
Qu et al. BMC Microbiology 2010, 10:162
http://www.biomedcentral.com/1471-2180/10/162

Open AccessR E S E A R C H  A R T I C L E
Research articleProteomic expression profiling of Haemophilus 
influenzae grown in pooled human sputum from 
adults with chronic obstructive pulmonary disease 
reveal antioxidant and stress responses
Jun Qu1,6, Alan J Lesse2,3,4,7, Aimee L Brauer2, Jin Cao1,6, Steven R Gill5,6 and Timothy F Murphy*2,3,6,7

Abstract
Background: Nontypeable Haemophilus influenzae colonizes and infects the airways of adults with chronic obstructive 
pulmonary disease, the fourth most common cause of death worldwide.Thus, H. influenzae, an exclusively human 
pathogen, has adapted to survive in the hostile environment of the human airways.To characterize proteins expressed 
by H. influenzae in the airways, a prototype strain was grown in pooled human sputum to simulate conditions in the 
human respiratory tract.The proteins from whole bacterial cell lysates were solubilized with a strong buffer and then 
quantitatively cleaned with an optimized precipitation/on-pellet enzymatic digestion procedure.Proteomic profiling 
was accomplished by Nano-flow liquid chromatography/mass spectroscopy with low void volume and high 
separation efficiency with a shallow, long gradient.

Results: A total of 1402 proteins were identified with high confidence, including 170 proteins that were encoded by 
genes that are annotated as conserved hypothetical proteins.Thirty-one proteins were present in greater abundance in 
sputum-grown conditions at a ratio of > 1.5 compared to chemically defined media.These included 8 anti-oxidant and 
5 stress-related proteins, suggesting that expression of antioxidant activity and stress responses is important for 
survival in the airways.Four proteins involved in uptake of divalent anions and 9 proteins that function in uptake of 
various molecules were present in greater abundance in sputum-grown conditions.

Conclusions: Proteomic expression profiling of H. influenzae grown in pooled human sputum revealed increased 
expression of antioxidant, stress-response proteins and cofactor and nutrient uptake systems compared to media 
grown cells.These observations suggest that H. influenzae adapts to the oxidative and nutritionally limited conditions of 
the airways in adults with chronic obstructive pulmonary disease by increasing expression of molecules necessary for 
survival in these conditions.

Background
Nontypeable Haemophilus influenzae is an exclusively
human pathogen whose primary ecological niche is the
human respiratory tract.H. influenzae causes lower respi-
ratory tract infections, called exacerbations, in adults
with chronic obstructive pulmonary disease (COPD) and
these infections cause substantial morbidity and mortal-
ity [1].In addition to causing intermittent acute infections

in the setting of COPD, H. influenzae also chronically col-
onizes the lower airways in a subset of adults with COPD
[2-4].In the normal human respiratory tract, the airways
are sterile below the vocal cords.However, in adults with
COPD the lower airways are colonized by bacteria, with
H. influenzae as the most common pathogen isolated in
this setting.This chronic colonization contributes to air-
way inflammation that is a hallmark of COPD [5,6].Thus,
H. influenzae appears to be uniquely adapted to survive
in the human respiratory tract of adults with COPD.

The human respiratory tract is a hostile environment
for bacteria.Nutrients and energy sources are limited and
the human airways express myriad antimicrobial peptides
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and molecules that are highly bactericidal [7-9]. Further-
more, the airways in adults with COPD are characterized
by an oxidant/antioxidant imbalance which is an impor-
tant component of the airway inflammation that charac-
terizes COPD [10,11]. Thus, to survive and grow in the
respiratory tract, bacteria must use energy sources and
nutrients that are available and synthesize necessary
metabolites.In addition, bacteria must express proteins
and other molecules to enable persistence in spite of oxi-
dative and inflammatory conditions and various antimi-
crobial substances that are active in the airways.Little is
known about the mechanisms by which H. influenzae
survives and multiplies in the human respiratory tract.

The goal of the present study is to characterize the pro-
teome of H. influenzae during growth in pooled human
sputum in an effort to partially simulate conditions that
are present in the human respiratory tract.COPD is a dis-
ease entity that includes chronic bronchitis and emphy-
sema.The major criterion that defines chronic bronchitis
is chronic sputum production due to excess mucus pro-
duction in the airways that results from hypertrophy of
submucosal glands.Thus, the approach that we have
taken is to grow a prototype COPD clinical isolate of H.
influenzae in a chemically defined medium to which
pooled sputum from adults with COPD has been
added.The proteome of sputum-grown H. influenzae was
characterized and compared to that of H. influenzae
grown in chemically defined medium alone.Identifying
proteins that demonstrate increased expression during
growth in pooled human sputum will help to identify
potential virulence factors or abundantly expressed sur-
face antigens that, with further study, could lead to an
understanding of the mechanisms by which H. influenzae
survives and causes infection in the human respiratory
tract.Understanding these mechanisms and elucidating
the molecules that are expressed abundantly by H. influ-
enzae when it grows in the respiratory tract may lead to
the development of novel strategies for treatment or pre-
vention of respiratory tract infections caused by H. influ-
enzae.

