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Abstract

Background: Porcine reproductive and respiratory syndrome (PRRS) has now been widely recognized as an
economically important disease. The objective of this study was to compare the molecular and biological
characteristics of porcine reproductive and respiratory syndrome virus (PRRSV) field isolates in China to those of the
modified live virus (MLV) PRRS vaccine and its parent strain (ATCC VR2332).

Results: Five genes (GP2, GP3, GP4, GP5 and NSP2) of seven isolates of PRRSV from China, designated LS-4, HM-1,
HQ-5, HQ-6, GC-2, GCH-3 and ST-7/2008, were sequenced and analyzed. Phylogenetic analyses based on the
nucleotide sequence of the ORF2-5 and NSP2 showed that the seven Chinese isolates belonged to the same
genetic subgroup and were related to the North American PRRSV genotype. Comparative analysis with the relevant
sequences of another Chinese isolate (BJ-4) and North American (VR2332 and MLV) viruses revealed that these
isolates have 80.8-92.9% homology with VR-2332, and 81.3-98.8% identity with MLV and 80.7-92.9% with BJ-4.
All Nsp2 nonstructural protein of these seven isolates exhibited variations (a 29 amino acids deletion) in
comparison with other North American PRRSV isolates. Therefore, these isolates were novel strain with unique
amino acid composition. However, they all share more than 97% identity with other highly pathogenic Chinese
PRRSV strains. Additionally, there are extensive amino acid (aa) mutations in the GP5 protein and the Nsp2 protein
when compared with the previous isolates.

Conclusions: These results might be useful to study the genetic diversity of PRRSV in China and to track the
infection sources as well as for vaccines development.

Background
Porcine reproductive and respiratory syndrome virus
(PRRSV) is recognized as one of the major infective
agents in the pig industry worldwide since its appearance
in the 1980s. It was first diagnosed in the USA in 1987
[1], immediately found in Europe, soon disseminated to
the rest of the world [2]. The disease is characterized by
reproductive failure in pregnant sows and respiratory dis-
tress particularly in suckling piglets, thereupon getting its
name. PRRSV is a single-stranded positive RNA virus
and a member of the family Arteriviridae in the order of
Nidovirales [3]. Based on phylogenetic analyses of

different virus isolates around the world, PRRSV can be
differentiated into two genotypes: Type I, represented by
the European prototype Lelystad strain LV, and Type II,
the prototype being the Northern American ATCC strain
VR2332. Chinese isolates were assigned as members of
the genotype II [4]. Extensive molecular studies show
that PRRSV is highly variable in antigenicity, virulence
and sequence diversity [5,6].
PRRSV is a small, enveloped, single positive-stranded

RNA virus including a genome of about 15 kb, encoding
nine ORFs [2,7,8]. The PRRSV genome is comprised of
two polymerase genes, ORF1a and 1b, and seven struc-
tural genes, ORF2a, 2b, 3, 4, 5, 6, and 7 [9]. ORF1a and
ORF1b constitutes approximately 75% of the viral gen-
ome, and are characterized by a process of ribosomal
frame shifting translated into a large polyprotein; which
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by self-cleavage gives rise to the non-structural proteins
(NSPs) including the RNA-dependent RNA polymerase
[10]. Open reading frames 2a, 3, 4 and 5 all encode gly-
cosylated proteins, designated GP2a, GP3, GP4, and
GP5, respectively [7,11]. The newly defined ORF2b
encodes the smallest protein of the virus particle desig-
nated GP2b [8,12]. ORF7 encodes the non-glycosylated
nucleocapsid protein (N), constituting 20-40% of the
protein content of the virion [8,13,14]. ORF6 encodes
the likewise non-glycosylated matrix protein (M) [8,12].
Heterodimers constituted by GP5 and M have been
found in the endoplasmic reticulum of infected cells
[14], and have been suggested to be involved in virus-
host cell receptor interaction [15]. A rapid genetic diver-
gence of PRRSV was revealed by an experiment of serial
in vivo passage of a PRRSV strain [16] and by an analy-
sis of naturally infected pigs. The presence of genetically
divergent viruses in a swine population may complicate
the disease control by vaccination, because the PRRSV
vaccine efficacy is reduced when the challenge virus is a
virus of a different genotype [17] or of a different phylo-
genetic cluster within the same genotype [18].
In China the first outbreak of PRRS was recorded in

