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Abstract

Background: The regulatory processes that govern cell proliferation and differentiation are
central to developmental biology. Particularly well studied in this respect is the lymphoid system
due to its importance for basic biology and for clinical applications. Gene expression measured in
lymphoid cells in several distinguishable developmental stages helps in the elucidation of underlying
molecular processes, which change gradually over time and lock cells in either the B cell, T cell or
Natural Killer cell lineages. Large-scale analysis of these gene expression trees requires computational
support for tasks ranging from visualization, querying, and finding clusters of similar genes, to
answering detailed questions about the functional roles of individual genes.

Results: We present the first statistical framework designed to analyze gene expression data as it
is collected in the course of lymphoid development through clusters of co-expressed genes and
additional heterogeneous data. We introduce dependence trees for continuous variates, which
model the inherent dependencies during the differentiation process naturally as gene expression
trees. Several trees are combined in a mixture model to allow inference of potentially overlapping
clusters of co-expressed genes. Additionally, we predict microRNA targets.

Conclusion: Computational results for several data sets from the lymphoid system demonstrate
the relevance of our framework. We recover well-known biological facts and identify promising
novel regulatory elements of genes and their functional assignments. The implementation of our
method (licensed under the GPL) is available at http://algorithmics.molgen.mpg.de/Supplements/

ExpLym/.

Background

The study of gene regulatory mechanisms controlling cell
proliferation and differentiation is central in developmen-
tal biology. Because all hematopoietic cells are easily
obtained as individual cells, and due to high clinical inter-
est, the development of lymphocytes is particularly well-
studied [1,2]. In mammals, all blood cells develop from
pluri-potent, self-renewing hematopoietic stem cells
(pHSC) of the bone marrow. In the classical model, these

pHSC differentiate into common myelo-erythroid pro-
genitors and common lymphoid progenitors [3]. The lat-
ter give rise to all cells of the adaptive immune system,
including T, B and natural killer cells, which are the focus
of our work.

Lymphocytes are well characterized; they can be purified
by fluorescence activated cell sorting (FACS) exploiting
the large variety of cell surface antigens, which appear in
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specific order during differentiation as the result of a lin-
ear sequence of genomic rearrangements at the T and B
cell receptor loci [4,5]. Based on this, lineage-specific
expression and roles of transcription factors have been
studied extensively [1,2,6]. It has been shown, for exam-
ple, that Gata3 is required for CD4 T cell maturation and
that Runx3 silences the CD4 gene in CD8 T cells. Very
recently, a new class of regulatory RNAs, microRNAs, have
been identified as being involved in lymphocyte cell
development [7-9].

Several groups [4,5,10-12] have combined FACS medi-
ated cell sorting and mRNA expression profiling to derive
a more comprehensive picture of the lymphocytes in dis-
tinguishable developmental stages. Our interest focuses
on these patterns of gene expression in the distinct stages
of the developmental tree, the developmental profiles of
genes; see Fig. 1 for a developmental tree. Observing such
patterns, the first natural question to ask is whether fur-
ther genes exhibit the same developmental profile; for
example, are there other genes co-expressed with Gata3. It
is reasonable to assume that genes with a prescribed pat-
tern of expression, such as "up-regulated in proliferating
cells", might be relevant for specific functions of cells in a
particular stage of differentiation. Clearly, not all relevant
developmental profiles are known beforehand, so cluster-
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ing is the next logical step. Clustering allows us to divide
genes into groups of similar developmental profiles, some
of which will be irrelevant-genes expressed in all
stages—others will differ in distinct branches of the devel-
opmental tree and thus indicate relevance for differentia-
tion. Once the gamut of developmental profiles is
determined, further questions can be addressed with sta-
tistical methods: which regulatory effects might cause dif-
ferentiation, which subgroups of developmental stages
share regulatory patterns or at which developmental stage
is the difference in expression between two groups the
largest. Prior work in this context relies on classical clus-
tering methods, such as self-organizing maps [4,5], hierar-
chical clustering [12], or on performing tests of
differential expression between cell types of interest [11].
Further studies concentrated on small-scale data, where
selected genes are used to infer regulatory networks. One
such study applied a state-space model to infer networks
of T cell activation [13]. Troncale and colleagues adopted
Petri Nets to model and infer regulatory networks of early
pHSC development [14], while Basso and colleagues pro-
posed a novel algorithm for a similar task [15].