The approaches generally employed for comparing pro-
teomes include two-dimensional (2D) gel electrophoresis
[12] and LC/MS-based methods, such as isotope labeling
by metabolic incorporation (e.g. SILAC) [13,14] and
chemical/enzymatic labeling(e.g. ICAT, iTRAQ and 18O-
incorporation) [15-17], and more recently, label-free pro-
tein expression profiling approaches [18-24].Label-free
methods employ a "shotgun" approach that is particularly
effective for large-scale protein analysis [25] and carries
the potential for providing higher quantitative accuracy
(as demonstrated by the Association of Biomolecular
Resource Facilities, http://www.abrf.org/prg). In addition,
the label-free approach enables the ability to quantify and

compare multiple biological/technical replicates, as
required in this work. Therefore, in this study we
employed the label-free expression profiling strategy we
developed [26-29] for the relative quantification of pro-
teins expressed at the two different culture conditions.

Results and Discussion
Expression profiling method optimization and evaluation
Because the label-free proteomic analysis approach often
does not employ internal standards, quantitative and
reproducible sample preparation, as well as robust, com-
prehensive and reproducible LC/MS analysis is particu-
larly important for obtaining reliable results [30].To
approach the difficulties associated with efficient protein
extraction and sample cleanup, comprehensive protein
identification, and reproducible quantification, we devel-
oped, optimized and evaluated the expression profiling
procedure [29,31].

Treatment of the bacterial samples
For label-free expression profiling of bacterial samples, an
efficient and quantitative extraction of proteins from the
biological matrix is critical. Therefore, a strong buffer
that contains relatively high concentrations of both ionic
and non-ionic detergents was employed (See Meth-
ods).Because most of the buffer components are not
compatible with the subsequent digestion and LC/MS
procedure, these components must be removed from the
samples without appreciable protein loss.Recently we
developed a facile, efficient, and reproducible precipita-
tion/on-pellet-digestion procedure, which removes
detergents, protease inhibitors, and non-protein matrix
components efficiently by organic solvent precipitation
without significant protein loss; then a 2-step enzymatic
digestion procedure subsequently brings the precipitated
proteins back into solution as soluble, completely-cleaved
peptides, without introducing detergents [29].

The acetone precipitation procedure (e.g. the amount
of acetone addition of the two-step precipitation), as well
as on-pellet-digestion parameters (e.g. the enzyme-to-
substrate ratio and the incubation durations), were opti-
mized by monitoring the total ion currents and the com-
pleteness of digestion and of tryptic peptides generated in
both digestion steps by nano-LC/LTQ/ETD and nano-
LC/LTQ/Orbitrap. The optimized conditions were
described in the Methods section. Under the optimized
condition, the peptide recoveries from a bacterial lysate
ranged from 87-93%, as determined by a revised BCA
method we developed previously [29] (data not shown).
This high and reproducible peptide recovery ensures a
reliable proteomic comparison for bacteria grown in dif-
ferent conditions.

http://www.abrf.org/prg
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Nano-LC/MS optimization
Because the whole bacterial lysate is highly complex, a
large number of tryptic peptides are retrieved by the pre-
cipitation/on-pellet digestion procedure.As a result, suf-
ficient chromatographic separation is required to achieve
the most comprehensive identification/quantification of
the proteome, especially for lower abundance peptides.
To address this requirement, a chromatographic system
with low void volume and high separation efficiency were
employed with a shallow, long gradient (5 hour total sepa-
ration time). A nano-LC, rather than a conventional LC,
was used for peptide separation because of the signifi-
cantly higher sensitivity, as we demonstrated previously
[32,33]. As the high run-to-run reproducibility of reten-
tion times and MS signal intensities is essential [18], we
employed a low-void-volume and high-resolution nano-
LC/nanospray configuration with a non-coated fused sil-
ica tip (ID of 3 μm and an OD of 360 μm) that provides
exceptional reproducibility [29].To achieve a comprehen-
sive proteomic coverage, we used a relatively long (40 cm)
reversed-phase nano-column in conjunction with a 5
hour, shallow elution gradient for the separation of bacte-
rial lysate. A typical chromatogram is shown in Figure 1.
An extended peptide elution window of more than 220
min was achieved, and this high level of chromatographic
separation enabled extensive identification and profiling
of the proteome.

Evaluation of the quantitative methods
To investigate the performance of the method for a rela-
tively large-scale expression profiling of bacterial lysate,
the chromatographic reproducibility was evaluated with
12 repeated injections of the same pooled sample over a
3-day period. The reproducibility of chromatographic
separation and signal intensities for the twelve 5-h runs

was excellent, as assessed from data for selected tryptic
peptides identified in the bacterial lysate preparation.
Variations in retention time for the selected peptides
were in the range of 0.32-1.05%, and variations for pre-
cursor ion current AUCs were in the range of 5-14% over
the 3 day period. This high level of reproducibility can be
attributed to two factors: (i) the highly reproducible chro-
matographic configuration described above, and (ii) the
efficient precipitation/on-pellet-digestion procedure that
removed detergents and other potentially interfering
compounds.

