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Abstract

experimental and computational biofuel researchers.

Background: The genomes of numerous cellulolytic organisms have been recently sequenced or in the pipeline of
being sequenced. Analyses of these genomes as well as the recently sequenced metagenomes in a systematic
manner could possibly lead to discoveries of novel biomass-degradation systems in nature.

Description: We have identified 4,679 and 49,099 free acting glycosyl hydrolases with or without carbohydrate
binding domains, respectively, by scanning through all the proteins in the UniProt Knowledgebase and the JGI
Metagenome database. Cellulosome components were observed only in bacterial genomes, and 166 cellulosome-
dependent glycosyl hydrolases were identified. We observed, from our analysis data, unexpected wide distributions
of two less well-studied bacterial glycosyl hydrolysis systems in which glycosyl hydrolases may bind to the cell
surface directly rather than through linking to surface anchoring proteins, or cellulosome complexes may bind to
the cell surface by novel mechanisms other than the other used SLH domains. In addition, we found that animal-
gut metagenomes are substantially enriched with novel glycosyl hydrolases.

Conclusions: The identified biomass degradation systems through our large-scale search are organized into an
easy-to-use database GASdb at http://csbl.bomb.uga.edu/~ffzhou/GASdb/, which should be useful to both

Background
As a promising alternative energy source to fossil fuels,
biofuels can be produced through degradation and fer-
mentation of lignocellulosic biomass of plant cell walls
[1,2]. A key challenge in converting biomass to fuels lies
in the special structures of cell walls that plants have
formed during evolution to resist decomposition from
microbes and enzymes. It is this defense system of plants
that makes their conversion to fuel difficult, which is
known as the biomass recalcitrance problem [3]. Consid-
erable efforts have been invested into searches for
microbes, specifically cellulolytic microbes, which can
effectively break down this defense system in plants.
Cellulolytic microbes degrade biomass through secret-
ing glycosyl hydrolases, binding to the biomass using
their carbohydrate binding domains (CBMs), and then
cutting various chemical bonds of the biomass using
their catalytic domains [4]. It has been observed that the
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catalytic efficiency of a glycosyl hydrolase (WGH)
decreases when it does not have a CBM domain [5,6],
compared to the ones with such a domain. While some
microbes use directly multiple glycosyl hydrolases, inde-
pendent of each other, for biomass degradation, other
microbes use them in an organized fashion, i.e., orches-
trating them into large protein complexes, called cellulo-
somes, through scaffolding (Sca) proteins. The former
are called free acting hydrolases (FAC), and the latter
called cellulosome dependent hydrolases (CDC) [4,7].
Some anaerobic microbes use both systems for biomass
degradation [7] while most of the other cellulolytic
microbes use only one of them. When degrading bio-
masses, cellulosomes are generally attached to their host
cell surfaces by binding to the cell surface anchoring
(SLH) proteins [8]. The general observation has been
that cellulosomes are more efficient in degradation of
biomass into short-chain sugars than free acting cellu-
lases [8]. Our goal in this computational study is to
identify and characterize all the component proteins of
the biomass degradation system in an organism, which
is called the glydrome of the organism.
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We have systematically re-annotated and analyzed the
functional domains and signal peptides of all the pro-
teins in the UniProt Knowledgebase and the JGI Meta-
genome database, aiming to identify novel glycosyl
hydrolases or novel mechanisms for biomass degrada-
tion. Based on their domain compositions, we have clas-
sified all the identified glydrome components into five
categories, namely FAC, WGH, CDC, SLH and Sca. To
our surprise, two less well-studied glycosyl hydrolysis
systems were found to be widely distributed in 63 bac-
terial genomes, in which (a) glycosyl hydrolases may
bind directly to the cell surfaces by their own cell sur-
face anchoring domains rather than through those in
the cell surface anchoring proteins or (b) cellulosome
complexes may bind to the cell surface through novel
mechanisms other than the SLH domains, respectively,
as previously observed. Our analyses also suggest that
animal-gut metagenomes are significantly enriched with
novel glycosyl hydrolases. All the identified glydrome
elements are organized into an easy-to-use database,

GASdb, at http://csbl.bmb.uga.edu/~ffzhou/GASdb/.

Construction and content

Data sources

We downloaded the UniProt Knowledgebase release

14.8 (Feb 10, 2009) [9] with 7,754,276 proteins, and all

the 46 metagenomes from the JGI IMG/M database [10]

with 1,504,133 proteins. The three simulated metagen-

omes in the database were excluded from our analysis.
The operon annotations were downloaded from

DOOR [11,12].

