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Abstract

Background: The Ferric uptake regulator (Fur) is a transcriptional regulator that controls iron homeostasis in
bacteria. Although the regulatory role of Fur in Escherichia coli is well characterized, most of the studies were
conducted under routine culture conditions, i.e., in ambient oxygen concentration. To reveal potentially novel
aspects of the Fur regulon in Salmonella enterica serovar Typhimurium under oxygen conditions similar to that
encountered in the host, we compared the transcriptional profiles of the virulent wild-type strain (ATCC 14028s)
and its isogenic Δfur strain under anaerobic conditions.

Results: Microarray analysis of anaerobically grown Δfur S. Typhimurium identified 298 differentially expressed
genes. Expression of several genes controlled by Fnr and NsrR appeared to be also dependent on Fur.
Furthermore, Fur was required for the activity of the cytoplasmic superoxide disumutases (MnSOD and FeSOD). The
regulation of FeSOD gene, sodB, occurred via small RNAs (i.e., the ryhB homologs, rfrA and rfrB) with the aid of the
RNA chaperone Hfq. The transcription of sodA was increased in Δfur; however, the enzyme was inactive due to the
incorporation of iron instead of manganese in SodA. Additionally, in Δfur, the expression of the gene coding for
the ferritin-like protein (ftnB) was down-regulated, while the transcription of the gene coding for the nitric oxide
(NO·) detoxifying flavohemoglobin (hmpA) was up-regulated. The promoters of ftnB and hmpA do not contain
recognized Fur binding motifs, which indicated their probable indirect regulation by Fur. However, Fur activation of
ftnB was independent of Fnr. In addition, the expression of the gene coding for the histone-like protein, H-NS (hns)
was increased in Δfur. This may explain the observed down-regulation of the tdc operon, responsible for the
anaerobic degradation of threonine, and ftnB in Δfur.

Conclusions: This study determined that Fur is a positive factor in ftnB regulation, while serving to repress the
expression of hmpA. Furthermore, Fur is required for the proper expression and activation of the antioxidant
enzymes, FeSOD and MnSOD. Finally, this work identified twenty-six new targets of Fur regulation, and
demonstrates that H-NS repressed genes are down-regulated in Δfur.

Background
The Ferric uptake regulator (Fur) is a metal-dependent
regulator of transcription and post-transcription in bac-
teria, which senses metal concentration and/or the
redox state of the cells (reviewed in [1]). The classical
model of the regulatory role of Fur depicts transcrip-
tional repression through ferrous iron that results in
Fur-Fe2+ binding to the operator site of a target gene

[2,3]. Fur-Fe2+ binding to DNA are presumed to be
homodimeric; however, multimeric complexes have
been reported [4,5]. In addition, the metal cofactor pre-
sent in vivo is controversial, due to the ability of the Fur
protein to bind different divalent cations, in vitro [6].
For example, Fur represses aerobactin biosynthesis using
ferrous iron, cobalt, or manganese [2]. Moreover, most
researchers studying Fur binding to promoter sequences,
in vitro, employ manganese instead of ferrous iron due
to the reactivity of ferrous iron with oxygen. However,
evidence exists that Fur regulates specific genes differ-
ently in the presence of ferrous iron or manganese [7].
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Fur also contains zinc for protein stability [8,9]. This
indicates that the availability of the metal cofactor to
pathogens residing in the host dictates the activity of
Fur.
The regulatory role of Fur has been demonstrated in

numerous pathogenic and non-pathogenic organisms
growing in the presence of ambient oxygen [10-19].
However, research has shown that the oxygen concen-
tration in the host is low. For example, the oxygen sen-
sitive [20], Fnr (Fumarate nitrate reduction) was shown
to be essential for virulence in Salmonella enterica sero-
var Typhimurium (S. Typhimurium) [21], Shigella flex-
nari [22], Neisseria meningitidis [23], and Pseudomonas
aeruginosa [24]. In addition, the expression of the
dimeric Cu-Zn superoxide dismutase (SodCI), one of
the virulence determinants in S. Typhimurium, within
the J774.1 cell line was shown to be Fnr-dependent [25].
Fnr is a transcriptional regulator that is active as a
homodimer and contains an oxygen labile iron sulfur
cluster (4Fe-4S) [26]. Fnr can serve either as an activator
or as a repressor of transcription, depending on the tar-
get gene. For instance, under anaerobic conditions, Fnr
represses the cytochrome c oxidase (cyoABCDE) and the
cytochrome bd complex (cydAB), while activating genes
important for utilizing alternative electron acceptors
such as fumarate [21]. Therefore, it is reasonable to con-
clude that O2 concentration within the host is low
enough to activate Fnr in S. Typhimurium residing
within cells of the innate immune system. This in vivo
low oxygen concentration appears to be sufficient to
cause a shift in the redox state of iron from ferric to fer-
rous. Indeed, when S. Typhimurium is within macro-
phages, repression of the Fur regulated iroBCDE
promoter occurs regardless of the presence of the host
metal transporter Nramp1 [27,28]. This demonstrates
that during intracellular growth of S. Typhimurium, the
state of oxygen tension and iron valence are adequate
for the activation of both Fnr and Fur, respectively.
Recently, we demonstrated the role of Fur in HilA
expression and virulence in S. Typhimurium, which is
mediated by the negative regulation of H-NS by Fur
under anaerobic conditions [29].
H-NS is a DNA binding protein that is associated with

the nucleoid of Gram-negative enteric bacteria (reviewed
in [30]). Deletion of hns is considered lethal unless an
additional mutation occurs in either the alternative
sigma factor, rpoS, or the transcription factor, phoP [31].
H-NS binding can alter the topology of DNA and influ-
ence gene regulation [32]. Typically, H-NS exhibits a
repressive role in gene regulation, especially of genetic
loci associated with virulence [31,33-35]. H-NS preferen-
tially binds to AT rich segments of DNA, which are
characteristic of horizontally acquired Salmonella patho-
genicity islands (SPIs) [36]. Interestingly, H-NS also

represses genes associated with anaerobic metabolism
including those responsible for the degradation of L-
threonine, encoded by the tdc operon, and are induced
under anaerobic conditions [37]. H-NS binds the tdc
locus and represses its transcription [31], thereby linking
amino acid catabolism with H-NS regulation. In addi-
tion, Fur is known to activate SPI1 via the activation of
the positive regulators of SPI1 (i.e., HilA and HilD)
[38,39]. This activation is, in part, indirect where Fur
represses the expression of hns, which represses the
expression of hilA and hilD [29]. Thus, Fur indirectly
activates SPI1 via its repression of hns, demonstrating
that iron metabolism can influence genes regulated by
H-NS.
Our goal here was to compare the transcriptome of

wild-type (WT) S. Typhimurium to an isogenic strain
lacking the fur gene (Δfur) in cells growing under anae-
robic conditions (i.e., conditions resembling that
encountered by the pathogen during infection [40]). To
accomplish that goal, we used DNA microarray analysis
and operon reporter fusions. We found that Fur directly
or indirectly regulates 298 genes (~6.5% of the genome);
of these, 49 contained a putative Fur binding site. Inter-
estingly, Fnr controls 15 of these 49 genes [21] and 12
of the 15 genes contain putative binding sites for both
Fur and Fnr. This suggests a regulatory link between
oxygen and iron availability through the action of these
two global regulators, Fur and Fnr. Furthermore, Fur
was required for the activity of both cytoplasmic super-
oxide dismutases (MnSOD and FeSOD). We also found
that the anaerobic expression of ftnB (encoding a ferri-
tin-like protein) and hmpA (encoding the NO· detoxify-
ing flavohemoglobin) was dependent on both Fur and
Fnr. However, the promoters of ftnB and hmpA do not
contain recognizable Fur binding motifs indicating their
indirect regulation by Fur. Increased expression of H-
NS, a known repressor of ftnB, tdc operon, and other
genes, in Δfur may account for their activation by Fur.
Finally, we have also identified twenty-six genes as new
targets of Fur regulation in S. Typhimurium.