Current methods for proteomic investigation are prone
to false-positives arising from technical variability [34].In
this study, to eliminate false-positives resulting from drift
in nano-LC or ionization efficiency, for example, and pos-
sible instability of certain tryptic peptides, all samples
were analyzed in a random order.To evaluate the false-
positive rate before comparing the bacterial samples
grown under different conditions, we designed an experi-
ment to determine the false-positive rate in relative quan-
tification. From the 10 repetitive analyses of a pooled
bacterial sample (above), 5 runs were randomly assigned
as the control group, and the remaining 5 were desig-
nated as the experimental group. Expression profiles
between the two groups were then compared. In total,
32,178 ion-current frames were matched among the two
groups of samples using Sieve. The observed distribution
of peptide ratios (experimental:control) concentrated
narrowly around 1.0, with 96% of ion-current frames in
the range of 0.9-1.1. Approx. 1% of ions differed by more
than 15% of the 1.0. Only 2 peptides were identified as
significantly changed between the two groups at p <
0.05.Such a low false-positive rate and high quantitative
precision supported the suitability of this method for pro-

Figure 1 Chromatogram showing elution gradient for the separation of bacterial lysate by Nano-flow liquid chromatography. X- axis:elution 
time.Y-axis: Mass spectrometry signal intensity.
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filing of the bacterial samples using the replicate number
(n = 5) selected.

Proteomic profiling of H. influenzae grown in chemically 
defined media with and without sputum
Previous analyses of the H. influenzae proteome have
employed electrophoresis-based studies [35-40] to iden-
tify abundantly expressed proteins under laboratory
growth conditions.More recently Kolker et al [41]
employed a direct proteomics approach using liquid
chromatography with ion trap tandem mass spectroscopy
and identified 414 protein with high confidence, includ-
ing 15 proteins that were encoded by genes that were pre-
viously annotated as conserved hypothetical proteins.

In the present study, we identified 1402 unique proteins
with high confidence after application of a set of strict
criteria, which included a stringent threshold for Xcorr,
10 ppm for precursor m/z tolerance, a peptide probability
> 95%, a protein probability > 99%, and the requirement
that two unique peptides must be identified for each pro-
tein (See Methods).These included 170 proteins that are
encoded by genes that are annotated as conserved hypo-
thetical and thus represent newly identified proteins in
the proteome of H. influenzae.Analysis of the genome
sequence of strain 11P6H predicts that the genome con-
tains 1759 open reading frames, indicating that 79.6% of
possible proteins were identified (Additional File 1).

Several methodological innovations likely account for
the successful identification of 1402 proteins.The precipi-
tation/on-pellet digestion followed by solubilization of
peptide fragments is an efficient and reproducible
method facilitating the recovery of proteins of varying
solubilities from a complex mixture of proteins.The chro-
matographic system employed a low void volume and
high separation efficiency with a shallow, long gradient (5
hour total separation time).Finally, a nano-LC for peptide
separation allowed significantly higher sensitivity com-
pared to conventional LC.This high level of proteomic
coverage renders a comprehensive proteomic quantifica-
tion.

Ribosomal Proteins
Ribosomal proteins are among the most abundantly
expressed protein types by cells.Therefore, the number of
ribosomal protein identified allows an assessment of the
proteomics methods.In the present study 47 of the
known 54 ribosomal proteins of H. influenzae (87%) were
detected with high confidence in cells that were grown in
sputum (Additional File 2).Langen et al [38] employed
two dimensional gel electrophoresis followed by identifi-
cation with matrix-assisted laser desorption inonization-
time of flight mass spectroscopy and detected 18 ribo-
somal proteins in H. influenzae.Kolker et al [41] identi-
fied 43 ribosomal proteins using liquid chromatography

coupled with ion trap tandem mass spectrometry.In our
study, all 7 of the ribosomal proteins that eluded detec-
tion were 100 amino acids or less in length and had iso-
electric points of 10.1 or higher.We speculate the small
size and/or the solubility characteristics of the proteins
may have contributed to these proteins not being
detected

Proteins of the glycolysis pathway
Raghunathan et al [42] used an integrated approach to
study intermediary metabolism of H. influenzae grown
under microaerophilic and anaerobic conditions.Their
analysis suggested that H. influenzae cells used glycolysis
as the primary pathway of sugar metabolism during both
growth conditions. In the present study, all proteins in
the glycolysis pathway were detected with high confi-
dence, suggesting that H. influenzae uses glycolysis dur-
ing colonization of the human respiratory tract (Table
1).While growing bacteria in pooled human sputum sim-
ulates some conditions in the human respiratory tract
and is an improvement over studying cells grown in labo-
ratory media, one must be cautious in extrapolating
results from cells grown in sputum to in vivo condi-
tions.When H. influenzae inhabits the human respiratory
tract, the organism is present in multiple locations,
including embedded in mucous in the lumen, adhering to
respiratory epithelial cells, inside epithelial cells and mac-
rophages, and in the interstitium between cells.Thus, H.
influenzae must adapt to the growth and metabolic con-
ditions in multiple microenvironments and bacterial cells
may express different proteins, depending on the
microenvironment.Proteomic profiling of sputum-grown
cells may represent an average of multiple conditions.

Proteins expressed in increased amount during growth in 
sputum
Additional File 3 lists the 31 proteins that were present in
a ratio of > 1.5 in sputum-grown compared to media-
grown bacteria, along with the corresponding gene and
the COG functional category.A range of proteins is repre-
sented but clear-cut themes are observed and these are
shown graphically in Figure 2 and are outlined below.