Annotation and database construction

We have identified the signal peptides and analyzed the
functional domains for all the proteins using SignalP
version 3.0 [13,14] and Pfam version 23.0 [15]. A pro-
tein is defined as a cell surface anchoring protein, if it
has one SLH domain and one Cohesin domain; a scaf-
folding has at least three Cohesin domains or one Cohe-
sin domain and one carbohydrate binding domain; a
cellulosome dependent catalytic protein has one catalytic
domain and one dockerin domain; a free acting catalytic
protein has one catalytic domain and one CBM domain;
and all the other proteins with one catalytic domain are
defined as weak catalytic proteins.

We calculated the percentages of glydrome compo-
nents in genomes with at least 1,000 proteins only, since
most of the others may not have completely sequenced.
Three dimension protein structures were predicted
using LOMETS [16]. The protein’s Gene Ontology
annotations were predicted using PFP [17].

To make the annotated glydromes easy to be accessed,
a database GASdb was constructed using PHP scripting
language.
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Identified glydromes in bacteria

4,616 FACs are identified from the 7.75 million proteins
in the UniProt Knowledgebase (release 14.8) [see Addi-
tional file 1]. The majority of them, 2,774 (61.71%), are
from bacterial genomes. 1,019 FACs are found in the
phylum Firmicutes, of which are a number of well-stu-
died cellulolytic organisms such as Anaerocellum ther-
mophilum [18), Caldicellulosiruptor saccharolyticus [19]
and Clostridium thermocellum [20,21]. In addition, a
large number of FACs are found in each of the two
other phyla, namely Bacteroidetes (342 FACs) and Acti-
nobacteria (425 FACs). Overall, these three phyla har-
bour 64.38% (~1,786/2,774) of our identified bacterial
FACs, comparing to 25.12% of all the bacterial genomes
covered by these phyla.

The previous observation has been that a functional
cellulosome consists of at least one cell surface anchor-
ing protein with SLH domains, at least one scaffolding
protein and a number of cellulosome dependent glycosyl
hydrolases [3,8,22,23]. Our search and analysis results
indicate that novel biomass-degradation mechanisms
may exist in the genomes or metagenomes that we ana-
lyzed, the details of which will need further studies. For
example, Clostridium acetobutylicum was known to
encode a scaffolding protein and a few cellulosome
dependent enzymes, but it is not clear how the cellulo-
some is anchored to the cell surface [24,25] as no SLH
domains were identified in the genome [see Additional
file 1]. The similar question holds for the other four
Firmicutes, i.e. Clostridium cellulolyticum, Clostridium
cellulovorans, Clostridium josui and Ruminococcus flave-
faciens. We did not expect that the scaffolding proteins
in all these genomes except for Ruminococcus flavefa-
ciens encode a domain of unknown function (PF03442:
DUF291). Our data supports the previous observation
that the four DUF291 domains in the C. cellulovorans
scaffolding CbpA are possibly involved in anchoring the
cellulosome on the cell surface [26].

A somewhat unusual glydrome was identified in Pae-
nibacillus sp. JDR-2 of phylum Firmicutes. Paenibacillus
sp. JDR-2 was known to encode modular xylanases
[27,28] as shown in Figure 1. It is surprising to find 4
SLH proteins, i.e. B1ID7Q9, B1D969, B1DGS5 and
B1DIS9, but no other cellulosome components in Paeni-
bacillus sp. JDR-2. Our search did not find any dockerin
domains in the genome, suggesting the possibility that
the organism uses an unknown biomass-degradation
mechanism. In addition our search also identified SLH
domains in 6 FACs and 5 WGHs of this organism, as
shown in Figure 1. The superfamily of Ig-like fold
domains are found in varieties of cell surface proteins
[29], and the existence of them (Big_2, Big_4, and fn3,
etc) in the aforementioned proteins further supports
that they may anchor to the cell surface.
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Figure 1 Domain structures of four SLH proteins and eleven glycosyl hydrolases with SLH domains in Paenibacillus sp. JDR-2.