Classical clustering relies on distance functions between
developmental profiles such as correlation or Euclidean
distance, which neglect the dependence structure of the
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Schematic view of lymphocyte cell development. Developmental stages are depicted as nodes and arrows indicate tran-
sition from one stage to another, i.e. specialization. Self-renewing hematopoietic stem cells give rise to T cells in the thymus
(green), B cells in the bone marrow (blue) and natural killer cells (NK) via intermediate stages. DN stands for CD4-/CD8-dou-
ble negative cells, DPL for CD4+/CD8+ double positive large cells, and DPS for CD4+/CD8+ double positive small cells. Cell
surface antigens and rearrangement events are partially annotated. The expression data sets investigated in this paper are
marked as follows: green ovals for TCell, blue ovals for BCell, and pink boxes for LymphoidTree. We do not investigate devel-

opmental stages and transitions depicted in grey.
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developmental tree (Fig. 1). As a matter of fact, the cluster-
ing result does not change if one permutes all the varia-
bles. Biology suggests however, that the very sequence of
changes does matter as this exact sequence of events is
what takes a cell from pluri-potent to, say, mature B-cell.
Thus we propose dependence tree models-see [16] for the
discrete variate version-to model expression during the
course of development. Our model assumes that the
dependence of gene expression between subsequent
stages is the most relevant one for identification of co-
expressed genes. We assume that gene expression has been
measured for a sufficient number of stages, in particular
those relevant for differentiation processes, and that the
cell population in a particular stage is sufficiently pure.
The disagreement between reality and our assumptions is
subsumed as noise, which our method can successfully
deal with on simulated data. If we consider all pairwise
dependencies between developmental stages our model
would be equivalent to a multivariate Gaussian distribu-
tion with full covariance matrix. Due to the complexity
the estimation of such models is prone to over-fitting
[17,18]. The dependence tree model represents a tradeoff
between methods assuming independence between varia-
bles, such as k-means and hierarchical clustering, and
complex models, such as multivariate Gaussians, which
makes estimation more robust.

With one such tree we can find genes with a specified
developmental profile, for example similar to the devel-
opmental profile of Gata3, by ranking genes in order of
decreasing likelihood under the tree. To cluster develop-
mental profiles we combine several trees with the same
topology but with distinct parameters in a classical mix-
ture model [17]; tree topologies are taken from the biolog-
ical literature. Thus we obtain a robust and flexible
statistical model for clustering genome-wide mRNA
expression data sets, which takes the inherent dependen-
cies between developmental stages explicitly into account.
The resulting clusters of genes sharing similar develop-
mental expression profiles are well-suited for a subse-
quent search for common regulators such as transcription
factors or microRNAs.

Our choice of model class is motivated by the successful
application of mixtures of complex statistical models to
the analysis of mRNA expression time-courses. There,
models that take temporal dependencies into account,
such as Splines [19,20], Autoregressive models [21] or
Hidden Markov models [22], outperform simpler models,
which assume independence of the variables, for example
k-means, self-organizing maps or hierarchical clustering.

For discrete variates, dependence trees were first proposed
by Chow and Liu [16], who showed that efficient compu-
tation is possible. Mixtures of trees were first proposed
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and applied in image recognition problems [23], where
more efficient versions of the structure learning algorithm
for sparse data sets became necessary. In bioinformatics,
mixtures of trees were applied to infer mutation events in
HIV strains [24]. We present an extension of the depend-
ence trees to continuous variates, requiring modifications
to the densities and provide a framework for robust clus-
tering based on mixtures. To the best of our knowledge,
there is no prior work on genome-scale mRNA expression
analysis in which the developmental tree structure is taken
into account. Both the biological application and our
approach of combining tree models with mixture estima-
tion for this purpose is novel. However, the main method-
ological ingredients are well-established. Our advanced
statistical framework allows us to identify clusters of genes
with similar developmental profiles. We detect interesting
groups of genes not found using standard techniques,
such as self-organizing maps [25], in developing lym-
phoid cells. Results on simulated data show the condi-
tions under which our method has a technical advantage.
From our clustering results we can identify plausible regu-
latory roles of microRNAs known to be involved in
hematopoiesis. We provide a graphical user interface and
a web database of clustering results; see [26] for imple-
mentations, a tutorial on how to use the tools, and a web
database with the results presented below. Our findings
suggest that our framework is well-suited for analysis of
genome-wide expression data from detailed cell develop-
ment studies.