In evaluating the proteins that are more abundant dur-
ing growth in pooled human sputum supernatants, it is
worth noting some limitations of this approach when
interpreting the results.Because extracts were prepared
from bacteria that were grown in liquid culture overnight,
the differences in quantity reflect those in stationary
phase cells.Logarithmic phase cells may differ in the pro-
teins that are up regulated in expression compared to sta-
tionary phase cells.Bacterial populations that colonize the
human respiratory tract are likely a mixture of bacteria in
all phases of growth.
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Table 1: Proteins of the glycolysis pathway identified in H. influenzae strain 11P6H identified during growth in pooled 
human sputum

Protein ID# Identified Protein Gene Genome ID 
numbera

Molecular 
Weight

CDMb Sputumc

1237 phosphoenolpyruvate-
protein 
phosphotransferase

fruA HI0446 64 kDa 100% (9.7%) 100% (11%)

412 Fructose specific 
phosphotransferase 
system IIA/HPr 
components

fruB HI0448 53 kDa 100% (24%) 100% (8.2%)

1149 Aldose 1-epimerase galM HI0818 38 kDa 100% (11%) 100% (15%)

423 1-phosphofructokinase fruK HI0447 34 kDa 100% (24%) 100% (15%)

557 6-phosphofructokinase pfkA HI0982 23 kDa 100% (21%) 95% (20%)

57 Fructose-bisphosphate 
aldolase

fba HI0524 39 kDa 100% (47%) 100% (36%)

657 glucose-6-phosphate 
isomerase

pgi HI1576 37 kDa 100% (19%) 100% (15%)

392 Triosephosphate 
isomerase

tplA HI0678 27 kDa 100% (25%) 100% (19%)

97 Glyceraldehyde-3-
phosphate 
dehydrogenase

gapA HI0001 36 kDa 100% (40%) 100% (39%)

111 3-phosphoglycerate 
kinase

pgk HI0525 41 kDa 100% (39%) 100% (37%)

34 phosphoglyceromutase gpmA HI0757 26 kDa 100% (52%) 100% (56%)

79 enolase eno HI0932 46 kDa 100% (43%) 100% (32%)

133 Pyruvate kinase pykA HI1573 49 kDa 100% (37%) 100% (47%)

538 Dihydrolipoamide 
acetyltransferase

aceF HI1232 57 kDa 100% (22%) 100% (23%)

305 Pyruvate 
dehydrogenase subunit 
E1

aceE HI1233 99 kDa 100% (28%) 100% (30%)

aID numbers based on annotation of H. influenzae strain KW20 Rd http://cmr.jcvi.org/cgi-bin/CMR/GenomePage.cgi?org=ghi
bProtein probabilities values as calculated by Proteinprophet algorithm for proteins detected during growth in chemically define media 
(CDM). Number in parentheses represents the sequence coverage expressed by the percentage of amino acid residues identified. All peptides 
were filtered with a set of criteria as specified in the Methods. CDM
cProtein probabilities for proteins detected during growth in 20% pooled human sputum.

http://cmr.jcvi.org/cgi-bin/CMR/GenomePage.cgi?org=ghi
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H. influenzae has been demonstrated to grow in the
form of biofilms under in vitro conditions, in the middle
ears of chinchillas and humans, and in the airways of chil-
dren with cystic fibrosis [43-47].These observations indi-
cate that biofilms play an important role in the
pathogenesis of H. influenzae infections.Although H.
influenzae biofilms have not yet been demonstrated
directly in the airways of adults with COPD, many
authors suggest that biofilms are present in this ecologi-
cal niche and account, in part, for the recalcitrant nature
of H. influenzae infections in COPD.Indeed, H. influen-
zae is likely present in the human airways in both plank-
tonic and biofilm forms. It should be noted that the
growth conditions used in the present study apply to
planktonic bacteria, as cells were grown in liquid media.

Another limitation is that the sputum samples were
homogenized in the reducing agent dithiotreitol before
centrifugation and pooling.Taking into account the dilu-
tions that were used to homogenize sputum and prepare
media with 20% pooled sputum supernatant, the final
concentration of dithiotreitol in the CDM plus sputum is
0.01%.It is interesting that several antioxidant proteins
were present in increased abundance in the sputum
grown cells in spite of the presence of the reducing agent
in the culture (See below).We speculate that the small
amount of reducing agent in the growth media was out-
weighed by the highly oxidative environment that is
known to be present in human airways in COPD as
reflected in pooled sputum from adults with COPD.

Antioxidant proteins
Eight of the 31 proteins have stress or antioxidant func-
tions, consistent with the observation that the airways in
adults with COPD are an environment that induces an
anti oxidant and stress response in H. influenzae.Three of
these upregulated proteins encoded by pdgX, trxA and

HI1349, have primary antioxidant functions.Of particular
interest is peroxiredoxin-thioredoxin (pdgX) whose
expression has previously been shown to be upregulated
during biofilm formation by H. influenzae [48].Further-
more, adults with COPD who experience respiratory
tract infection by H. influenzae develop new antibody
responses to the peroxiredoxin-thioredoxin indicating
that the protein is indeed expressed during infection and
stimulates a human antibody response [48].The observa-
tion that the ratio of this protein in sputum-grown to
media-grown H. influenzae (4.764) was among the high-
est detected in the present study is consistent with the
observation that the protein is prominently expressed
during infection and suggests that antioxidant activity is
important for survival of H. influenzae in the airways.