Overall a large number of glycosyl hydrolases without
carbohydrate binding domains or dockerin domains
were identified in the bacterial genomes. More than
2,000 WGHs are found in each of the following four
phyla, Proteobacteria (10,442 WGHs), Firmicutes (6,084
WGHs), Bacteroidetes (2,885 WGHSs) and Actinobacteria
(2,371 WGHSs). Top 3 bacterial genomes with the high-
est percentages of glycosyl hydrolases (FACs, WGHs
and CDCs) are Bacteroides intestinalis DSM 17393
(5.11%), Bacteroides ovatus ATCC 8483 (4.49%) and
Bacteroides thetaiotaomicron (4.40%).

Identified glydromes in archaea

18 FACs are identified in six genera of Archaea, i.e.
Thermococcus, Halobacterium, Pyrococcus, Thermofilum,
Caldivirga and Haloferax [see Additional file 1], cover-
ing 11 genomes. Each of these 11 archaeal genomes
encodes 1-3 FACs together with up to 28 WGHs. FACs
were known to be encoded in four archaeal genomes, i.
e. Halobacterium mediterranei [30], Pyrococcus furiosus
[31,32], Pyrococcus kodakaraensis [33] and Ferroplasma
acidiphilum strain Y [34]. Three of them are in our list.
The glycosyl hydrolase in Ferroplasma acidiphilum
strain Y was missed in our database since our annota-
tion is based on the knowledge from the two databases,
CAZy [35] and Pfam [15], neither of which includes this

enzyme. 14 of the 18 identified FACs are homologous to
each other with NCBI BLAST E-values < le-132 in dif-
ferent species of the same genus, suggesting that these
enzymes have been in the 11 archaeal genomes at least
before the divergence of these species.

385 proteins are annotated as WGHs in the 93 gen-
omes from 30 archaeal genera. No cellulosome compo-
nents were found in any of the archaeal genomes.

Identified glydromes in eukaryota

1,824 FACs are found in the 1,668 eukaryotic genomes
covering 23 phyla, 62.23% (1,135/1,824) of which were
from fungal genomes. A green plant phylum Strepto-
phyta (664 FACs) contributes to 36.40% of the FACs.
All the other phyla encode less than 100 FACs. Four
plant genomes encode more than 45 FACs, and they are
Oryza sativa sp japonica (Rice) (99 FACs), Vitis vinifera
(Grape) (71 FACs), Arabidopsis thaliana (Mouse-ear
cress) (65 FACs) and Zea mays (Maize) (47 FACs). The
other 25 non-fungi FACs are encoded in 5 unicellular
algae and 6 animal genomes.

17,048 WGHs are found in the 1,668 eukaryotic gen-
omes. The top three phyla in the numbers of FACs are
also top three in the numbers of WGHs; and 2,328,
5,444 and 5,171 WGHs are encoded in three phyla
Arthropoda, Ascomycota and Streptophyta, respectively.
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The top four eukaryotic genomes in the numbers of
WGHs are from the phylum Streptophyta, and they are
Oryza sativa sp japonica (Rice) (828 WGHs), Arabidop-
sis thaliana (Mouse-ear cress) (678 WGHSs), Vitis vini-
fera (Grape) (602 WGHs) and Zea mays (Maize) (284
WGHs).

It is interesting to observe that there are 272 and 224
WGHs in the human and mouse genomes, respectively.
Besides two other plant genomes, i.e. Oryza sativa
subsp. indica (Rice) (258 WGHSs) and Physcomitrella
patens sp patens (Moss) (226 WGHs), all the other 6
eukaryotic genomes encoding more than 200 WGHs are
from the fungal phylum Ascomycota. No cellulosome
components were identified in the eukaryotic genomes.
200 (~73.53%) human WGHs are homologous to mouse
WGHs with NCBI BLAST E-values < e-23. So the
majority of these enzymes have been in the genomes of
human and mouse at least before their divergence 75
million years ago [36].

Identified glydromes in metagenomes

Overall, 63 FACs and 6,072 WGHs are found in 42
metagenomes except for TM7b which was sampled
from the human mouth. The top two metagenomes in
the numbers of glycosyl hydrolases are from termite
guts (12 FACs and 1,150 WGHs) and diversa silage soil
(13 FACs and 820 WGHSs). Since the number of
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proteins in metagenomes varies from 452 in termite gut
fosmids to 185,274 in the diversa silage soil, we calcu-
lated the percentage of the glycosyl hydrolases in each
metagenome. On average, 0.65% of a metagenome
encode glycosyl hydrolases. We noted that all the meta-
genomes with more than 1% encoding glycosyl hydro-
lases are from the animal guts (including human, mouse
and termite). This is confirmed by an independent study
using BLAST mapping [37]. No cellulosome compo-
nents were identified in any metagenome.