Results/Discussion

In the next two sections, we describe the dependence trees
and how they are combined in a mixture to find groups of
developmental profiles. Subsequently, we present the
results of the application of our method to three lym-
phoid cell datasets. In the last subsection, we analyze the
groups of genes, given by our mixture of dependence trees
(MixDTrees) results, for common microRNA binding sites
patterns, in order to gain insights into regulatory function
of microRNAs.

Dependence trees

The main assumption behind the dependence trees
(DTree) is that expression levels of a particular develop-
mental stage depend primarily on expression levels of the
immediately preceding stage. For example, cf. Fig. 2, we
can approximate the joint probability density function
(pdf) of four random variables (X,, X5, X, Xp) by

P [Xa Xp Xo Xpl = p [XA]p([)§B|XA]p [Xc|Xglp [Xpl Xl
1

In other words, we condition the probability of a given
variable on its immediate predecessor, in accordance with
the tree structure shown in Fig. 2. There, also a cluster of

Page 3 of 19

(page number not for citation purposes)



BMC Immunology 2007, 8:25

http://www.biomedcentral.com/1471-2172/8/25

15
1

—_—
-1 01 2

S o5
e

10 1 10 1 oo
QL’ QC,

S _05)

-1 01 -1r

—1.5A

Figure 2

B C/D

Example of a simple developmental tree and a cluster of developmental profiles. On the left, we depict a simple
development tree, where arrows represent dependencies between variables. Above each tree variable, we depict a distribu-
tion related to it. On the right, we display the gene expression values (y-axis) in the distinct development stages (x-axis). Each
line corresponds to the developmental profile of a given gene of a particular path of the tree in the left, as in a time-course plot.
Distinct paths have distinct colors, in correspondence with the tree on the left. In this particular example, we have the path A,
B and C in green and B and D in red. By superimposing the lines corresponding to paths B to C and B to D, we can contrast
the differences in expression values of genes in these two alternative differentiation pathways.

hypothetical genes with similar developmental profiles is
depicted (Fig. 2, right). The genes display average expres-
sion in stage A, up-regulation in stage B, down-regulation
in stage C and up-regulation in stage D. Furthermore, the
genes have clearly distinct expression intensities, but sim-
ilar relative expression changes. Genes strongly over-
expressed in B are also strongly under-expressed in C and
strongly expressed in D. These dependencies are reflected
in the correlation between these stages. For example, A
and B (or B and D) are positively correlated, and stages B
and C are negatively correlated. A statistical model for
such developmental profiles has to include these depend-
encies between subsequent stages, as it is provided by
dependence trees. Let X = (X, ..., X, ..., X;) be a L-dimen-
sional continuous random vector where the variable X,
denotes the expression values of the developmental stage
uand x = (x,, ..., x; ) denotes a realization of X representing
a developmental profile of a gene. We represent a tree by
its predecessor or parent map, pa {1, ..., L} &#x21A6; {1,
..., L} for which we assume without loss of generality that
1 < pa(u) < u and pa(1l) = 1. Then we can write for the
probability density function (pdf) of a conditional

L
plx | 0]= p[xl | 7:1]1_[ p[xu | xpa(u)'Tu]~ (2)
u=2
We denote the model parameters by 8 = (7, ..., 7, ... 7)

and the DTree by the tuple (X, pa, ). Note, that a DTree
can also be viewed as an approximation of the joint distri-

bution of a L-dimensional continuous random vector by
a product of L - 1 second order distributions [16].

We use conditional Gaussian density functions [27] as
conditional densities, denoted by p [x,[xy,.) 7] in Eq. 2.
Hence, for a given developmental profile x and a non-root
developmental stage u with pa(u) = v, the pdf takes the
form

(o — 1y — Wyl (x, - :uu))z

2
207,

Pl | %7, = (V270 ) exp

(3)

2
where 7, = (1, wy,, GM|V) are the parameters for one con-

ditional density in the model.