Methods
Bacterial strains, plasmids, growth conditions, and
reagents
S. Typhimurium (ATCC 14028s) was used throughout
this study, and for the constructing gene knockouts.
Bacterial strains and plasmids used are listed in Table 1.
Primers used were purchased from Integrated DNA
Technologies (Coralville, IA) and are listed (Additional
file 1: Table S1).
All knockouts were constructed using l Red mediated

methodologies in the host strain carrying pKD46. The
cells were grown in Luria-Bertani (LB) medium to an
optical density (OD600) of 0.3 at which point 50 mM
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arabinose was added for 90 min [41]. The culture was
centrifuged, electroporated with 1 μg of purified PCR
product of the gene of interest, recovered in SOC media
(20 g tryptone, 5 g yeast extract, 0.5 g NaCl, per liter
plus 20 mM glucose) for 3 h, plated on LB agar with
the appropriate antibiotic, and incubated at 37°C. Trans-
formants were verified by PCR followed by DNA
sequencing. P22 phage transduction was used to move
the mutations into the specified genetic backgrounds of
S. Typhimurium 14028s. Colony PCR was used to con-
firm the genotype(s). Transductants were purified on
Evans-Blue-Uranine (EBU) agar plates.
The medium used throughout this study was a buf-

fered (pH = 7.4) LB containing 100 mM MOPS and 20
mM xylose (LB-MOPS-X) [21,29,42,43]; where indi-
cated, kanamycin and ampicillin were used at 55 μg ml-
1 and 100 μg ml-1, respectively. Anaerobic conditions
were maintained in a Coy anaerobic chamber (Coy
Laboratory Products, Grass Lake, MI) filled with anaero-
bic gas mixture (10% H2, 5% CO2, and 85% N2). Media
were equilibrated in the anaerobic chamber for at least
48 h prior to use. Aerobic conditions were maintained
by shaking at 200 RPM at 37°C in a New Brunswick
gyratory water bath. Growth was determined by measur-
ing changes in OD600 over time. The ferrous iron chela-
tor, 2, 2’ dipyridyl (dip), was purchased from Sigma-
Aldrich (St. Louis, MO) and used at 200 μM. PCR
reagents were from Promega (Madison, WI).

RNA isolation
For the microarray experiments, independent anaerobic
cultures of 14028s and Δfur (KLM001) were used to
inoculate three independent flasks (150 ml of anoxic
LB-MOPS-X) for each strain. The three independent
cultures of 14028s and Δfur were grown to an OD600 of
0.30 to 0.35 (~ four generations) and treated with RNA-
later (Qiagen) to fix the cells and preserve the quality of
the RNA as described previously [21,43]. Total RNA
was extracted and its quality was assured before aliquots
of the RNA samples were stored at -80°C for use in the
microarray as previously described [21,43].

Microarray studies
Serovar Typhimurium microarray slides were prepared
and used as previously described [21,43,44]. The Super-
Script Indirect cDNA labeling system (Invitrogen, Carls-
bad, CA) was used to synthesize the cDNA for the
hybridizations. Each experiment consisted of two hybri-
dizations, on two slides carried-out at 42°C overnight.
Dye swapping was performed to avoid dye-associated
effects on cDNA synthesis. The slides were washed at
increasing stringencies and the microarrays were
scanned for the Cy3 and Cy5 fluorescent signals with a
ScanArray 4000 microarray scanner from GSI Lumonics
(Watertown, MA). The intensity of each spot was
expressed as the sum of the intensities of the pixels
included in a circle positioned over the spot. The

Table 1 Bacterial Strains and Plasmids

Strains Genotype Reference/Source

Salmonella enterica Typhimurium 14028s ’wild-type’ American Type
Culture Collection

KLM001 Δfur::bla [79]

NC 997 Δfnr::cat This work

NC 1006 Δfur::bla Δfnr::cat This work

NC1016 Δhfq::FRT [29]

NC 1067 ftnB’::lacZY This work

AV0305 hmpA’::lacZY [125]

NC 1065 Δfur::bla ftnB’::lacZY This work

NC 1066 Δfur::bla hmpA’::lacZY This work

NC 1068 Δfnr::cat hmpA’::lacZY This work

NC 1069 Δfur::bla Δfnr::cat hmpA’::lacZY This work

NC 1077 Δfnr::cat ftnB’::lacZY This work

NC1078 Δfur::bla Δfnr::cat ftnB’::lacZY This work

NC1020 Δfur::bla Δhfq::FRT This work

Plasmids

pKD46 Phage l gam-bet-exo under ParaB [41]

pCP20 bla cat cI857 lPR flp pSC101 oriTS

pCE36 ahp FRT lacZY+ oriR6K [46]

pKD3 bla FRT ahp FRT PS1 PS2 oriR6K [41]

pKD4 bla FRT cat FRT PS1 PS2 oriR6K [41]

pKD13 bla FRT ahp FRT PS1 PS4 oriR6K [41]
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background was the sum of the intensities of an identi-
cal number of pixels surrounding the circled spot.

Data analysis
Values of Cy3 and Cy5 for each spot were normalized
over the total intensity for each dye to account for dif-
ferences in total intensity between the scanned images.
The data from the microarray analysis were evaluated
by two methods as previously described [21,43]. Briefly,
the data were evaluated by a pair-wise comparison, cal-
culated with a two-tailed Student’s t test and analyzed
by the MEAN and TTEST procedures of SAS-STAT
statistical software (SAS Institute, Cary, NC) the degrees
of freedom for the t test were calculated as described
previously [21,43]. The t statistic was performed using
the, two-tailed, heteroscedastic TTEST function of Excel
software (Microsoft Corporation, Redmond, WA). The
signal intensity at each spot from Δfur and the WT was
analyzed and used to calculate median expression ratios
and standard deviations for ORFs showing at least 2.5-
fold change and p < 0.05 [21,43].

Microarray data
The microarray data are accessible via GEO accession
number GSE18441 at http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE18441.

Logo graph and promoter analysis
The information matrix for the generation of the Fur
logo was produced using the alignment of the Escheri-
chia coli Fur binding sequences, available at http://arep.
med.harvard.edu/ecoli_matrices/. To account for slight
variation in nucleotide usage between E. coli and Salmo-
nella, a second alignment for S. Typhimurium was built
using the 5’ regions of the homologous genes used to
build the E. coli information matrix. The new alignment
was used to generate an information matrix specific for
S. Typhimurium. A graphical representation of the
matrix through a logo graph was obtained with
Weblogo software (version 2.8.1, 18 October 2004),
available at http://weblogo.berkeley.edu. The information
matrix was used to scan the 5’ region (from the position
-400 to +50) of the genes with significant variations of
transcripts using the Patser software (version 3d), avail-
able at http://rsat.ulb.ac.be/rsat/.
If a sequence corresponding to a Fur binding motif

was identified, then this sequence was given a weighted
score [45].

Construction of transcriptional lacZ fusions
Single-copy genomic transcriptional lacZ fusions were
constructed as described previously [46]. Briefly, 300 ng
of pCP20 was transformed into mutant strains; cultures
were transferred twice at 30°C, and checked for loss of

the antibiotic marker. Plasmids with a single FRT site
upstream of promoterless lacZY were transformed into
mutant strains carrying pCP20 and incubated at 37°C
on an LB-agar plate with kanamycin. Transformants
were transferred three times at 40°C, verified by PCR,
and transduced into appropriate background(s).

b-galactosidase assay and “Differential Plot” presentation
of the data
The b-galactosidase assay was used to assess expression
of transcriptional fusions in cultures growing at steady
state. This was accomplished by 50-fold dilution of
anaerobically grown overnight (~17 hr) cultures into
fresh medium and once a steady state of growth was
established, the cells were re-inoculated into fresh LB-
MOPS-X medium to an OD600 ~0.02. b-galactosidase
assays were conducted during growth and the activity
(U/ml) [47] was plotted against changes in OD600 in the
form of a differential plot [48,49]; which are usually
recommended for determining the rate of synthesis of
an mRNA or a protein relative to the total rate of synth-
esis in the cell. The slope of the linear regression of this
type of plot represents the differential rate of synthesis
(i.e., Specific Activity, Units/OD600) during the steady
state of growth. The intrinsic advantages of using this
method (i.e., differential rate) over the commonly used
method (i.e., one-time point assays) are well documen-
ted [50-53]. Data shown were from three independent
cultures with standard deviation.