Stress response
Five stress related proteins were present in greater abun-
dance during growth in sputum.These include GroEL,
GroES, heat shock protein encoded by dnaJ, universal
stress protein E and DNA-binding ferritin-like pro-
tein.The latter protein contains a DPS (DNA protein
under starved conditions) domain which non specifically
binds DNA, protecting it from cleavage by reactive oxy-
gen species. The abundance of these proteins suggests
that H. influenzae expresses a stress response during
growth in the human respiratory tract.

Uptake of nutrients and cofactors
In addition to the anti oxidant and stress response
observed, several proteins that were present in greater
abundance during growth in sputum function in uptake
in nutrients and cofactors.Four such proteins function
directly in uptake of divalent cations, including 3 iron
uptake proteins (yfeA, hitA, hxuB) and one zinc uptake
protein (znuA).The environment in the human host has
exceedingly low concentrations of free iron; thus human
pathogens have evolved mechanisms to scavenge iron
during infection.These results indicate that H. influenzae
grows in an iron stressed condition in the human respira-
tory tract.The presence of increased levels of several
other proteins that function in transport of various nutri-
ents and other molecules (proteins encoded by (acpC,
oppB, hslVU, uspE, pstB, tolQ, metQ, orfG) indicates that
the human respiratory tract is relatively deficient in nutri-
ents causing H. influenzae to upregulate certain transport
systems.

Gawronski et al [49] developed a novel approach of
negative selection technology involving challenging mice
with a mutant library of H. influenzae and identifying
genes that were required to delay clearance of bacteria
from the lungs.Genes that were implicated in survival in
mouse lung included those that play potential roles in
survival in nutrient limitation, oxidative stress and expo-

Figure 2 Distribution of functional categories of 31 proteins that 
were present in increased abundance during growth of H. influ-
enzae in 20% pooled human sputum compared to growth in 
chemically defined media. Distribution of functional categories of 31 
proteins that were present in increased abundance during growth of 
H. influenzae in 20% pooled human sputum compared to growth in 
chemically defined media. One protein is classified in two categories 
accounting for the total of 32.
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sure to antimicrobial perturbations.While substantial dif-
ferences between individual genes identified as important
in mouse lungs compared to the proteins that were pres-
ent in increased abundance in human sputum in the pres-
ent study, the overall classes of genes/proteins show
strong parallels.In particular, the expression in both sys-
tems of genes/proteins that function in survival in oxida-
tive stress and nutrient limitation are consistent with the
concept that these conditions exist in the respiratory tract
and H. influenzae must express molecules to survive in
these conditions in order cause respiratory tract infec-
tion.

Urease
The gene that encodes the alpha subunit of urease, ureC,
was present in 7 fold greater abundance in sputum grown
conditions compared to media alone (Additional File
3).This is an interesting finding in light of the study by
Mason et al [50] who monitored gene expression by non-
typeable H. influenzae in the middle ear of chinchil-
las.The gene that encodes urease accessory protein, ureH,
was induced 3.9 fold in bacterial cells in the middle ear
compared to baseline.These two genes, ureC and ureH
are part of the urease operon (ureA, ureB, ureC, ureE,
ureF, ureG, ureH) and were among the most highly up
regulated in the two studies involving two different con-
ditions simulating human infection- the chinchilla middle
ear and pooled human sputum.Urease catalyzes the
hydrolysis of urea to produce CO2 and ammonia.The
enzyme plays a role in acid tolerance and is a virulence
factor in other bacteria including Helicobacter pylori,
Actinobacillus pleuropneumoniae, Yersinia enterocolitica
and Morganella morganii [51-55].We speculate that ure-
asemay function as a virulence factor for nontypeable H.
influenzae by facilitating survival and growth in the rela-
tively acid environment of the airways and middle ear.

Adherence
The HMW1A protein is one of the major adhesins of H.
influenzae, mediating adherence to respiratory epithelial
cells [56,57].Indeed, HMW1 is one of the surface proteins
that is a prominent target of human antibodies following
infection caused by H. influenzae [58,59].The HMW1A
adhesin was upregulated in sputum along with HMW1B
which is an OMP85-like protein that functions specifi-
cally to facilitate secretion of the HMW1A adhesin.This
result is consistent with the concept that adherence to
respiratory epithelial cellsis critical in order for H. influ-
enzae to colonize and infect the airways.

Phosphoryl choline and lipooligosaccharide
Lipooligosaccharide is an abundant surface antigen that
is involved in adherence, persistence and pathogenesis of
H. influenzae infection.The licD gene encodes the
enzyme phosphoryl transferease that adds phosphoryl

choline to the lipooligosaccharide molecule.The licD gene
product was upregulated 4.736 fold in sputum-grown
compared to media grown bacteria (Additional File
3).This gene is part of the lic-1 protein operon (licA, licB,
licC, licD) involved in lipooligosaccharide synthesis.In
the study of gene expression by Mason et al [50], licC was
2.3 fold induced in the chinchilla middle ear.Herbert et al
[60] identified licC as an essential gene in survival of H.
influenzae type b in a model of systemic infection using
signature tagged mutagenesis.The observation that the lic
operon was identified in 3 independent model systems
(pooled human sputum, chinchilla middle ear, infant rat)
suggests that the lipooligosaccharide molecule, in partic-
ular addition of phosphoryl choline to lipooligosaccha-
ride is important in pathogenesis. The present study
extends this association into a human system for the first
time, an important consideration in view of the fact that
H. influenzae is an exclusively human pathogen.