1995 which encountered almost all provinces (include
Hong Kong). Due to its economic impact in China, the
disease has been recognized as one of the most severe
viral diseases for pig farms. The first Chinese strain of
PRRSV was isolated in 1996, and the complete genome
sequence of the Chinese PRRSV isolate BJ-4 was first
reported in 2001 [19]. Highly pathogenic PRRSV is the
causative agent of porcine high fever syndrome and
characterized by high fever and high death rates in pigs
of all ages. Since May 2006, the highly pathogenic
PRRSV has emerged in China. Recently, the genomic
characteristics of two other Chinese isolates of PRRSV
were described with comparisons to some American
and European isolates [4]. It has been documented that
PRRSV strains differ in virulence [20-23] and vary
genetically [24,25]. Concerns that vaccine strains or
derivatives of the vaccine strains may induce disease
continue to be discussed [26-28]. The objective of this
research was to compare the genetic and molecular
characteristics of seven Chinese PRRSV field isolates to
that of a known high-virulence PRRSV isolate (BJ-4), the
Ingelvac PRRS MLV vaccine, and the parent strain of
the vaccine (ATCC VR2332). The results inferred from
this study might be useful for infection tracking as well
as for vaccines development.

Results and discussion
For a long time, outbreaks of highly pathogenic (acute,
atypical) PRRS in many Chinese territories have been
attributed to the highly virulent Chinese-type PRRSV
(H-PRRSV) strains. From January to July 2007, 39455

morbid pigs died among 143,221 infected pigs according
to the administrative files [29]. New types of PRRSV
variants with high pathogenicity were identified in
China was responsible for severe impact on pig industry
as well as food safety [30]. Concurrently, this Chinese
variant of PRRSV was detected in Vietnam where it
caused a serious epidemic [31].
In this study, LS-4, HM-1, HQ-5, GCH-3, GC-2,

HQ-6 and ST-7 strains were isolated from Hebei pro-
vince. Homology search and phylogenetic analyses indi-
cated that the sequences of seven isolates belong to the
American (AM) genotype (Figure 1). Two subgroups
were classified based on ORF2, ORF3, ORF4, ORF5 and
NSP2 genes of Chinese American genotype isolates, and
named as subgroup AM-I and AM-II (Figure 1). These
seven isolates clustered to the subgroup AM-I for
ORF2-5 and NSP2, whereas the Chinese isolates BJ-4,
VR2332 and MLV were affiliated with subgroup AM-II
based on ORF2-4 and NSP2. MLV joined the seven
isolates into the subgroup (AM-I) based on ORF5 genes
and show a higher evolutionary divergence (2.372-2.429)
at the nucleotide acid level (Additional file 1). The
results have indicated that all seven Chinese virus
isolates formed a subgroup in the North American gen-
otype, but the BJ-4 isolate was assigned to another sub-
group closely related to the vaccine strain RespPRRS/
Repro, suggesting that these strains may not be evolved
from a revertant of the vaccine virus.
The glycoprotein 2 (gp2) is a minor component of the

PRRSV envelope [32] with 2 B-cell linear epitopes,
whose reactive peptides comprise regions at amino acid
positions 41-55 and 121-135 within the ORF2 sequence
[33]. In the present study, those seven Chinese isolates
have a lower evolutionary divergence (0.086-0.107) with
VR-2332, and (0.077-0.098) with MLV and BJ-4 for
ORF2 (Additional file 2). In comparison to VR2332 and
MLV, two AA mutations were found at positions 42
(P®Q/R) and 50 (F®Y) (Figure 2A) and have influ-
enced the hydrophobicity of the reactive peptides 41-55
(Figure 2B). However, another mutation at AA position
122 (S®A) did not affect the hydrophobicity of the
reactive peptides 121-135 (Figure 2B). In addition, other
AA mutations such as positions 23(S®N), 24 (S®F), 91
(T®K) and 97 (M®V) affect obviously the hydrophobi-
city of gp2 protein, which might alter the antigenic
activity of gp2 (Additional file 3).
The highly glycosylated ORF3-encoded protein is the