Preparation of cell-free extracts and SOD activity gels
Cultures were grown anaerobically overnight, diluted to
~0.02 OD600 in LB-MOPS-X, and cells were harvested
at OD600 ~0.25. Further cell growth and de novo protein
synthesis were minimized by adding chloramphenicol
(50 μg ml-1) and ice to the cultures. In addition, 50 μg
ml-1 chloramphenicol was included at each step of sam-
ple preparation and handling. The cultures were sealed
anaerobically and the cells collected by centrifugation at
5,000 × g at 4°C. Cells were washed with phosphate
buffer (pH 7.8, 50 mM potassium phosphate containing
0.1 mM EDTA, KPi), centrifuged again, and resus-
pended in the same buffer. Cells were sonicated on ice
for 15 sec on and 30 sec off for 15 min of total sonica-
tion time. Cell debris was cleared by centrifugation at
19,000 × g for 30 min at 4°C, and the supernatant was
dialyzed against KPi in dialysis membranes with an
8,000 molecular weight cut-off. Dialyzed cell-free
extracts were centrifuged at 20,000 × g for 30 min at 4°
C, and the supernatant was stored at -80°C until use.
Protein concentration was determined by the Lowry
method [54]. Superoxide dismutase activity gels were
performed using native 10% acrylamide gels as
described previously [55].
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Fumarate reductase activity
Fumarate reductase activity (FRD) was assayed from
cell-free extracts as described previously [56]. Briefly,
cells were grown, cell-free extracts were prepared as
described above, and the fumarate dependent oxidation
of reduced benzyl viologen was determined. Specific
activity of FRD is expressed as μmole of reduced benzyl
viologen oxidized per minute per milligram of total
protein.

Measurements of total [Mn]
Independent anaerobic cultures were diluted to OD600

~0.02 and grown until OD600 0.35 in a Coy anaerobic
chamber. Chloramphenicol was added at 50 μg ml-1,
samples were sealed anaerobically, and centrifuged at
12,000 × g for 20 min at 4°C. Samples were washed
with KPi as above, centrifuged, and resuspended in 2 ml
of buffer. Samples were dried and treated with 3 M
nitric acid overnight at room temperature then quickly
boiled. Total manganese content was determined by
Inductively Coupled Plasma Optical Emission Spectro-
metry (ICP-OES) at North Carolina State University
Analytical Service Laboratory. Total manganese and iron
was measured in LB medium as above using a 5X con-
centration of medium.

Results
Growth of Δfur under anaerobic and aerobic conditions
Iron is an essential element for redox reactions in biol-
ogy. However, it is an important factor in oxygen toxi-
city due to its involvement in hydroxyl radicals (HO·)
formation via Fenton chemistry [57]. Therefore, we
compared the effects of a deletion of fur on growth
kinetics under both anaerobic and aerobic conditions.
Data in Figure 1 demonstrate that Δfur was not com-
promised in its growth kinetics under either anaerobic
or aerobic conditions.

Effect of Fur on the anaerobic transcriptome of S.
Typhimurium
Under anaerobic conditions, the absence of fur resulted
in the differential expression of 298 genes (Additional
File 2: Table S2). These genes were organized by Cluster
of Orthologous Groups (COGs) and the numbers of
genes within each COG are shown in Table 2. The
absence of fur resulted in increased expression (i.e., Fur
acted as a repressor) of 226 genes. However, the absence
of Fur resulted in decreased expression (i.e., Fur acted as
an activator) of 72 genes, most likely via an indirect
mechanism.
A Fur information matrix, specific for S. Typhimurium,
was generated (Figure 2), and used to scan the upstream
regions of the 298 genes identified as differentially
expressed in response to deletion of fur. We identified
49 genes that contain a putative Fur binding site (Table
3 - columns 1 & 2 and Additional file 2: Table S2).
a. Fur as a repressor
Genes associated with metal homeostasis were up-regu-
lated in Δfur. These included the well characterized
genes/operons involved in iron homeostasis (i.e., entA-
BEC, iroBCDE, iroN, fes, tonB, fepA, bfr, bfd), Mn2+

transport genes (i.e., sitABC), and copper resistance (i.e.,
cutC) [58-65] (Additional file 2: Table S2).
Expressions of genes involved in xylose metabolism

(xylBR) were increased 3.7 and 2.9-fold, respectively, in
Δfur relative to the WT (Additional file 2: Table S2). In
addition, the glycolytic genes pfkA and gpmA were 3.3-
and 5.6-fold higher in Δfur, respectively (Additional file
2: Table S2). Two genes, STM1586 (coding for a puta-
tive periplasmic protein) and sitA were up-regulated
76.1 and 53.8-fold, respectively, in Δfur (Additional file
2: Table S2). These two genes exhibited the highest dif-
ferential expression in Δfur. Intriguingly, the microarray
data showed that the gene for adenloysuccinate synthe-
tase (purA), which is required for adenosine 5’ mono-
phosphate synthesis, was up-regulated 3.5-fold in Δfur.
Incidentally, purA mutants are known to be highly atte-
nuated and have been used in developing in vivo expres-
sion technology (IVET) to detect promoters activated
during S. Typhimurium infection [66,67].
Transcription of the cytochrome-o ubiquinol oxidase

operon (cyoABCDE) and the high affinity cytochrome-d
terminal oxidase genes (cydAB) was repressed by Fur
(Additional file 2: Table S2). Interestingly, aerobic
expression of cydAB is repressed by H-NS, which is
relieved by the response regulator ArcA [68]. In addi-
tion, we detected increased expression of hns in Δfur
(Additional file 2: Table S2), and earlier work detected
in vivo binding of Fur to the upstream region of hns
[29]; this strongly indicates that Fur directly represses
hns under anaerobic conditions. How or if H-NS may
interact in the anaerobic regulation of cydAB under our

Figure 1 Growth kinetics of Δfur (black square) compared to
14028s (white square). Cells were grown in LB-MOPS-X medium
as described in Methods; (A) Anaerobic growth; (B) Aerobic growth.
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conditions is unknown, since the repression of cydAB by
H-NS does not appear to occur under anaerobic condi-
tions [68].
Genes associated with DNA repair and purine meta-

bolism (nrdAB, nth, recA, and nei) were repressed by
Fur under anaerobic conditions (Additional file 2: Table
S2), thus implicating Fur as a regulator of DNA repair

and de novo synthesis. Fur was found to repress ydiE
(STM1346) and a putative Fur binding site was found
upstream of the start codon, where the expression of
the gene was 7.4-fold higher in the mutant than in the
wild-type (Additional file 2: Table S2). In Yersinia enter-
ocolitica, YdiE has a conserved HemP (COG4256)
domain, and is encoded within the hemin uptake operon
[69]. Although S. Typhimurium is not known to utilize
host’s heme, previous work has established a Fur bind-
ing site upstream of ydiE and hemP in S. Typhimurium
and Y. enterocolitica, respectively [16,69]. This indicates
that our bioinformatic analyses indeed agree with
experimentally identified Fur binding sites.
b. Fur as an activator
Anaerobic transcription of the fumarate reductase
(frdABD) operon and the aspartase gene (aspA) was sig-
nificantly lower in Δfur (i.e., Fur is serving as an activa-
tor); however, the genes coding for the alpha and beta
subunits of succinyl-CoA synthetase (sucCD) were up-
regulated 4.1 and 2.7-fold, respectively (Additional file 2:
Table S2). These genes (i.e., frdABD, aspA, sucCD) and
fumAB (fumarate hydratase) are members of the