For a given expression data set consisting of measure-
ments for N genes at L developmental stages, let x; = (x;;,
<oy Xjyyr - %) be the developmental profile of gene i, and
x;, be the expression value of the gene i in development
stage u for 1 <i<Nand 1 <u <L. As derived in the Proto-
col in the Additional data file 1, the maximum likelihood
estimates (MLE) for the parameters of the conditional
Gaussian are

N
Ay :(zxiu)/N' (4)

i=1
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Q>

wy, =— and (5)
Gv
22 _ 22 2 22
Oy = Ou Wy, 0. (6)

These terms can be computed from the sufficient statistics

021% = (g‘,(xiu _lau)z)/N' and (7)
i=1
N
6uv = (Z(xiu _:au)(xiv _:[Lv))/N (8)

i=1
The conditional normal distribution can be seen as esti-
mating a linear fit between X, and X,, where w,,> 0 indi-

cates a positive linear correlation and w,,<0 a negative

ulv

linear correlation between variables; w,, = 0 if the varia-
bles are independent. Furthermore, w,, and 0'5‘” are

related because the better the linear fit the smaller the var-
iance. For the special case of the root (recall pa(1) = 1),
wy is set to zero, and the conditional density is effectively

a univariate normal. In total, the model has 3L - 1 free
parameters.

Avery simple, but useful application, is to query the devel-
opmental profiles from a data set with a tree model. By
defining the model parameters in an interactive manner,
we can compute the likelihood (Eq. 2) of all expression
profiles x;. rank them accordingly, and list the m most
likely profiles (see [26] for the tool description and tuto-
rial). This interactive tool allows biological experts to find
genes following a developmental profile of interest.

Returning to the example in Fig. 2, the model estimates
given the tree and developmental profiles are

T4 = (Uswy,03) = (-0.01,0,0.02),
2
TB = ('U.B,WB|A,O-B‘A) (097,22,002),
Tc = (yc,qu,oé'B) (-0.99,-0.3,0.01), and
Ty = (uD,wD‘B,GaB) (0.45,0.53,0.01).

As expected, wg|, and wp, are positive, indicating a linear
dependence between these variables. On the other hand
W is negative.

http://www.biomedcentral.com/1471-2172/8/25

Mixtures of dependence trees

In order to find clusters of co-expressed genes, we com-
bine several dependence trees (DTree) in a mixture. Each
DTree is a representation of a cluster or group of genes
with similar developmental profiles; that is, each DTree
models distinct patterns of gene expression in the course
of development (see Fig. 3 for an example). The differen-
tiation of cells is conveniently represented as a develop-
mental tree and the structure or topology of this tree is
well-known for most data sets under investigation. Conse-
quently, all trees in a mixture share the same topology. A
mixture of dependence trees accommodates overlapping
clusters while reflecting the inherent dependencies
between stages. Throughout this paper we refer to the pre-
sented method as well as to the resulting model as
MixDTrees.

More formally, we combine a set of K DTrees in a mixture
model f(x|0©)= z;:zlakp[x |6,], where ® = (6, ..., 6,
ay, ... o), 9,denotes the parameters of the k-th DTree and

ay, is proportional to the number of developmental pro-

files assigned to the k-th Dtree; as usual ¢, > 0 and

K . . .
2 11O = 1. To avoid over-fitting of the tree models, in

particular for components with low component priors
ag,~that is, a small number of assigned genes—-we propose
a maximume-a-posteriori (MAP) approach, which regular-
izes the estimates from Eq. 5 and Eq. 6. Given this prefer-
able characteristic,
MixDTrees experiments, unless otherwise stated. Note
also, the parameters of the mixture are estimated with the
Expectation-Maximization (EM) algorithm [28] (see
Methods section for EM and MAP details).

MAP estimates are used in all

As stated in the introduction, the problem approached
here is closely related to gene expression time-course anal-
ysis. There is a vast amount of literature on models and
clustering methods suitable for time-courses [18-
22,29,30]. Lately, attention has been given to the fact that
these time-courses have usually few time points [31,32], a
characteristic previously ignored. This aspect is also essen-
tial to our application, since the number of distinguisha-
ble developmental stages is usually small, for example at
most seven in our data sets. Note that a single chain of
subsequent development stages, such as the stages of B-
cell differentiation in Fig. 1, is by definition a tree. While
dependence trees are indeed also suitable for time-
courses, the complex dependency structures necessary due
to branching of the developmental tree into distinct line-
ages prevents the use of time-course models, as there is no
effective way of incorporating the necessary extensions
into these models [19,22]. In the context of mixtures, our
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J(x|0®)=

Figure 3

Example of a mixture of four dependence trees with the topology defined in Fig. 2. Each of the trees models dis-
tinct developmental profiles found in an example data set. Furthermore, clusters may have distinct sizes proportional to their
aj's. Note also that it is not necessary that clusters have distinct expression values in branching stages. For example, stages C
and D have similar expression values for cluster 3 and 4. This can be interpreted as the genes being equally expressed in the

two alternative lineages.