second most variable PRRSV protein [7], showing
approximately an evolutionary divergence of 0.144-0.157
with VR-2332, MLV and BJ-4 (Additional file 4). Marcelo
et al (2006) reported that 4 overlapping consecutive pep-
tides (AA positions 61-105) were strongly immunoreac-
tive with 85-100% of the tested sera. Those peptides were
predicted to be located in the most hydrophilic region
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within the ORF3 sequence. Marcelo et al suggested that
this region might be considered as an important
immuno-dominant domain of the gp3 of North Ameri-
can strains of PRRSV [30]. In this study, eight AA muta-
tions were detected at position 64 to 85 within four
overlapping consecutive peptides (Figure 3A). Addition-
ally, two novel epitopes located at 73-87aa (named
GP3EP3) and 66-81aa (named GP3EP7) were identified
in the gp3 of Chinese isolate (US-type) of PRRSV [34].
These authors found that the minimum amino acid
sequence requirements for epitope binding were 74-85aa
(W74CRIGHDRCGED85) and 67-74aa (Y67EPGRSLW74)
using mutation deletion analysis. Especially these muta-
tions at AA positions 64 (T®A), 67 (Y®L), 71 (R®K),
73 (L®F), 79 (Y®H), 83(E®S/G) and 85(D®N) affect

obviously the hydrophobicity of gp3 protein comparing
to VR2332 and MLV (Figure 3B). Furthermore, antigenic
index analysis was predicted to observe the changes of
antigenic characterization by DNAstar program (DNAS-
tar Lasergene V7.10). The changes of the antigenic
index were found to be at AA positions 60-90 (Additional
file 5). Additional substitutions were observed at AA
positions 1 to 10, 130 to 150 and 205-230, where AA
mutations at these regions occurred correspondingly
(Additional file 5). However, further investigations are
needed to determine the effects of such mutations on the
host-virus interaction.
The glycoprotein 4 (gp4) is also a minor component

of the PRRSV envelope [7] and a typical class I mem-
brane protein [10]. Sequences of ORF4derived from the

Figure 1 Phylogenetic trees of the nucleotide sequences for the ORF2, ORF3, ORF4, ORF5, and NSP2 genes of the Chinese isolates
(LS-4, HM-1, HQ-5, HQ-6, GC-2, GCH-3 and ST-7) and related reference viruses. The evolutionary relationships among these viruses were
estimated by the neighbor-joining method with 100 bootstraps by using PHYLIP version 3.67. Alignments of each influenza virus sequence
were generated using program Clustal W. The compared sequence regions were as follows: (771 bp) of ORF2, (777 bp) of ORF3; (552bp) of ORF4,
(603 bp) of ORF5 and (893 bp) of NSP2. Black triangles indicate the virus isolates were isolated in this study. Two main subgroups of PRRSV
isolates (I and II) are indicated for ORF2-5 and NSP2 genes.
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Figure 2 The deduced amino acid sequence comparison and hydrophobicity profiles of the gp2 proteins between the 7 isolates and
reference viruses. A, The deduced amino acid sequence comparison of the gp2 proteins between the 7 isolates from China (GenBank
accession no. EU017510, EU177103, EU177108, EU177117, EU255922, EU642603 and EU653015) and another Chinese isolates (BJ-4) (GenBank
accession no. AF331831), VR2332 (GenBank accession no. EF536003) and MLV (GenBank accession no. AF159149) available in GenBank. Only the
amino acids different from those in the consensus sequence are indicated. The black boxed residues indicate the immunodominant B-cell linear
epitopes AA position sites. B, Hydrophobicity profiles of ORF2 generated by the Kyte and Doolittle method using DNAstar program. Major areas
of difference are indicated by arrows. a, LS-4 was a representative of other five isolates because the same plots were shown for ST-7, GCH-3,
HM-1, HQ-5, HQ-6 and LS-4. b, VR2332 was a representative of other three reference virus because the same plots were shown for BJ-4 and MLV.