Table 2 Number of Differentially Expressed Genes in Δfur

Differentially Expressed Genes in Δfur

Cluster of Orthologous
Groups

Number of
Genes
“Fur

Repressed”a

Number of
Genes
“Fur

Activated”b

Total

No COG 30 9 39

Energy Production and Conversion 16 18 34

Cell Cycle Control 3 0 3

Amino Acid Metabolism and Transport 7 16 23

Nucleotide Metabolism and Transport 7 4 11

Carbohydrate Metabolism and Transport 9 4 13

Coenzyme Metabolism and Transport 6 0 6

Lipid Metabolism and Transport 5 0 5

Translation 46 0 46

Transcription 9 2 11

Replication, Recombination, and Repair 5 1 6

Cell Wall/Membrane/Envelope Biogenesis 14 3 17

Cell Motility 1 0 1

Post-Translational Modification, Protein Turnover, Chaperone Functions 10 1 11

Inorganic Ion Transport and Metabolism 20 2 22

Secondary Metabolite Biosynthesis, Transport, and Catabolism 5 4 9

General Functional Prediction Only 15 4 19

Function Unknown 9 2 11

Signal Transduction Mechanisms 5 2 7

Intracellular Trafficking and Secretion 3 0 3

Defense Mechanisms 1 0 1

Total 226 72 298

Categorized According to Cluster of Orthologous Groups (COGs)
a Genes with increased expression in the absence of fur
b Genes with decreased expression in the absence of fur

Figure 2 Logo graph of the information matrix from the
alignment of Fur-regulated genes in S. Typhimurium. The height
of each column of characters represents information, measured in
bits, for that specific position and the height of each individual
character represents the frequency of each nucleotide.
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reductive branch of the TCA cycle. We assayed for
fumarate reductase (FRD) in cell-free extracts from
anaerobic cultures and found that Fur is required for
the anaerobic transcription and activity of FRD in S.
Typhimurium (Additional file 3: Table S3). In E. coli,
the transport of C4-dicarboxylates occurs via two see-
mingly redundant genes encoded by dcuA and dcuB
[70]. In the present study, the dcuB-fumB operon was
unaffected by Fur, while the aspA-dcuA operon was sig-
nificantly down regulated in Δfur and both genes con-
tained a putative Fur box 5’ of the start codon
(Additional file 2: Table S2).
Genes involved in anaerobic respiration (dmsABC) and

ethanolamine utilization (eutSPQTDMEJGHABCLK)
were activated by Fur (Additional file 2: Table S2). The
mechanism for reduced expression of dmsABC is
unclear. Ethanolamine is a significant source of carbon
and nitrogen during Salmonella infection [71].
One metabolic pathway that appears impacted by Fur

is that required for glycerol metabolism. The genes for
glycerol metabolism are located throughout the genome.

For instance, glpQT and glpABC are divergently tran-
scribed in two predicted operons. All of these genes
were significantly down regulated in Δfur (Additional
file 2: Table S2). Furthermore, glpD, and glpKF were all
down regulated in Δfur (Additional file 2: Table S2).
The down-regulation of these genes suggests that the
Δfur strain may be unable to utilize glycerol or transport
glycerol- 3 phosphate. The mechanism of this regulation
is unclear, but the absence of Fur binding sites in the
promoters of any of these genes suggests an indirect
mode of regulation. The contribution of glycerol meta-
bolism to infection is unknown.
Another metabolic pathway, the tdc operon (required

for the anaerobic transport and metabolism of L-threo-
nine and L-serine [72,73]) was activated by Fur. The
genes in this operon (tdcBCDEG) are activated by tdcA
[74]. TdcA is a member of the LysR family of transcrip-
tional activators [75]. Our data showed that the expres-
sion of all genes in this operon, tdcABCDEG, was
significantly down-regulated in Δfur (Additional file 2:
Table S2). However, a Fur binding site was not

Table 3 Newly Identified Genes Regulated by Fur That Contain a Predicted Fur Binding Site

Gene Function Fold Changea Predicted Fur Binding Sequenceb

rlgA Putative resolvase 2.8 AAAATTAAAATCGTTGGC

mapc Methionine aminopeptidase 2.6 AAATTGAGAATCATTCTG

rpsB 30S ribosomal subunit protein S2 4.0 AAATTGAGAATCATTCTG

yajC Tranlocase protein, IISP family 3.2 GTAATGCAAAGCATAAAA

nrdRc Putative transcriptional regulator 2.5 GAAACGGTAAAAATTACC

sucC Succinyl-CoA synthetase, beta subunit 4.1 CTAAAGATAACGATTACC

cmk Cytidine monophosphate kinase 2.7 AAAAAGTAAATCATTGTC

STM1013 Gifsy-2 prophage, regulatory protein 2.8 AAAATCAAAATCAGTAAC

STM1133c Putative dehydrogenase -4.2 ATAATGAGTAGAATTGTT

nthc Endonuclease III 2.9 GAAAAGCGTACCATTCCC

ldhAc Fermentative D-lactate dehydrogenase -4.0 AATATGCTTAAAATTATC

ynaFc Putative universal stress protein -37.3 GAAATAGATATAATTTAT

hns Histone like protein 3.1 ACAATGCTTATCATCACC

STM1795c Homolog of glutamic dehydrogenase 5.8 AAAAAGATAAAAATAACC

STM2186 Putative glutamate synthase -8.8 AAATTGAGAATAGTTATT

eutCc Ethanolamine ammonia lyase -4.1 ATAATGCCCATCGTTTCC

eutBc Ethanolamine ammonia lyase -3.2 AAACTGATAAACATTGCC

yffBc Putative glutaredoxin 2.6 GAAATTCGAATAAATAAT

iroNc TonB-dependent siderophore receptor 9.1 CTAATGATAATAATTATC

yggUc Cytoplasmic protein 3.5 ATAACGCTAAGAATAAAC

STM3600c Putative sugar kinase -6.8 CTGATGCTCATCATTATT

STM3690 Putative lipoprotein -4.2 ATAAACATTATAATTATA

rpoZc RNA polymerase, omega subunit 3.9 AATAAGATAATCATATTC

udpc Uridine phosphorylase -5.4 CAATAAATAATCAATATC

yjcDc Putative xanthine/uracil permease 2.8 AAAAAGCAAACGATTATC

dcuA Anaerobic dicarboxylate transport protein -5.8 CAAATAACAACAATTTAA
a Ratio of mRNA, Δfur/14028s
b Predicted Fur binding site located within -400 to +50 bp relative to ATG
c Indicates the predicted Fur binding site is located on the reverse strand
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identified in the promoters of any of the genes in the
tdc operon, suggesting its indirect regulation by Fur.
Importantly, H-NS is known to directly bind and repress
this operon [31,76]. Therefore, the increased expression
of hns in Δfur (Additional file 2: Table S2), may account
for the observed effect of Fur on the tdc operon. Muta-
tions in the tdc operon have been shown to reduce inva-
sion and virulence in S. Typhimurium [77,78]. In
addition to the reduced expression of the eut operon,
the reduced expression of the tdc operon and hilA may
contribute to the observed attenuation of the Δfur strain
of S. Typhimurium [29,79].