method represents an alternative to the parameterization
of the covariance matrix of a mixture of multivariate Gaus-
sians [17]. With MLE, the dependence tree model essen-
tially imputes zeros in the covariance matrix reducing the
number of parameters to the order of L. If we would con-
sider all the covariances between observations for L devel-
opmental stages; it would be straightforward to represent
the data distribution by a L-variate Gaussian model with
full covariance matrix. However, the estimates for the L2
parameters are often unreliable even for small values of L
and the parameter estimation is prone to over-fit to out-
liers often found in noisy and scarce data. In fact, mixtures
of Gaussians with full covariance matrix were outper-
formed by simpler parameterizations of the covariance
matrices in the context of gene expression time courses
[18].

Application in lymphocyte cell development
We apply our method to obtain MixDTrees for the data
sets TCell, BCell, LymphoidTree, and SIM (see Methods

section for details) and compare our clustering results to
previous work. Our data is complemented with informa-
tion from OMIM [33], the Gene Ontology database [34]
and from literature. For TCell and BCell, we use the same
number of clusters as Hoffmann and colleagues (20)
[4,5,35] and for LymphoidTree we apply the BIC criterion
[36] (see Fig. S4 in Additional data file 2), which also
resulted in an optimal choice of 20 clusters. As discussed
in Dependence trees section, a simple way to check for
similarities in the expression between developmental
stages is to compute the correlation matrix of the data set
at hand (see Mixtures of dependence trees estimation sec-
tion).

T cell development (TCell)

TCell is a gene expression data set from seven differentia-
tion stages of the T cell development (see Methods section
and Fig. 1 for details). The only branch in this tree is the
final differentiation of DPS precursors into CD4 single
positive SP4 cells and CD8 single positive SP8 cells. Most
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clusters show a distinctive pattern of differential expres-
sion along the developmental path but do not differ
between SP4 and SP8 cells (clusters 4, 7, 11, 13, 14, 15,
16, 19, and 20). The most drastic changes occur at the DPL
stage in which the cells are proliferating and subsequently
start to rearrange the TCRe-locus. This is also reflected in
the overall correlation matrix (Table S1 in Additional data
file 3). Although the expression values of all neighboring
stages are positively correlated, the correlation between
the DPL stage and the DPS stage is much smaller in com-
parison to the double negative stages, all of which are rel-
atively highly correlated. The correlation matrix suggests
that SP4 and SP8 cells are more similar to each other than
to their precursor DPS cells, which is expected since the
two types of mature T cells share many cellular functions
[4]. The largest differences with respect to SP4 and SP8 are
found in clusters 5 and 18 (Fig. 4). In cluster 5, cell-cycle
genes are clearly enriched. In contrast, cluster 18 mainly
contains regulatory proteins involved in transcription and
signaling (see Fig. 4).

Hoffmann and colleagues used self-organizing maps
(SOM) to cluster the expression profiles [4,5,35]. From
now on, we refer to Hoffman and colleagues' results sim-
ply as SOM. In our analysis we observe clusters with sim-
ilar developmental profiles, which we define as the
average over the gene expression profiles of a cluster. As
expected, there is not a one-to-one relationship between
the two clusterings. While the single gene profiles are sim-
ilar since we used analogous normalization and filtering
procedures (see Methods section), the actual gene cluster-
ings differ (see Table S12 in Additional data file 3). An
objective assessment of clustering quality on developmen-
tal data is impossible due to lack of benchmarking data.
Furthermore, there is no agreement in the literature on a
methodology to validate clustering results [37]. In order
to demonstrate that our method is able to extract addi-
tional biological information, we concentrate our discus-