Wang et al. BMC Microbiology 2010, 10:146
http://www.biomedcentral.com/1471-2180/10/146

Page 4 of 11

http://www.ncbi.nlm.nih.gov/pubmed/017510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/177103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/177108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/177117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/255922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/642603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/653015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/331831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/536003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/159149?dopt=Abstract


tested seven isolates showed an evolutionary divergence
of 0.095-0.108 with VR2332, MLV and 0.102-0.114 with
BJ-4 (Additional file 6). Previous study revealed that the
gp4 protein of a North American strain of PRRSV con-
tained one immunodominant domain, comprising amino
acid residues 51-65 [33]. In our study, those mutations
at AA positions 9(V®L), 32(A®S), 56 (R®G), 59
(A®S), 61 (E®P) and 78(V®I) obviously affect the
hydrophobicity of gp4 protein compared to VR2332 and
MLV (Figure 4). The core of a neutralization domain of

the glycoprotein encoded by ORF4 of Lelystad virus and
recognized by MAbs consists of amino acids 59 to 67
and is located at the most variable region of the protein
[35]. The two mutations of positions 59 (A®S) and 61
(E®P) exactly located within this region and may affect
the antigenicity of Chinese isolates in the present study.
Antigenic index analysis revealed that seven antigenic
changes for virus isolate LS-4, GCH-3, HM-1, HQ-5,
HQ-6 and ST-7 and five antigenic changes for virus iso-
late GC-2 were observed (Additional file 7). However,

Figure 3 The deduced amino acid sequence comparison and hydrophobicity profiles of the gp3 proteins between the 7 isolates and
reference viruses. A, deduced amino acid sequence comparison of the gp3 proteins between the 7 isolates from China (GenBank accession no.
EU017511, EU177104, EU177109, EU177118, EU255923, EU366149 and EU439254) and another Chinese isolates (BJ-4) (GenBank accession no.
AF331831), VR2332 (GenBank accession no. EF536003) and MLV (GenBank accession no. AF159149) available in GenBank. Only the amino acids
different from those in the consensus sequence are indicated. The black boxed residues indicate the difference AA position sites. B,
Hydrophobicity plots of ORF3 generated by the Kyte and Doolittle method using by DNAstar program. Major areas of difference are indicated by
arrows. a, GC-2 was a representative of other three isolates because the same plots were shown for GCH-3, HQ-5 and HQ-6. b, LS-4 was a
representative of other two isolates because the same plots were shown for LS-4 and ST-7. c, VR2332 was a representative of other two
reference virus because the same plots were shown for VR2332, BJ-4 and MLV.
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further studies are necessary to demonstrate whether
the putative linear epitope identified in the present
study is recognized by neutralizing antibodies.
Glycoprotein 5 (gp5) is one of the major structural pro-

teins encoded by PRRSV and forms disulfide-linked het-
erodimers with M protein in the viral envelope [7]. The
ORF5 of PRRSV encodes a 24.5-26 kDa envelope protein
with a characteristic hydropathy profile and putative glyco-
sylation sites [11,14,36]. Amplicons of ORF5 genes derived
from the 7 tested isolates had the same size of 603 bp
(deduced amino acids are 201). The sequence alignments
indicated that they had an identity of 99-100% at the
nucleotide level and 98-100% at the amino acid level
between MLV and BJ-4. However, the deduced amino
acid sequence comparison indicated that those isolates
show an higher evolutionary divergence of 2.372-2.429
with VR-2332 and MLV,3.314-3.471 with BJ-4 (Additional
file 1), and displayed considerable genetic variation.
Porcine reproductive and respiratory syndrome virus

(PRRSV) glycoprotein 5 (GP5) is the most abundant

envelope glycoprotein and a major inducer of neutraliz-
ing antibodies in vivo, containing three putative N-linked
glycosylation sites (N34, N44, and N51), where a major
neutralization epitope [37] is located. Plagemann et al.
[38] also used peptide mapping to show that the major
neutralization epitope of PRRSV is located to the middle
of the GP5 ectodomain (aa 36-52). This neutralization
epitope is flanked by multiple N-linked glycosylation
sites, which are probably important for correct folding,
targeting, and biological activity of the protein. The loss
of these N-linked glycosylation sites enhances both the
sensitivity of these viruses to in vitro neutralization and
the immunogenicity of the nearby neutralization epitope.
In this study, only gp5 proteins of isolate LS-4 and HQ-5
had these three N-linked glycosylation sites, while other
five isolates (GCH-3, HM-1, HQ-6, GC-2 and ST-7) had
two N-linked glycosylation sites (N34 and N51) because
of mutation of N44 glycosylation site (N®K). It has been
demonstrated that the retention of N44 was very crucial
for infection of PRRSV [37,39]. However, the biological