Role of Fur in regulation of antioxidant genes
Reactive oxygen and nitrogen species (ROS and RNS,
respectively) are important host defense responses dur-
ing bacterial infection. Our array data (Additional file 2:
Table S2) revealed differential regulation of some impor-
tant antioxidant genes whose products are essential for
protecting the cells against ROS and RNS (i.e., superox-
ide dismutases, ferritin-like protein, and flavohemoglo-
bin). Therefore, we decided to study the expression of
these genes in greater detail.
a. Regulation of sodA and sodB
There is plethora of information about the regulation of
sodA and sodB in E. coli [80-85], but there is little
knowledge about the regulation of these genes in S.
Typhimurium [86]. In the present study, the microarray
data showed that the anaerobic expression of sodA and
sodB in Δfur was > 9-fold higher and > 3-fold lower,
respectively, than in the parent WT strain (Additional
file 2: Table S2). SodA (MnSOD) and SodB (FeSOD) are
the cytosolic superoxide dismutases of S. Typhimurium
and they require the cofactors manganese and iron,
respectively. These SODs are homodimers, and are fully
functional when metalated with the appropriate metals

(i.e., manganese for SodA and iron for SodB). However,
a heterodimer consisting of SodA(Mn)/SodB(Fe) can
still exhibit SOD activity, albeit at a reduced level com-
pared to the homodimer [87]. Thus, in order to see an
active hybrid SOD, both SodA and SodB must be
expressed. Data in Figure 3A demonstrated that, as in
anaerobic E. coli, the WT strain (Lane 1) lacked the
activity of both Mn- and Hybrid-SODs, but possessed
an active FeSOD. However, Δfur (Figure 3A - Lane 2)
was devoid of all three SOD-isozymes. The lack of
FeSOD in Δfur was of no surprise, as previous studies
in E. coli [83,84] have established that Fur is indirectly
required for the translation of sodB via its repression of
the small RNA, ryhB, which works in conjunction with
the RNA chaperon protein, Hfq [88,89]. Indeed, a strain
harboring deletions in both Fur and Hfq (ΔfurΔhfq)
resulted in restoration of SodB activity (Figure 3A -
Lane 4). Furthermore, the high degree of sequence iden-
tity in the promoter and the gene sequence of ryhB of
E. coli with the two ryhB-like small RNAs, rfrA and rfr
of S. Typhimurium [39], suggested that the regulation of
sodB in S. Typhimurium is similar to that reported in E.
coli [88,89]. Interestingly, expression of the hybrid SOD
appears up-regulated in Δhfq and ΔfurΔhfq (Figure 3A -
Lane 3 and 4). The reason for this is unclear, but may
be due to the activation of the Hfq-binding small RNA
(fnrS) by Fnr, which subsequently represses the expres-
sion of sodA [90,91].
The WT strain of S. Typhimurium possessed neither

an active SodA (MnSOD) nor the hybrid enzyme
(SodA/SodB), which is not surprising since this is nor-
mally the case in WT E. coli [92]. What was surprising
is the lack of MnSOD activity in the anaerobic cell-free
extracts from Δfur (Figure 3A - Lane 2) in spite of the >
9-fold increase in the transcription of sodA (Additional
file 2: Table S2). Therefore, we reasoned that the

Figure 3 Effects of Fur, Hfq, and manganese on the activity of superoxide dismutases. (A) Effects of Fur and Hfq - Cell-free extracts from
anaerobically grown cultures (14028s, Δfur, Δhfq, and ΔfurΔhfq) were prepared as described in the Methods. Equal protein (125 μg/ml) was
loaded and following electrophoresis the gel was stained for SOD activity. Lane 1 - 14028s; lane 2 - Δfur; lane 3 - Δhfq; lane 4 - ΔfurΔhfq. (B)
Effects of Fur and MnCl2 - Cell-free extracts were prepared from anaerobically grown cultures as in (A) except that 1 mM MnCl2 was added to
the media. Equal protein (125 μg/lane) was loaded, elecrophoresed, and stained for SOD as in (A). Lane 1, 14028s + MnCl2; lane 2, 14028s + pfur-
ha; lane 3, 14028s + MnCl2 + pfur-ha; lane 4, Δfur + MnCl2; lane 5, Δfur + pfur-ha; lane 6, Δfur + MnCl2 + pfur-ha.
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increased intracellular concentration of free iron in Δfur
[93] could result in competition of iron with manganese
for the active site of SodA. This would lead to the for-
mation of a non-active form of the enzyme, i.e., SodA-
Fe instead of the active SodA-Mn (MnSOD). Analysis of
total iron and manganese concentrations in our media
showed that it contained ~40-fold more iron than man-
ganese (i.e., ~7.5 μM iron vs. ~0.2 μM manganese).
Additionally, the manganese content of anaerobic cul-
tures of the parent strain and of the Δfur strain were
low, 0.09 ± 0.01 and 0.08 ± 0.04 μmoles manganese per
gram of dry weight, respectively. Therefore, we supple-
mented the growth media with 1 mM MnCl2 and deter-
mined the SOD activities (Figure 3B). If our reasoning
was correct, we expected that excess Mn2+ added to the
growth media would reveal increased MnSOD activity
in Δfur. Indeed, this was the case, as a dramatic increase
in MnSOD was observed in Δfur, but not in the parent
strain (Figure 3B - lanes 1 vs.4). Also, cultures grown in
presence of 1 mM MnCl2 contained 47.2 ± 2.7 and 48.8
± 2.0 μmoles of manganese per gram of dry weight for
the parent strain and for Δfur, respectively. Altered
MnSOD activity in Δfur was due entirely to the lack of
a functional fur gene since the introduction of a plasmid
carrying the fur gene (i.e., pfur-ha) diminished MnSOD
activity to that of the parent strain (Figure 3B - Lane 1
and 6). In addition, the plasmid pfur-ha restored FeSOD
activity (Figure 3A - lane 5) as well as the phenotypic
appearance of the WT strain observed on a Tris

buffered chrome azurol agar plates (CAS plates) [94]
containing 0.3% xylose [29]. These results indicated that
increased transcription of sodA in Δfur did not result in
a corresponding increased MnSOD activity due to the
excess intracellular free iron and that the addition of
Mn2+ negated this effect. On the other hand, the inclu-
sion of excess Mn2+ in the growth medium of the par-
ent strain did not increase MnSOD activity, which
indicated that Mn2+ was not a signal for sodA induction.
Furthermore, these findings demonstrated an important
aspect of metalloenzyme regulation, i.e., the availability
of the correct cofactor has a profound impact on
enzyme activity.
b. Regulation of ftnB
Microarray data (Additional file 2: Table S2) revealed a
7-fold reduction in the expression of ftnB in Δfur as
compared to the parent strain. The expression of ftnB
was shown to be activated by Fnr [21]. Therefore, we
used a chromosomal ftnB-lacZ transcriptional fusion in
Δfur and in Δfnr genetic backgrounds to determine the
contribution of each regulator in the expression of ftnB.
The deletion of fur reduced the aerobic rate of synthesis
of the reporter gene by > 2-fold compared to the parent
strain (Figure 4A). 2, 2’ dipyridyl (dip) reduced the rate
of synthesis of the reporter gene in aerobic conditions
(Figure 4A). Although induction of the reporter fusion
occurred earlier in the growth phase with dip treated
cultures, the rate of synthesis was reduced compared to
untreated parent strain. This indicates inhibition by dip