http://www.biomedcentral.com/1471-2172/8/25

sion on clusters of distinct developmental profiles that
could not be detected by SOM [4]. For such a cluster we
assign functions to genes using the GO term annotation
and complementary literature. Ideally, the functions of all
genes of the cluster would match the cellular processes of
the particular developmental stage at which these genes
are over-expressed. Additionally, if some of these genes
are of unknown function then the developmental profile
can help to generate hypotheses about their functional
role. In our analysis we find that genes of cluster 8 are
over-expressed in DN3 and DN4 cells, a developmental
profile that has not been previously discovered (Fig. 4).
With SOM, the genes of this cluster are dispersed over the
two clusters (see Table S12 in Additional data file 3). Out
of the 30 genes of cluster 8 seven are related to vesicle
transport, or to the Golgi/ER system. Additionally, we find
five cell-cycle related genes, three involved in mitochon-
drial function, and seven genes of other functions, which
are mainly involved in signaling. These findings agree
with the functions of DN3 and DN4 cells, which is the
transport of precursor receptor molecules to the cell sur-
face membrane and the initiation of proliferation. This
demonstrates that our method is able to identify function-
ally relevant gene sets even if the expression changes are
not as large as for the DPL stage, for example. The com-
plete results, including gene expression plots, analysis of
GO-term and microRNA enrichment, can be found in our
web database [26].

B cell development (BCell)

In a similar approach to the TCell study, we investigated
gene expression for five consecutive stages during B cell
development (see Methods section and [4,5] for details).
The correlation matrix of BCell suggests dependencies
between gene expression values of successive stages, with
the largest correlation between pre-Bl and large pre-BII
cells and between immature and mature B cells (see Table
S2 in Additional data file 2). When we compare, as in the

Cluster 5 Cluster 8 Cluster 18
2 3 2
1.5 15
2
1 1
c c c
S 05 S 1 S
2 2 @ 05
o of o o
g g0 g o
o o5l [} ()
[0 [0 (0]
5 _qf & _4 5 05
0] 9] ]
_15} -1
-2
_ob -1.5¢
o5 . . . . 3 . . . . 2 Y . . .
BN2 DN3 DN4 DPL DPS  SP4/SP8 N2 DN3 DN4 DPL DPS  SP4/SP8 2 DN3 DN4 DPL DPS  SP4/SP8

Figure 4

Selected clusters from MixDTrees on Tcell. We depict the clusters 5, 8 and 18 found in TCell, expression values on the
y-axis, and cell types on the x-axis. Lines corresponding to developmental profile values between stages DN2, DN3, DN4,

DPL, DPS and SP4 are in green and between DPS and SP8 in red.
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TCell set, our clustering results to those of Hoffmann and
colleagues [4], we observe similar average developmental
profiles although the contingency table indicates differ-
ences in the cluster compositions (Table S13 in Additional
data file 3). Clusters 3, 5 and 6, for example, contain genes
that are up-regulated in pre-BI and large pre-BII cells and
down-regulated in later developmental stages (Fig. 5).
Consistent with the phenotype of these cells, the function
assigned to the genes of this cluster are mainly related to
proliferation. GO categories that are associated with mito-
sis, cell-cycle and chromatin remodeling are clearly over-
represented in these clusters (see our web database [26]).

Cluster 20 shows an average developmental profile that
was not detected with SOM [4,5]. The genes of this cluster

Cluster 3
2 ‘
c
K]
[}
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o
S
x
)
)
c
o)
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_&ls L L L
re-BI large Pre-Bll small Pre-Bll  Imm. B Mat. B
Cluster 6
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1t
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re-Bl  large Pre-Bll small Pre-BIl  Imm. B Mat. B
Figure 5
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are down-regulated in pre-BI cells, in which the first rear-
rangement of the DH and JHsegments on the H chain loci
has taken place, and up-regulated in all the following
developmental stages (Fig. 5). With SOM [4], these 23
genes are found distributed over the four clusters 11, 13,
14 and 17 (Table S12 in Additional data file 3). The most
palpable common function of many cluster 20 genes is
the regulation of survival and apoptosis during B cell
development. The gene products Nfkbia, Traf5 and the Src-
family protein tyrosine kinases Lyn and Syk are known reg-
ulators of NF-kappa B activity, which in turn has been
found to be involved in B cell fate decision and survival
[38-40]. Similarly, Krupel-like factor 2 (Kif2) protects cells
against TNF-alpha induced apoptosis [41]. Furthermore,
Icam-2 and Rhoh, whose encoding genes are two other

Cluster 5

Gene expression

_Il"r?e—BI large Pre—BlIl small Pre-BlI

Cluster 20

Gene expression

large Pre—BIl small Pre-Bll Imm. B Mat. B

-2
Pre-BlI

Selected clusters from from MixDTrees on Bcell. We depict clusters 3, 5, 6 and 20 found in BCell, expression values on
the y-axis, and cell types on the x-axis. Lines corresponding to developmental profile values between between all stages are in

red.
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members of cluster 20, regulate the adhesiveness of pri-
mary B cells depending on their activation state and pro-
tect them from apoptosis [33,42].