Figure 4 The deduced amino acid sequence comparison and hydrophobicity profiles of the gp4 proteins between the 7 isolates and
reference viruses. Deduced amino acid sequence comparison of the gp4 proteins between the 7 isolates from China (GenBank accession no.
EU017512, EU177105, EU177110, EU177119, EU177113, EU255926 and EU366150) and another Chinese isolates (BJ-4) (GenBank accession no.
AF331831), VR2332 (GenBank accession no. EF536003) and MLV (GenBank accession no. AF159149) available in GenBank. Only the amino acids
different from those in the consensus sequence are indicated. The black boxed residues indicate the difference AA position sites.
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characterization of those N44 deletion isolates should be
further analyzed in future work. These results have indi-
cated the sensitivity of most Chinese virus isolates to
neutralization by PRRSV-specific antibodies after vacci-
nation. In another study, a neutralizing epitope in the
ectodomain of gp5 has been previously described [40].
The core sequence of this neutralizing epitope (H38,
Q40, I42, Y43 and N44) was present in gp5 proteins of
isolates LS-4 and HQ-5, while other isolates had only
shown a mutant epitope (H38, Q40, I42, Y43 and K44)
(Figure 5). It is suggested that mutation variants of N44
glycosylation site loss have great significance for develop-
ment of PRRSV vaccines of enhanced protective efficacy.
Three minimal epitopes (RLYRWR, EGHLIDLKRV and
QWGRL) were precisely defined in the C terminus of
GP5 protein and were highly conserved among the North
American type isolates [41]. The sequence “QWGRL”
might be a characteristic of highly pathogenic PRRSV,
while corresponding AA position of low pathogenic

PRRSV show “RWGRL” [41]. A mutation (R151G) of ST-
7 isolate was identical to MLV and BJ-4, while other six
isolates were the same with VR2332, HUB2, CH-1a and
HuN829 (Figure 5).
Phylogenetic analysis based on the deduced amino

acid sequences of Nsp2 gene obtained during this study
and those of isolates VR2332, and MLV strains retrieved
from GenBank, indicated that all the seven Nsp2
sequences belonged to the North American genotype.
Comparison between seven Chinese isolates and both
VR-2332 MLV and BJ-4 showed 0.275-0.281, 0.272-
0.278 and 0.275-0.283 nucleotide identity (Additional
file 8), respectively. Remarkably, compared to the VR-
2332 and MLV strain, analysis of the partial Nsp2
sequences revealed that a 30-aa deletion of a fragment
containing a major hydrophilic region had occurred
from residues 540 to 569 (Figure 6), which was also pre-
viously reported [42,43]. Some evidences have pointed
to the conclusion that the highly pathogenic PRRSV

Figure 5 The deduced amino acid sequence comparison of the gp5 proteins between the 7 isolates and reference viruses. The
deduced amino acid sequence comparison of the gp5 proteins between the 7 isolates from China (GenBank accession no. EU075303, EU177106,
EU439252, EU177120, EU177114, EU255925 and EU366151) and Chinese isolates (BJ-4) (GenBank accession no. AF331831), HUB829(GenBank
accession no. EU399853), CH-1a (GenBank accession no. AY032626), HUB2 (GenBank accession no. EF112446), VR2332 (GenBank accession no.
EF536003) and MLV (GenBank accession no. AF159149) available in GenBank. Only the amino acids different from those in the consensus
sequence are indicated. The black boxed residues indicate the Linear B epitope sites.
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Figure 6 Amino acid sequence comparison of the nsp2 proteins between the 7 isolates from China (GenBank accession no. EU075304,
EU177102, EU255920, EU669820, EU255919, EU653014 and EU642604) and another isolates NVSL 97-7895 (GenBank accession no.
AY545985), VR2332 (GenBank accession no. EF536003) and MLV (GenBank accession no. AF159149) available in GenBank. Dots indicate
amino acids identical to LS-4 and deletions are indicated by dashes (–). The black boxed residues indicate the putative linear B epitopes.
The blue dot boxed indicate a deletion of AA.
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with the 30-aa deletion in Nsp2 is the causative agent of
atypical PRRS in China [42,44,45]. On the contrary,
another research has reported that the 30-amino-acid
deletion in the Nsp2 of highly pathogenic porcine repro-
ductive and respiratory syndrome virus emerging in
China is not related to its virulence [46].
The Nsp2 protein has been shown to be highly vari-