Figure 4 Effects of Fur, Fnr and iron chelation on transcription of ftnB. Transcriptional ftnB-lacZ activity was determined in 14028s (squares),
Δfur (circles), and Δfnr (triangles) under (A) anaerobic, and (B) aerobic conditions in LB-MOPS-X media without (open symbols) and with (closed
symbols) 200 μM of 2, 2’ dipyridyl. b-galactosidase assay was conducted throughout the growth of the culture and activity is presented in the
form of differential plots with representative data shown in (A) and (B). Best-fit lines, calculated as described in the Methods, are shown in (A)
and (B). For (A) and (B), representative data are shown with the differential rate of synthesis (U/OD600) ± standard deviations from three
independent experiments listed.
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(Figure 4A). As expected, the oxygen sensitive regulator
Fnr did not impact regulation of ftnB in aerobic condi-
tions (Figure 4A). This indicated that Fur is required for
ftnB expression, independent of Fnr. Data in Figure 4B
show that the absence of fur resulted in a 2-fold reduc-
tion in the rate of synthesis (U/OD600) of ftnB-lacZ
under anaerobic conditions. Furthermore, the ferrous
iron chelator, dip, reduced the rate of anaerobic synth-
esis of ftnB-lacZ in the WT strain by > 2-fold (Figure
4B). In Δfur, the rate of synthesis was further reduced
(> 10-fold) when compared to the WT parent strain
treated with dip (Figure 4B). In addition, the rate of
synthesis in the parent strain was greatest under anaero-
bic conditions due to the active roles of both Fnr and
Fur (Figure 4). Collectively, full expression of ftnB is
dependent on Fur in aerobic and anaerobic conditions,
whereas Fnr is a strong activator in the absence of O2.
c. Regulation of hmpA
The gene coding for the flavohemoglobin (hmpA), a NO·

detoxifying protein [95-98], was differentially expressed
in Δfur (Additional file 2: Table S2). Expression of
hmpA is repressed by Fnr and another DNA binding
protein that contains an iron sulfur cluster, NsrR
[21,95-97,99]. Repression of hmpA by two regulators
that are sensitive to RNS allows derepression of this
gene under conditions of increased RNS. Indeed, regula-
tion of hmpA-lacZ was induced ~80-fold by the nitro-
sating agent sodium nitroprusside in aerobic conditions
(B. Troxell and H.M. Hassan, unpublished data). Under
anaerobic conditions, hmpA was up-regulated 4-fold in
Δfur. Thus, we examined its anaerobic regulation with a
chromosomal hmpA-lacZ transcriptional fusion. Figure

5 shows that the WT exhibited very little expression of
hmpA-lacZ under anaerobic conditions (Figure 5A); sug-
gesting regulation may be oxygen dependent. Indeed,
expression was ~14-fold higher under aerobic conditions
than anaerobic conditions (B. Troxell and H.M. Hassan,
unpublished data). However, the addition of the iron
chelator, dip, resulted in an increased rate of synthesis
~81-fold (Figure 5A). The increased expression of
hmpA-lacZ by the addition of dip could have been due
to inactivation of Fnr, Fur, and/or NsrR. We narrowed
our focus to the roles of Fur and Fnr in regulation of
this gene. In Δfur, the reporter activity was up-regulated
> 9-fold (Figure 5A), which confirmed the microarray
data. The addition of dip increased the rate of synthesis
by 25-fold in Δfur. One known repressor of hmpA is
Fnr [21,95-97]. Therefore, we combined the fur and the
fnr deletions (ΔfurΔfnr) in the hmpA-lacZ background
to determine the role of Fur and Fnr in the regulation
of hmpA. Deletion of fnr increased the rate of hmpA-
lacZ synthesis by 216-fold as compared to the parent
strain (Figure 5B). The synthesis of hmpA-lacZ in the
Δfnr mutant background was similar to that seen in the
Δfur treated with dip (i.e., 1253 ± 107 and 1403 ± 280 -
U/OD600). The lack of an obvious Fur binding motif
upstream of hmpA indicates that reporter activity seen
in Δfur was likely indirect. The combined deletion of fur
and fnr in the hmpA-lacZ strain increased the rate of
synthesis 746-fold as compared to the WT strain (i.e.,
4328 ± 90 vs. 5.8 ± 2.4 - U/OD600) (Figure 5). Thus, the
rate of synthesis of hmpA-lacZ in ΔfurΔfnr was ~3.5-
fold higher than the rate of synthesis in Δfnr (i.e., 4328
± 90 vs. 1253 ± 107 - U/OD600). Since we did not

Figure 5 Fur and Fnr control transcription of hmpA. (A) The transcriptional hmpA-lacZ activity was determined in 14028s and Δfur under
anaerobic conditions. The iron chelator 2, 2’ dipyridyl (dip) was used at 200 μM; and (B) b-galactosidase activity was measured in Δfnr and
ΔfurΔfnr backgrounds under anaerobic conditions - the best-fit lines are shown. For (A) and (B) representative data are shown with the
differential rate of synthesis (U/OD600) ± standard deviations from three independent experiments listed.
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identify a discernable Fur binding site in hmpA, the fact
that there is no published report showing Fur binding
to the regulatory region of hmpA, and that the expres-
sion of hmpA-lacZ in ΔfurΔfnr was ~3.5-fold higher
than in Δfnr demonstrates that under anaerobic condi-
tions, Fur is indirectly regulating hmpA-lacZ indepen-
dent of Fnr.

Identification of new Fur targets
Table 3 shows genes differentially regulated in Δfur that
contain a putative Fur binding site located within -400
to +50 nucleotides relative to the translational start site.
The putative translocase subunit, yajC, was up-regulated
3.2-fold in Δfur. This gene is predicted to be in the Sec-
dependent pathway of protein export. At least one other
gene of the Sec-dependent pathway of protein export
was up-regulated in Δfur, secY. This gene, secY, is a
direct target of Fur regulation in Neisseria meningitides
[100,101]. Indeed, we detected a putative Fur binding
site upstream of secY (Additional file 2: Table S2). The
role of yajC during infection is unknown, but our results
suggest Fur controls Sec-dependent protein secretion.
NrdR is a global transcriptional regulator that controls

expression of oxygen-dependent and independent ribo-
nucleotide reductases [102-104]. Expression of nrdR was
up-regulated in Δfur and a putative Fur binding site was
identified. Although, deletion of fur results in up-regula-
tion of nrdHIEF [105], a class Ib ribonucleotide reduc-
tase, we did not detect increased expression of this
operon in our conditions. However, we did detect up-
regulation of the class Ia ribonucleotide reductase,
nrdAB, in Δfur (Additional file 2: Table S2). The class
III oxygen sensitive ribonucleotide reductase, encoded
by nrdDG, is encoded in an operon. Expression of nrdD,
the first gene of this operon, was down-regulated in
Δfur 2.5-fold. (Additional file 2: Table S2). Our data
indicate that Fur controls the class Ib and III ribonu-
cleotide reductases, either directly or indirectly, under
anaerobic conditions.
A putative dehydrogenase (STM1133) was down-regu-

lated 4.2-fold in the Δfur (Table 3). This gene contains a
putative Fur binding site on the reverse DNA strand.
STM1133 is the final gene in an apparent four gene
operon of unknown function (STM1130-1133). The first
gene of this operon, STM1130, was also down-regulated
7.9-fold in Δfur (Additional file 2: Table S2); however, a
Fur binding site was not identified upstream of
STM1130. Interestingly, this operon is composed of the
putative N-acetylneuraminic acid mutarotase
(STM1130), a putative outer membrane protein
(STM1131), a putative sialic acid transporter
(STM1132), and a putative NAD (P) binding dehydro-
genase (STM1133). Thus, our results suggest Fur con-
trols at least a portion of this operon that may be

localized to the bacterial membrane. The importance of
these genes during infection is unknown.
Several putative genes appear to be under direct con-

trol of Fur. Genes that exhibited reduced expression in
Δfur were the putative universal stress protein encoded
by ynaF, the putative glutamate synthase (STM2186),
the putative sugar kinase (STM3600), and the putative
lipoprotein (STM3690). The putative Fur binding site
for ynaF and STM3600 is located on the reverse strand
for these genes. The mechanism of Fur activation of
these putative genes is unknown. In addition, several
putative genes exhibited up-regulation in Δfur. A puta-
tive glutamic dehydrogenase (STM1795), a putative glu-
taredoxin (yffB), and a putative protein (yggU), were all
up-regulated in Δfur. Interestingly, yffB is predicted to
be a glutathione-dependent thiol reductase. The contri-
bution of these genes to infection is unknown.
The TonB siderophore receptor gene, iroN, was up-

regulated 9.1-fold in Δfur. Despite the widespread study
of siderophores (salmochelins) in Salmonella virulence,
we were unable to find any published report that Fur
represses iroN. Although Fur repression of the iroBCDE
loci is known [59], iroN is encoded downstream of this
operon and is transcribed in the opposite orientation.
Our results confirm the prediction by Baumler et al that
iroN is regulated by Fur [58].

