 capillary
voltage was used. The data were collected in centroid
mode using extended dynamic range at mass range of
m/z 200-2000 both in MS1 and MS/MS and using two
method with different scanning speed: one slow with a
scan rate of 1 spectra/s for both MS1 and MS/MS, and
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one fast scan rate of 0.25 spectra/s for both MS1 and
MS/MS. For data acquisition and data export, Mas-
sHunter version B.02.0.197.0 (Agilent Technologies) was
used.

Protein identification

After data acquisition, files were uploaded to the in-
house installed version of Phenyx (Geneva Bioinfor-
matics, Geneva, Switzerland) for searching the NCBInr
(r. 20090608) database with the following criteria: taxon-
omy: bacteria; scoring model: ESI-QTOF; parent charge:
+2, +3 (trust = medium); single round; methionine oxida-
tion, cysteine carboxyamidomethylation (cysteine treated
with iodoacetamide), and phosphorylation as partial
modifications; trypsin as digestion enzyme; allowance of
two missed cleavages; cleavage mode: normal; parent ion
tolerance: 0.6 Da; peptide thresholds: length >6, score
threshold =5.0, identification significance p-value < 1.0E-
4, accession number score threshold 6.0, coverage thresh-
old =0.2, identified ion series: b; b++;y; y++; allowance of
conflict resolution. A publicly available MS/MS search
algorithm (Open Mass Spectrometry Search Algorithm,
OMSSA, [53]) was used with the same search criteria as
described above to confirm protein identities and limit
the risk of false positives. On the basis of consensus scor-
ing, only proteins recognized by both database search
algorithms at a false positive rate of 5% were considered
to be correctly identified [54].

Additional material

Additional file 1: Identification of differentially expressed protein
spots among L. plantarum LC 56, LC 804 and 299 V in standard
growth conditions. The table lists proteins with at least a twofold
difference of expression (p-value < 0.05) between the three strains
cultured in MRSC. Identification was achieved following excision of
differentially expressed spots between gels, tryptic digestion of the
corresponding proteins, analysis of the peptide solutions obtained with
LC-MS, and proteomic database search. Scores result from proteomic
database search using Phenyx.
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