able among arteriviruses, with similarities observed only
in the amino- and carboxy-terminal domains whereas
the central region of the protein varies in both length
and amino acid composition [47]. Interestingly, the
Nsp2 protein was found to contain the highest fre-
quency of immunogenic epitopes including positions
27-42, 37-52, 483-497, 503-517,823-837 and 833-847,
when compared to reference virus strains examined in
this study (Figure 6). In addition, these immuno-domi-
nant B-cell epitopes were scattered along the protein
sequence, and most of them were localized within pre-
dicted hydrophilic regions of the protein by predicting
hydropathy Kyte-Doolittle method (Additional file 9).
These results were not unexpected since hydrophilic
amino acid sequences are likely to be exposed on the
surface of the protein and thus may be more easily
recognized by B-lymphocytes. A previous report has also
demonstrated the occurrence of a cluster of B-cell epi-
topes in Nsp2 of an EUtype PRRSV isolate and a north
America PRRSV isolate, NVSL 97-7895 strain [33,48].

Conclusions
In conclusion, this study presented detailed molecular
and phylogenetic analyses for seven field isolates of
PRRSV from China. The collected results revealed that
the highly pathogenic PRRSV variants with the 30-aa
deletion in Nsp2 were still the dominating viruses in
China. The genetic diversity of PRRSV strain existed in
the field in China. These results might be useful for the
origin and genetic diversity of PRRSV Chinese isolates
and the development of vaccine candidates in the
future.

Methods
Cell culture and viruses
Swine Alveolar Macrophages (SAM) were obtained from
about 4 week-old pigs as previously described [49]. The
cells were cultured in RPMI-1640 medium supplemented
with 10% fetal bovine serum and antibiotics (25 U/ml
penicillin, 25 μg/ml streptomycin, 40 μg/ml gentamicin,
25 μg/ml neomycin and 300 U/ml polymyxin). Monkey
kidney cell line, MARC-145 [50], was cultured in Eagle’s
minimum essential medium supplemented with 5% fetal
bovine serum. Infectious PRRSV, LS-4, HM-1, HQ-5,
GCH-3, GC-2, HQ-6 and ST-7 strains from Shijiazhuang
of Hebei province (Additional file 10), were isolated in
our laboratory at National Center of Wildlife Born

Diseases, by inoculation of the sera or the tissue homoge-
nates into SAM or MARC-145 cells.

RNA extraction, reverse transcriptase PCR (RT-PCR) and
nucleotide sequencing
RNAs were extracted from 200 μl of the culture super-
natant of the PRRSV-infected SAM or MARC-145 cells
using QIAamp® viral RNA mini kit (Qiagen) according
to the manufacturer’s recommendation. Each target
gene was amplified using QIAGEN® One-Step RT-PCR
kit (Qiagen). PCR and sequencing primers were shown
as Table 1. The PCR reactions were done in a total
volume of 25 μl containing 1 ng of the extracted
cDNA,,200 μM of each (dNTP) (TakaRa), 1 × PCR buf-
fer (TakaRa), 3.0 mM MgCl2, and 2.5 U of Taq poly-
merase(TakaRa). The PCR conditions were set as initial
denaturation step at 94°C for 3 min followed by
40 cycles, each consisted of denaturation step at 94°C
for 1 min, annealing step at 55°C for 1 min and elonga-
tion step at 72°C for 2 min, a final extensition at 72°C
for 10 min was included. Size of amplicons was verified
by agarose gel electrophoresis in TAE buffer using
known standards. PCR products were purified using
QIAquick® PCR purification kit (Qiagen) and submitted
to Invitrogen for sequencing.