Discussion
Iron is essential in most pathogenic bacteria, which
compete rigorously with the host for this element. S.
Typhimurium is no exception. The 17-kDa transcrip-
tional regulator, Fur, plays an important role in bacterial
iron homeostasis. Although publications of Fur regula-
tion in E. coli and other bacteria are numerous, this is
the first report on the global role of Fur in anaerobically
grown S. Typhimurium. Indeed, anaerobic metabolism
has been shown to be important for pathogens and
pathogenesis [21-24,29].
In this study, we found that, under anaerobic condi-

tions, Fur directly or indirectly affected the expression
of 298 genes (Additional file 2: Table S2). A putative
Fur binding motif was identified in 49 genes (Table 4.
column #1). Also, Table 4 shows evidence of published
data demonstrating the role of Fur in their regulation
(column #3) and published experimental evidence for
Fur binding to the regulatory region of these genes (col-
umn #4). The role of other co-regulators is also shown
(Table 4, column #5). Interestingly, twelve of the 49
genes contained the binding motifs for both Fnr and
Fur (Additional file 4: Table S4).
The appropriate metal cofactor was shown to be

essential for detection of MnSOD activity, in spite of the
9-fold increase in sodA transcript for Δfur. Therefore,
genetic backgrounds that alter the steady-state [Mn2+]

Troxell et al. BMC Microbiology 2011, 11:236
http://www.biomedcentral.com/1471-2180/11/236

Page 11 of 19



Table 4 Comparison of Differentially Expressed Genes in Δfur That Contain a Putative Fur Binding Site with Confirmed
Data of Fur Regulation from other Studies and the Possible Involvement of other Transcription Regulators

Genes Regulated by Fur and
containing a putative Fur motifa

Fold
Changeb

Published
Evidence of Fur

Regulation
[Ref.]

Published
Evidence of Fur

Binding
[Ref.]c

Published
Evidence of
Control By

Other Regulators
[Ref]d

rlgA 2.8 No No

map 2.6 No No

rpsB 4.0 No No

yajC 3.2 No No

nrdR 2.5 No No

cyoE 3.1 Yes [12] No Fnr [21]

cyoD 7.1 Yes [12] No Fnr [21]

cyoB 8.2 Yes [12] No Fnr [21]

cyoA 3.2 Yes [12] No Fnr [21]

fepA 10.7 Yes [12,15,16,126-129] Yes [128,129]

fes 39.8 Yes [12,16,127-129] Yes [128,129]

entC 6.8 Yes [12,15,130] Yes [130]

sucC 4.1 No No Fnr [21]

gpmA 5.6 Yes [12] No

cmk 2.7 No No

STM1013 2.8 No No

STM1133 -4.2 No No Fnr [21]

ydiE 7.4 Yes [12,15] No Rcs [131]

nth 2.9 No No

STM1586 76.1 Yes [15] No

ldhA -4.0 No No Fnr [21]

ynaF -37.3 No No Fnr [21]

tonB 11.4 Yes [12,15] Yes [132]

hns 3.1 Yes [29] Yes [29]

STM1795 5.8 No No Fnr [21]

STM2186 -8.8 No No Fnr [21]

cirA 4.0 Yes [12,15] Yes [133]

eutC -4.1 No No Fnr [21]

eutB -3.2 No No Fnr [21]

yffB 2.6 No No

iroB 4.6 Yes [15,59] No

iroN 9.1 No No

sitA 53.8 Yes [15,46,61,134-138] No MntR [61]

yggU 3.5 No No

yqjH 3.8 Yes [12] No

secY 4.0 Yes [101] Yes [100]

bfr 3.2 Yes [14,79,88] No

bfd 5.9 Yes [12,14,15] No

feoB 11.8 Yes[12,14,63,134,139,140] No ArcA and Fnr [141]

STM3600 -6.8 No No Fnr [21]

STM3690 -4.2 No No Fnr [21]

rpoZ 3.9 No No

udp -5.4 No No IscS [142]

sodA 9.1 Yes [14,55,82,88,143-148] Yes [85,146,148] Fnr, ArcA, IHF, SoxRS [53,81]

yjcD 2.8 No No

dcuA -5.8 No No

aspA -3.6 Yes [13,15] No NarL[149,150]
ArcA [151]
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or its competitor [Fe2+] may have dramatic effects on
MnSOD activity. Indeed, we were only able to discern
the role of Fur in sodA and MnSOD expression with the
addition of excess MnCl2 to the growth media. These
data are summarized in Figure 6, which depicts the
transcriptional, translational, and post-translational role
of Fur in sodA and sodB. This implies that disruption of
iron homeostasis is likely to have a two-pronged effect,
increase in Fenton chemistry and a decrease in MnSOD
activity due to iron overload. It appears that the inhibi-
tion of MnSOD by iron is evolutionarily conserved.
Thus, the mitochondrial Mn2+-cofactored SOD2 has
been shown to be inactivated in a similar manner when
iron homeostasis was disrupted in yeast [106]. In addi-
tion, supplementation of the medium with Mn2+

reduced oxidative stress in a murine model of

hemochromatosis [107]. It is unknown if this is due to
enhanced MnSOD or if Mn2+ supplementation reduces
oxidative stress in other pathological states of altered
iron homeostasis.
Our decision to further study ftnB and hmpA was due

to our previous findings, where we found that ftnB and
hmpA were activated and repressed by Fnr, respectively
[21]. The Fnr-dependent expression of ftnB was appar-
ent from the reduced activity in Δfnr under anaerobic
conditions, and the reduced activity in the WT strain in
presence of oxygen. In addition, iron chelation and the
deletion of fur reduced ftnB expression regardless of the
oxygen tension. These results indicated that Fur con-
trolled regulation of ftnB is independent of Fnr. Our
results are in agreement with earlier work that demon-
strated dependence of ftnB expression on Fur [15].

Figure 6 Role of Fur in the transcriptional, translational and post-translational regulation of sodA and sodB. (A) Repression of sodA by
Fur is depicted in addition to the role of Fur in iron homeostasis. Iron is known to bind to the active site of MnSODs that leads to inactivation
of the enzyme [106,124]. Increased expression of MnSOD was detected only when excess Mn2+ was added to the media in order to out
compete the Fe2+. Deletion of fur under iron replete conditions results in increase transcription of sodA, but incorportation of Fe2+ into the
active site of SodA resulting in SodA-Fe and an inactive enzyme. Addition of excess Mn2+ to the culture media can out compete Fe2+ for the
active site of SodA resulting in SodA-Mn and an active enzyme. (B) Indirect regulation of SodB by Fur in S. Typhimurium. The small RNAs rfrA
and rfrB of S. Typhimurium are likely to function as their homolog ryhB in E. coli in regards to SodB regulation [88]. Our data confirms the Hfq-
dependent function of reduced FeSOD activity in Δfur. Previous work confirmed the role of Hfq and Fur in SodB expression [39]. Deletion of fur
results in increased transcription of the sRNAs (rfrA and rfrB) that can pair with mRNA of sodB in an Hfq-dependent fashion and result in the
degradation of sodB mRNA. However, a combined deletion of hfq in Δfur results in loss of rfrAB-mediated degradation of sodB, and results in the
synthesis of SodB protein that gets activated to FeSOD in the presence of Fe2+.