Phosphoryl choline may participate in pathogenesis in
several ways.Phosphoryl choline decreases the suscepti-
bility of H. influenzae to antimicrobial peptides
[61].Hong et al [62,63] demonstrated that phosphoryl
choline promotes infection and persistence in an animal
model by reducing the host inflammatory response and
by promoting the formation and maturation of stable bio-
film communities.Several indirect lines of evidence sug-
gest that H. influenzae persists in the airway by forming
biofilms that resist host immunity.The observation that
the licD gene product is abundantly expressed in sputum
suggests that addition of phosphoryl choline to lipooligo-
saccharide is important for persistence, perhaps by pro-
tecting the bacterial cell from antimicrobial peptides and/
or by promoting the formation of biofilms.

Conclusions
Proteomic expression profiling of a prototype COPD
strain of H. influenzae was performed on bacteria that
were grown in pooled human sputum in comparison to
the same strain grown in defined chemical media.The
sequence of the genome of the prototype strain was
determined by pyrosequencing yielding 53 contigs.A
method involving precipitation and on-pellet digestion of
a whole bacterial cell lysate was optimized to solubilize
proteins of varying solubilities from a complex mixture of
proteins.

Proteomic profiling was accomplished using a Nano-
LC/MS system and 1402 proteins were identified with
high confidence using a set of strict criteria.These pro-
teins represent 79.7% of the ORFs predicted from the
genome sequence, including 170 proteins that are
encoded by genes that are annotated as conserved hypo-
thetical proteins.A total of 31 proteins were present in a
ratio of > 1.5 in sputum grown compared to media grown
bacteria.Analysis of these proteins reveal 8 antioxidant
proteins and 5 stress response proteins, suggesting that
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expression of antioxidant activity and stress responses is
important for survival of H. influenzae in the human air-
ways.In addition, proteins involved in uptake of nutrients
and adherence highlight the role of these possible func-
tions for H. influenzae to survive in the human respira-
tory tract.

The results of proteomic expression profiling of H.
influenzae grown in pooled human sputum from adults
with COPD are revealing in understanding the adapta-
tions that H. influenzae makes during colonization and
infection of the human respiratory tract.These observa-
tions have the potential to reveal critical virulence factors
that enable survival of H. influenzae in its ecological
niche and may present opportunities for the development
of novel approaches to interrupt infection.

Methods
Bacterial strain
Nontypeable H. influenzae strain 11P6H is a prototype
exacerbation strain that was isolated from the sputum of
an adult with chronic obstructive pulmonary disease
(COPD).The strain was isolated simultaneous with the
onset of clinical symptoms of an exacerbation and the
patient subsequently developed a new serum bactericidal
antibody response to the strain [64,65].

Sputum supernatants
Expectorated sputum samples were collected from adults
with COPD as part of other studies.All identifying infor-
mation on samples was removed.Samples were processed
for culture as previously described [66,67].Briefly, spu-
tum samples from adults with COPD that had been spon-
taneously expectorated in the morning were
homogenized by incubation at 37°C for 15 minutes with
an equal volume of 0.1% dithiothreitol.After an aliquot
was removed for quantitative culture, sputum superna-
tants were saved by centrifugation at 27,000 × g for 30
minutes at 4°C.Supernatants were stored at -80°C until
used.Samples from patients who were receiving antibiot-
ics and samples that grew potential pulmonary bacterial
pathogens in culture were excluded.Supernatants from
approximately 100 sputum samples from 30 individuals
were pooled for the purpose of growing bacteria in
pooled sputum supernatants.

To render the sputum supernatants sterile, the pooled
samples were placed in Petri dishes and exposed to UV
light in a cell culture hood for approximately 10 min-
utes.An aliquot was plated on chocolate agar and no
growth was detected after overnight incubation.

Growth conditions
H. influenzae strain 11P6H was grown overnight in 100
ml of chemically defined media (Table 2) at 37°C with
shaking.A second 100 ml culture was grown simultane-
ously in CDM to which pooled human sputum superna-

tant of 20% of the volume of the culture was added.Cells
were harvested by centrifugation at 10,000 × g for 10
minutes at 4°C.Cells were washed by suspending in cold
phosphate buffered saline and centrifuging again using
the same conditions.

Whole bacterial cell preparation
Washed bacterial cells were suspended in 25 ml of extrac-
tion buffer (0.05 M tris-HCl, pH 8, 0.15 M NaCl, 2% non-
idet P40, 0.5% sodium deoxycholate, 0.1% sodium
dodecyl sulfate, 2 mM EDTA, 1 mM tris(2-carboxy-
ethyl)phosphine hydrochloride [TCEP], Protease Inhibi-
tor Cocktail Tablets [Roche] and Phosphatase Inhibitor
Cocktail Tablets [Roche]).Cells were disrupted by twice
passing them through a French pressure cell at 15,000 lb/
in2.The suspension was centrifuged at 10,000 × g for 10
minutes at 4°C to remove unbroken cells. The superna-
tant was the whole bacterial cell preparation.The protein
concentration was determined using the Microtiter
Lowry Assay (Sigma).