Construction of phylogenetic trees
Nucleotide BLASTn analysis http://www.ncbi.nlm.nih.
gov/BLAST was used to identify related genes of the
viruses, and the reference sequences were obtained from
GenBank. Pair-wise sequence alignments were also per-
formed with the MEGA4.0 program [51]http://www.
megasoftware.net/ to determine nucleotide sequence
similarities. Alignments of each virus sequence were
generated using program ClustalW [52]http://clustalw.
genome.ad.jp/. Phylogenetic analyses of the aligned
sequences for 5 gene segments (ORF2-5 and NSP2)
were performed by the neighbor-joining method
with 1000 bootstraps and Maximum-Likelihood with

Table 1 Primers used for PCR amplification of ORF2–
ORF5 and NSP2 from PRRSV

Genes Primer sequence

ORF2 5’-ACGAAGCTTATGAAATGGGGTCTATG-3’

5’-TATCTCGAGTCACCGTGAGTTCAAAAG-3’

ORF3 5’-TTCATGATTTTCAGCAATGGCTAA-3’

5’-GATGGTGATGTACACGGGCGT-3’

ORF4 5’-ACGGCGGCAATTGGTTTCACCTA-3’

5’-CGTGGTCAAGCATTTCCCCAACATA-3’

ORF5 5’-CCTGAGACCATGAGGTGGGG-3’

5’-TTTAGGGCATATATCATCACTGG-3’

NSP2 5’-TGAYTGGRATGTTGTGCTYCCTGG-3’

5’-ATGCGAGARAGCCAYTCCTGCGT-3’
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100 bootstraps by using PHYLIP version 3.67 http://evo-
lution.gs.washington.edu/phylip.html. All gene accession
number of the isolates and other references virus were
shown as Additional file 11.

Comparison and analysis of amino acid sequences in gp2,
gp3, gp4, gp5 and nsp2
Amino acid sequences of Chinese isolate virus (BJ-4),
VR2332 and MLV gp2, gp3, gp4 and gp5 proteins were
retrieved from the public domain database Entrez Pro-
tein, and compared each of them with all the 7 isolate
virus proteins using the software ClustalW [52].

Additional file 1: Table S1: Estimates of Evolutionary Divergence
between isolates and references based on gp5 gene Sequences.

Additional file 2: Table S2: Estimates of Evolutionary Divergence
between isolates and references based on gp2 gene Sequences.

Additional file 3: Figure S1: Antigenic index analysis: plots of ORF2
generated by the Kyte and Doolittle method. Major areas of
difference are indicated by arrows. a, GC-2 was a representative of
other two isolates because the same plots were shown for GC-2 and
GCH-3. b, LS-4 was a representative of other two isolates because the
same plots were shown for HM-1 and HQ-6. c, VR2332 was a
representative of other three reference virus because the same plots
were shown for BJ-4 and MLV.

Additional file 4: Table S3: Estimates of Evolutionary Divergence
between isolates and references based on gp3 gene Sequence.

Additional file 5: Figure S2. Antigenic index analysis plots of ORF3
generated by the Kyte and Doolittle method. Major areas of
difference are indicated by arrows. a, LS-4 was a representative of
other six isolates because the same plots were shown for GC-2, ST-7,
GCH-3, HM-1, HQ-5, HQ-6 and LS-4. b, VR2332 was a representative of
other three reference virus because the same plots were shown for BJ-4
and MLV.

Additional file 6: Table S4. Estimates of Evolutionary Divergence
between isolates and references based on gp4 gene Sequences.

Additional file 7: Figure S3. antigenic index analysis: plots of ORF4
generated by the Kyte and Doolittle method. Major areas of
difference are indicated by arrows. a, LS-4 was a representative of
other five isolates because of the same plots (GCH-3, HM-1, HQ-5, HQ-6
and ST-7). b, BJ-4 was a representative of other two reference virus
because the same plots were shown for BJ-4 and MLV.

Additional file 8: Table S5: Estimates of Evolutionary Divergence
between isolates and references based on Nsp2 gene Sequences.

Additional file 9: Table S6: prediction of immuno-dominant B-cell
epitopes of NSP2 protein.

Additional file 10: Table S7: The information of seven isolates from
pig farms of Shijiazhuang city, in Hebei province.

Additional file 11: Table S8: Summary of the PRRSV analyzed in this
study.
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