Utility

The query interface of GASdb

All the annotated glydromes were organized into an
easy-to-use database GASdb (Figure 2). A user can find
the proteins of interest through browsing, and searching
using keywords or BLAST. The overall organization of
each glydrome can be displayed; and the high resolution
images of each protein can be downloaded for the publi-
cation purpose, as shown in Figure 3. A user can also
display the signal peptide and functional domains of a
given protein and its homologs using BLAST with
E-value cutoff 1e-20, as shown in Figure 3.

The comparative analysis interface of GASdb
The glydromes of multiple genomes can be illustrated in
the Compare interface. First, the user needs to find the
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Figure 2 The database interfaces: the main page, the browsing page, the searching page, and the BLAST page.
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Figure 3 The displaying pages for the domain architectures of the glydrome of Clostridium acetobutylicum, and domain architectures




Zhou et al. BMC Microbiology 2010, 10:69
http://www.biomedcentral.com/1471-2180/10/69

genome(s) of interest using keywords through the Com-
pare interface. Then one or multiple genomes can be
selected from the left panel in Figure 4, and added to
the right panel for final display. The user can also
remove some genomes from the right panel. The signal
peptides and functional domains of proteins in the
selected glydromes in the right panel will be displayed
in the next page by clicking the Compare button, as
shown in Figure 4.

Discussion

The majority (52.90%) of glycosyl hydrolases (including
FACs, CDCs and WGHSs) in our database are encoded
by the 1,771 bacterial genomes. The 1,668 eukaryotic
genomes contribute 34.98% of the total glycosyl hydro-
lases. So the glycosyl hydrolases are much more
enriched in bacteria than in eukaryotes, considering the
substantially larger sizes of eukaryotic genomes. Cellulo-
some components are observed only in Firmicutes,
except for the CDC xynB (Q7UF11) from Rhodopirellula
baltica. All the other glycosyl hydrolases do not have
dockerin domains, and were annotated as FACs or
WGHs. Although the catalytic domain and the CBM
domain of a glycosyl hydrolase can function indepen-
dently, the CBM domain is known to play an important
role in the catalytic efficiency of glycosyl hydrolase [5,6].
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So the annotated FACs may have higher catalytic
efficiency.

A cell surface anchoring protein binds to the cell sur-
face through its two or three SLH domains, and binds
to the cellulosome scaffolding proteins together with the
CDCs through the interacting pairs of cohesin domains
and dockerin domains. It is unexpected to find SLH
domains in additional 5 FACs and 5 WGHs of Paeniba-
cillus sp. JDR-2, as the only previous observation related
to this is Q53145 (XynA) in Paenibacillus sp. JDR-2 gen-
ome [28]. We believe that these glycosyl hydrolases may
bind to the cell surface through their own SLH domains,
as Paenibacillus sp. JDR-2 encodes SLH proteins but no
scaffoldings or CDCs. It would be interesting to study
how Paenibacillus sp. JDR-2 acquired the SLH proteins
or lost the other cellulosome components. We noticed
that this is not a unique feature of Paenibacillus sp.
JDR-2, as there are 26 FACs and 52 WGHSs with SLH
domains in the other organisms, all of which are bac-
teria, except for the moss Physcomitrella patens. Many
of these enzymes have been experimentally confirmed to
anchor on the cell surfaces through the SLH domains, e.
g. the cell surface xylanase xyn5 (Q8GHJ4) from Paeni-
bacillus sp. W-61 [38,39], the extra-cellular endogluca-
nase celA (Q9ZA17) from Thermoanaerobacterium
polysaccharolyticum [40] and the endoxylanase
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Figure 4 The comparative analyzing interface of GASdb with Vitis pseudoreticulata and Ziziphus mauritiana as an example.
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(Q60043) from Thermoanaerobacterium sp. strain JW/
SL-YS 485 [41].