Whole genome sequencing
H. influenzae strain 11P6H was sequenced by 454-FLX
pyrosequencing (Roche Applied Science, Indianapolis,
IN) to 19-fold coverage across the genome.Sequence
assembly was completed using 454 Newbler Assembler
Software (Roche) and resulted in 53 contigs greater than
500 bp.Open reading frames were assigned with Gene-
Mark.hmm http://opal.biology.gatech.edu/GeneMark/
[68-70].The open reading frames were compared against
the May 1, 2007 Genbank nr database using blastp
[71].Significance was set at an e value of 1 x 10-10 and the
highest score for the blastp analysis was used for the ini-
tial protein annotation.

Precipitation/on-pellet-digestion of bacterial cell 
preparation
To minimize false-positives, five aliquots each of the
whole bacterial cell preparation of the CDM-grown and
sputum-grown bacteria were prepared for each culture
condition.Each sample was subjected individually to the
gel-free, precipitation/on-pellet-digestion procedure
developed previously [29].Briefly, extracts containing 150
μg of total protein in each sample (approximately 20 μl)
were pipetted and transferred to a clean tube and then
were precipitated by adding 40 μl of ice cold acetone
(purity>99.99%, Puriss grade, Fluka).After vortexing, an
additional 80 μl of acetone was added to each sam-
ple.Samples were vortexed and placed at -20°C overnight.

The samples were centrifuged at 10,000 × g for 15 min-
utes at 4°C.The acetone was removed and the pellets were
air dried for 5 minutes.Pellets were suspended in 50 μl
of50 mM tris, pH 8.5.A volume of 10 μl 0.25 mg/ml of
activated TPCK-treated mass spectrometry grade trypsin
(Trypsin Gold, Promega) was added.The samples were

http://opal.biology.gatech.edu/GeneMark/
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vortexed, centrifuged briefly to bring the sample to the
bottom of the tube and incubated at 37°C with vortexing
every hour.After 2 hours, another 10 μl of trypsin was
added and the samples were incubated at 37°C for an
additional ~5 hours with hourly vortexing.A volume of 3
μl of TCEP was added to each tube and incubated for 10
minutes at 37°C.A volume of 5 μl of freshly prepared
iodoacetamide (Sigma) was added to samples and tubes
were incubated for 30 minutes at 37°C in the dark.Sam-
ples were exposed to light for 15 minutes and then 25 μl
of trypsin was added and samples were incubated over-
night at 37°C.

Nano-Liquid Chromatography/Mass Spectroscopy (Nano-
LC/MS)
A nano-LC system consisting of a Spark Endurance
autosampler (Emmen, Holland) and four Eksigent direct-
flow capillary/nano-LC pumps (Dublin, CA) that were
powered by pressurized nitrogen (110 p.s.i) were used for
all analyses. In order to achieve a comprehensive separa-
tion of the complex peptide mixture, a nano-LC/nano-
spray setup, which features low void volume and high
chromatographic reproducibility, was employed [29]. A
reversed-phased peptide trap (300 μm I.D. x0.5 cm, Agi-
lent, Palo Alto, CA) and a nano-LC column (50 μm I.D. ×
40 cm, packed with Pepmap C18 sorbent) were used for
peptide separation. The trap and the nano column were
connected back-to-back on a Valco (Houston, TX) metal
zero-dead-volume (ZDV) tee, and a waste line was con-
nected to the 90° arm. Between the trap and the tee, a
ZDV conductivity sensor (GE, Fairfield, CT) was con-
nected to monitor the gradient change and trap washing
efficiency. High voltage (1.7-2.5 kV) was applied to the
metal tee for nanospray. Mobile phase A consisted of
0.1% formic acid in 2% acetonitrile and mobile phase B
was 0.1% formic acid in 88% acetonitrile. The sample was
loaded onto the trap with 3% B at a flow rate of 5 μL/min,
and the trap was washed for 3 min. The valve was then
switched to the analysis position, and the spray voltage
was applied on the tee. A series of nano flow gradients
was used; The flow rate was 200 nL/min and the gradient
profile was (i) a linear increase from 3% to 9% B over 5
min; (ii) an increase from 9 to 23% B over 115 min; (iii) an
increase from 23 to 35% B over 70 min; (iv) an increase
from 35 to 60% B over 50 min; (v) an increase from 60 to
97% B in 35 min, and finally (vi) isocratic at 97% B for 25
min.