Table 4 Comparison of Differentially Expressed Genes in Δ?Δ?fur That Contain a Putative Fur Binding Site with Con-
firmed Data of Fur Regulation from other Studies and the Possible Involvement of other Transcription Regulators
(Continued)

ytfE 10.0 Yes [13] No NsrR [99]

fhuF 8.5 Yes [12,13,15] Yes [11,152,153]
a Genes from the present study that are regulated by Fur and possess a putative Fur-binding motif
bFold change of expression in Δfur relative to the wt 14028s
c Evidence of direct Fur binding the regulatory region of the gene
d Regulation by other transcription factors besides Fur
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However, they are contrary to a previous report, which
determined that Fur exhibited a repressive role on ftnB
expression [79]. The reason for this discrepancy is
unclear. It is evident from work reported herein and in
a previous study in E. coli that ftnB exhibits a strong
dependence on low O2 conditions [108]. Furthermore,
the earlier study [108] determined that Fnr bound the
promoter of ftnB in E. coli and that the Fnr binding site
was further upstream than in known Fnr regulated
genes. The same investigators [108], postulated that Fnr
was unable to induce ftnB and that other regulators
were required. However, we have determined that Fnr
alone contributes to the activation of ftnB and that Fur
is required for full induction of the gene, with Fnr exhi-
biting a more pronounced role. The lack of a predicted
Fur binding site in ftnB indicated that Fur regulation
was indirect. The following scenario is proposed to
explain these findings and to suggest that the observed
regulation of ftnB by Fur is mediated by the histone-like
protein H-NS. First, the microarray data showed that
Fur negatively regulates the expression of hns and has a
predicted Fur binding site (Table 3). Second, we recently
demonstrated that Fur binds upstream of hns in a metal
dependent fashion [29]. Third, whole genome ChIP ana-
lysis demonstrated that H-NS binds to ftnB and the
expression of ftnB is up-regulated in the absence of hns
[31]. Fourth, the tdc operon is a known target for H-NS
repression [31,76] and was significantly reduced in the
absence of fur. Therefore, we propose that the positive
regulation ftnB by Fur is mediated by the negative regu-
lation of hns by Fur. Thus removal of Fur (i.e., as in
Δfur) results in repression of ftnB by H-NS (see Figure
7). A second possibility is reduced Fnr function (or an
additional activator) in Δfur since several Fnr regulated
genes were differentially expressed in Δfur. However,
our data rule-out this possibility in ftnB regulation by

showing the involvement of Fur in the regulation of
ftnB under aerobic conditions, where Fnr is inactive.
H-NS controls diverse functions within the cell and

forms complex structures when binding DNA that indi-
cates a central role in DNA topology [109-113]. Similar
to Fur, H-NS is a repressor of transcription
[31,34,35,114]. This implies that genes controlled by H-
NS are regulated by iron through Fur. This interaction
also demonstrates interaction between two regulators
(Fur and H-NS) functioning in highly conserved physio-
logical events, regulating a potentially toxic, but needed
metal and regulating foreign DNA in a concerted man-
ner. Thus, our results provided additional insight into
iron-dependent regulation of H-NS.
Another gene regulated by Fnr or Fur was the NO·

detoxifying flavohemoglobin protein encoded by the
hmpA. This gene (hmpA) is repressed by Fnr and con-
tained a putative Fnr binding site, but did not contain a
predicted Fur binding site [21,95,96]. Previous work
determined that Fur was a repressor of hmpA [115].
However, it was later revealed that the reporter fusion
was to the Fur repressed iroC and not to the hmpA
[116]. Additionally, a previous report did not reveal a
role for Fur in regulation of hmpA [97], while two other
studies found a modest effect of Fur on hmpA expres-
sion [98,117]. NsrR is another repressor of hmpA [97].
Thus, hmpA is repressed by two regulators that contain
an iron-sulfur cluster. Despite contradictory reports,
increased hmpA expression was detected in Δfur. Our
initial hypothesis was that this was due to reduced Fnr
function in Δfur. To support this hypothesis, we
expected reporter activity to be similar in Δfnr and
ΔfurΔfnr backgrounds. However, our results did not
support this initial hypothesis since ΔfurΔfnr exhibited
~3.5-fold increased expression compared to Δfnr; indi-
cating that Fur regulation was Fnr-independent.

Figure 7 Representation depicting the role of Fur and H-NS in the regulation of ftnB and the tdc operon. H-NS confirmed binding sites
and transcriptional repression [31] were compared with our microarray data and Fur repression of hns [29]. Collectively, the data indicate that
Fur-dependent activation of ftnB and the tdc operon may be due to the increased expression of H-NS in Δfur, which represses ftnB and the tdc
operon. Thus, under Fur active conditions (left panel), hns is repressed by Fur thereby blocking H-NS repression of ftnB and the tdc operon
(signified by the circle with an “X”). While under Fur inactive conditions (right panel), the overexpression of H-NS results in the repression of ftnB
and the tdc operon under anaerobic conditions.
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A striking finding was the shared regulation of several
genes by Fur and Fnr. Microarray and bioinformatic stu-
dies indicated that 12 of the 298 Fur-dependent genes
contained a predicted binding site for both Fur and Fnr.
Thus, these two global regulators may be directly
involved in regulation of these 12 genes (Additional file
4: Table S4). The expression data indicated that Fur and
Fnr cooperate in the regulation of these 12 genes. For
instance, each gene was regulated in the same manner
in Δfur or Δfnr; a gene activated by Fur was also acti-
vated by Fnr. Lastly, our investigations indicate that Fur
indirectly regulates genes that are under control of Fnr
or additional regulators with an iron sulfur cluster (i.e.,
ftnB and hmpA). Furthermore, the observed reduced
expression of the ethanolamine operon, frdABD, and
dmsABC in Δfur, suggest altered regulation of operons
induced under anaerobiosis (Additional file 2: Table S2).
Thus, Fur is an activator of genes that are typically
induced under anaerobic conditions. Ethanolamine utili-
zation within the host is important for S. Typhimurium
and the Gram-positive pathogen Listeria monocytogenes
[118,119]. In addition, Fnr is an activator of the frd and
dms operons, which are responsible for anaerobic utili-
zation of fumarate and dimethyl sulfide as alternative
electron acceptors, respectively [120-123]. Our study of
the anaerobic expression of hmpA suggests that it is
regulated by Fur, independent of Fnr. Clearly, these
results suggest Fnr is functional in Δfur and that Fur is
regulating genes of anaerobic metabolism (eut, frd, and
dms operons) through an unknown mechanism.

Conclusions
We demonstrated that Fur is an activator of ftnB in S.
Typhimurium, which is likely due to the de-repression
of hns in Δfur. The strong dependence of ftnB expres-
sion on O2 indicates that Fnr is crucial in its regulation.
Additionally, we presented evidence that Fur indirectly
controls hmpA, independent of Fnr. We determined
that Fur represses sodA transcription, but is required for
the maturation of SodA into an active enzyme, MnSOD.
Finally, we identified new target genes regulated by Fur
in S. Typhimurium, and our data support the increasing
evidence of enhanced H-NS expression in Δfur.

Additional material

Additional file 1: Table S1. Primer table. This file contains the
sequence of primers used in this study.

Additional file 2: Table S2. Fur Regulated Genes. This file contains the
genes that were differentially expressed between 14028s and Δfur under
anaerobic conditions.

Additional file 3: Table S3. Fumarate reductase activity under
anaerobic conditions. This file contains the specific activity of fumarate
reductase in cell-free extracts isolated from 14028s and Δfur under
anaerobic conditions.

Additional file 4: Table S4. Genes regulated by Fur and Fnr under
anaerobiosis and contain putative binding sites for both regulators.
This file contains genes that were differentially expressed in 14028s, Δfur,
and the fnr, which contain a putative binding site for Fur and for Fnr.
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