Cellulosomes could be linked to the cell surfaces using
novel mechanisms other than through the typically used
SLH domains as our data indicate. Five Firmicutes
encode scaffolding proteins and CDCs but no recogniz-
able SLH domains, a key feature for the cell surface
anchoring proteins. The cellulosomes were observed to
anchor on the cell surfaces in Clostridium cellulolyticum
[22], Clostridium cellulovorans [42] and Ruminococcus
flavefaciens [7]. But the detailed mechanisms remain to
be known. The cellulosomes in Clostridium acetobutyli-
cum and Clostridium josui may also be linked to the cell
surfaces through some unknown mechanisms. Our ana-
lysis suggests that the domain of unknown function
DUF291 (PF03442) might be involved in attaching these
cellulosomes to the cell surfaces. We predicted the 3D
structure of the first DUF291 domain in the scaffolding
Q977Y4 of the Clostridium acetobutylicum glydrome, as
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shown in Figure 5. The first template (IEHX) does not
show functional implication, while the second one
(1CS6) is involved in cell adhesion [43,44]. The differ-
ence between the two predicted structures of the
DUF291 domain is similar to each other with
RMSD~2.7 A and TM score 0.6 using TM-align [45,46].

We collected 41 proteins encoded in the same oper-
ons with the components of Clostridium acetobutylicum
glydrome but not in our GASdb. 16 of these proteins
cover the following functional categories: binding
(G0O:0005488), catalytic activity (GO:0003824) and
transporter activity (GO:0005215), and the remaining 25
are hypothetical or uncharacterized proteins. Only five
proteins were annotated to be involved in the glycosyl
hydrolysis, e.g. carbohydrate binding (GO:0030246) or
hydrolase activity (GO:0016787). Three of the five pro-
teins missed in our GASdb, i.e. Q97EZ1, Q97FI9 and
Q97T13, do not have recognizable Pfam domains related
to the glycosyl hydrolysis. Q97TP4 is annotated to be an

Figure 5 Top two predicted structures of the first DUF291 (PF03442) domain of the scaffolding Q977Y4 of the Clostridium
acetobutylicum glydrome, with templates 1ehxa and 1cs6a, respectively.
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esterase (family 4 CE). The cellulosome integrating pro-
tein Q97KK4 has only one Cohesin domain occupying
~77.35% (140/181) of its total length, and might have
been inactivated by domain deletion.

In general, the glycosyl hydrolases and the cellulosome
components attack the biomass after they are secreted
outside the cells and properly assembled [23,47], and
hence we would expect that they have certain signal
peptides. However the majority of the annotated glycosyl
hydrolases do not have any signal peptides, based on the
predictions of SignalP 3.0 [13,14]. We found that over
65% of WGHs across all organisms except for Eukaryota
do not have predicted signal peptides suggesting the
possibility of these proteins using a novel secretion
mechanism.

The ratio between the numbers of WGHs and FACs
in a glydrome tends to be no more than 30. We calcu-
lated this ratio for each glydrome in a genome or meta-
genome with at least 1,000 proteins and at least one
FAC and one WGH. We observed that the averaged
ratios between the numbers of WGHs and FACs are
9.98, 12.55 and 14.40 for archaea, bacteria and eukar-
yota, with standard derivations 8.22, 16.65 and 12.25,
respectively. Overall, over 90% of the glydromes in
archaea, bacteria and eukaryota are lower than 30 in
this ratio, respectively. It is surprising to find that the
metagenomes encode 95.38 times more WGHs than
FACs but no cellulosome components. We speculate
that there may be some novel CBM domains being used
by these WGHs in these metagenomes. An alternative
hypothesis could be that microbes in a community gen-
erously secrete WGHs to degrade biomass and live on
the hydrolysis products in the nearby regions only.

Conclusions

We conducted the first large-scale annotation of
glydromes in all the sequenced genomes and metagen-
omes. We have made a number of interesting observa-
tions about glydromes of the sequences genomes and
metagenomes. Among them, two less well-studied gly-
dromes were observed in dozens of organisms, which
are A) glycosyl hydrolases were found to have cell sur-
face anchoring domains and can bind to the cell sur-
faces by themselves; and B) Clostridium acetobutylicum
and four other bacteria from the phylum Firmicutes
encode all cellulosome components except for the cell
surface anchoring proteins SLHs, suggesting that the
cellulosomes may have link to the cell surfaces through
some novel mechanisms. Individual cases have been
experimentally observed, but further studies are needed
to uncover the underlining mechanisms and how they
evolved into the current glydrome structures. Our data
also suggested that the animal gut metagenomes are
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rich in novel glycosyl hydrolases, providing new targets
for further experimental studies.

Availability and requirements
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