An LTQ/Orbitrap hybrid mass spectrometer (Thermo
Fisher Scientific, San Jose, CA) was used for label-free
quantification, and an LTQ/ETD (Thermo Fisher Scien-
tific) was employed to evaluate the completeness of the
digestion of the tryptic peptides. Both mass spectrome-
ters were connected to the same nano-LC/Nanospray
setup as described above. For LTQ/Orbitrap analysis, one
scan cycle included an MS1 scan (m/z 300-2000) at a res-

Table 2: Composition of chemically defined media (CDM)

Reagent Concentration

NaCl 0.1 M

K2SO4 5.75 mM

Na2EDTA 4 mM

NH4Cl 4 mM

K2HPO4 2 mM

KH2PO4 2 mM

Thiamine HCl 6 μM

Thiamine pyrophosphate 1 μM

Pantothenic acid 8 μM

d-Biotin 12 μM

Glucose 0.5%

Hypoxanthine 0.375 mM

Uracil 0.45 mM

L-aspartic acid 3.75 mM

L-glutamic acid HCl 7.5 mM

L-arginine 0.875 mM

Glycine HCl 0.225 mM

L-serine 0.475 mM

L-leucine 0.7 mM

L-isoleucine 0.225 mM

L-valine 0.525 mM

L-tyrosine 0.4 mM

L-cysteine HCl 0.35 mM

L-cystine 0.15 mM

L-proline 0.45 mM

L-tryptophan 0.4 mM

L-threonine 0.425 mM

L-phenylalanine 0.15 mM

L-asparagine 0.2 mM

L-glutamine 0.35 mM

L-histidine HCl 0.125 mM

L-methionine 0.1 mM

L-alanine 1.125 mM

L-lysine 0.35 mM

Glutathione reduced 0.15 mM

HEPES 42 mM

NaHCO3 0.125 mM

Na acetate trihydrate 6.25 mM

Choline chloride salt 0.05 mM

Myo-inositol 1 μM

MgCl2 2.5 mM

CaCl2 0.6 mM

Fe(NO3)3 0.1 mM

Nicotinamide adenine 
dinucleotide

0.02 mM

Protoporphyrin IX 0.02 mM

Histidine 6 μM

Triethanolamine 0.01%
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olution of 60,000 followed by seven MS2 scans by LTQ, to
fragment the seven most abundant precursors found in
the MS1 spectrum. The target value for MS1 by Orbitrap
was 3×106. For LTQ/ETD, the MS was working under
data-dependent mode; one scan cycle was comprised of
an MS1 scan (m/z range from 300-2000) followed by six
sequential dependent MS2 scans (the maximum injection
time was 250 ms). The first, third, and fifth MS2 scans
were CID fragmentations of the first, second, and third
most-abundant precursors found in the MS1 spectrum,
respectively. The second, fourth, and sixth MS2 scans
were ETD fragmentations corresponding to the same
group of precursors. For CID, the activation time was 30
ms, the isolation width was 1.5 amu, the normalized acti-
vation energy was 35%, and the activation q was 0.25. For
ETD, a mixture of ultra-pure helium and nitrogen (25%
helium and 75% nitrogen, purity > 99.995%) was used as
the reaction gas. The ETD reaction time was set at 120
ms and the isolation width was 2 amu; supplemental acti-
vation, which uses a short CID activation process to dis-
sociate the charge-stripped precursors, was employed to
enhance the fragmentation efficiency for doubly-charged
precursors. For both LTQ/ETD and LTQ/Orbitrap exper-
iments, dynamic exclusion was used with one repeat
count, 35s repeat duration, and 40s exclusion duration.
All samples were analyzed in random order, in order to
eliminate quantitative false-positives arising from peptide
degradation and analytical artifacts such as possible drift
in nano-LC or MS performance.

Protein identification and quantification
Peptide/protein identification was first performed with
BioWorks 3.3.1 embedded with Sequest (Thermo Scien-
tific), against the genome sequence of H. influenzae strain
11P6H in the form of 53 contigs.The precursor mass tol-
erances were 10 ppm and 1.5 mass units, respectively, for
Orbitrap and LTQ; the mass tolerance for the fragments
of both CID and ETD was 1.0 unit. A stringent set of
score filters was employed. Correlation score (Xcorr) cri-
teria were as follows: ≥4 for quadruply-charged (4+) and
higher charge states, ≥3 for 3+ ions, ≥2.2 for 2+ ions, and
≥1.7 for 1+ ions. The CID results were further analyzed
using Scaffold 2 proteome software (Portland, OR) which
integrates both Protein Prophet and Peptide Prophet:
additional criteria were that two unique peptides must be
identified independently for each protein, the peptide
probability must be 95% or higher, and the protein proba-
bility must be 99% or higher.For ETD spectra, a final
score (Sf ) of 0.85 was required for each identification.

A commercial label-free quantification package, Sieve
(Fiona build, v. 1.2, Thermofisher Scientific), was used for
comparing relative abundance of peptides and proteins
between the control and experimental groups. Briefly, the
chromatographic peaks detected by Orbitrap were

aligned and the peptide peaks were detected with a mini-
mum signal intensity of 2×105; peptide extracted ion cur-
rent (XIC) peaks were matched by their retention time (±
1 min after peak alignment) and mass (± 0.025 unit)
among sample runs. Each subset of matched peaks was
termed a "frame".The area under the curve (AUC) of each
matched peptide within a frame was calculated and com-
pared to the corresponding peak in the control sample.
Fisher's combined probability test was performed to
determine whether there was any significant difference in
peptide abundances between the two experimental
groups. Relative abundance of an individual protein was
calculated as the mean AUC ratio for all peptides derived
from that protein. All proteins differing significantly
between the two groups were confirmed by a stringent
manual inspection of the fragmentation spectra and the
XIC of the ions within a 3-min elution window.

Additional material
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