Lymphoid tree (LymphoidTree)

LymphoidTree combines data sets of several studies [10-
12], and the resulting tree contains expression measure-
ments from lymphoid cells of six developmental stages,
namely hematopoietic stem cells, pro-B, pre-B, and imma-
ture B cells, mature SP4 T cells, and natural killer (NK)
cells. This integration of data is possible because the stud-
ies were carried out on the same array platform. Although
the developmental tree is far less detailed compared to
TCell and BCell, we still gain insights on differences
between the cell lineages. As expected, the correlation
matrix shows that the expression patterns of the three B
cell stages are more highly correlated among each other
then expression patterns of different lineages. Moreover,
the overall expression of SP4 cells and NK cells is posi-
tively correlated. The resulting clusters provide a basis to
hypothesize about early developmental decisions and
suggest target genes for further investigations. For example
cluster 11 contains genes that are strongly up-regulated in
NK cells, weakly induced in the SP4 cells and not
expressed in the precursor B cells (Fig. 6). Many of the
cluster 11 genes are well known to be expressed in NK
cells, as for example the cell surface receptor genes Cd244,
Klral, and Crtam [33,43]. Among the lesser known genes
is the one that codes for the Pu.1 related transcription fac-
tor SpiC, which has already been found to be temporarily
expressed during B cell development [44]. In contrast,

Cluster 11

Gene expression

immature B

Figure 6
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cluster 19 contains genes that are up-regulated in SP4 cells
and in all B cell precursors but not in NK cells (Fig. 6).
Important functions during B and T cell maturation are
reflected by genes in this cluster, like the bruton tyrosine
kinase Btk, the transcription factor Pou2afl, which is
involved in immunoglobulin gene regulation, and the
DNA repair genes Trp53bp1 and Pnkp [33].

Simulated data (SIM)

We demonstrate with simulated data that our novel
method outperforms established methods, such as SOM,
k-means and mixture of Gaussians, when inferring tree
components in complex mixtures for varying levels of
dependence between the individual variates. The depend-
ence is reflected in the magnitude of w,,, , (Eq. 5) of a tree.
By sampling these parameters from different intervals, [-¢,
€], [-0.5,0.5], [-1, 1], [-1.0,-0.5] U [0.5, 1] and [-1, -1 + ¢]
U [1 - & 1], we can create mixtures with components rang-
ing from independent models to highly dependent ones.
We generate a data set for each sampled mixture. We used
MixDTrees, mixture of Gaussians, k-means and SOM to
compute clusters, which we can compare to the classes
used in data generation to compute specificity and sensi-
tivity of the clustering solutions. Method performance is
evaluated with a paired t-test. Details are given in Methods
section.

We observe that the MixDTrees with MAP estimates
(MixDTrees-MAP) have a higher specificity and sensitivity
than k-means and SOM in all experimental settings (Fig. 7
top) (p-value below 0.005). In the (almost) independent

Cluster 19

0.8

Gene expression

NK/SP4/pro-B pro-B immature B

_%ﬁso

Selected clusters from from MixDTrees on LymphoidTree. We depict clusters | | and |9 found in LymphoidTree,
expression values on the y-axis, and cell types on the x-axis. Lines corresponding to developmental profile values between
stages HSC, pro-B, pre-B and immature B cell are in read, between HSC and NK cells in blue, and between HSC and SP4 cells

in green.
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Results of SIM. We display the mean sensitivity (left plots) and mean specificity (right plots) against five experimental settings:
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ture of Gaussians with full covariance matrices are displayed in yellow, mixture of Gaussians with diagonal covariance matrices
in purple, Mixture of dependence trees with MLE estimation in light blue (MixDTrees-MLE) and mixture of dependence trees

with MAP estimation (MixDTrees-MAP) in red.

case (w,,, € [-& &), this is not expected, since the data
agrees well with the assumptions of k-means and SOM.
This also explains the large standard deviations of
MixDTrees-MAP in that case. As expected, the MixDTrees-
MAP clearly improves the cluster recovery in settings with
pronounced dependence structure, while the performance
of k-means and SOM deteriorates slightly. In comparison
to others mixture model methods (Fig. 7 bottom),
MixDTrees-MAP also obtains a significantly higher specif-
icity and sensitivity in almost all experimental settings.
The mixture of Gaussians with diagonal covariance matri-
ces performs well in the independent case (1), which

meets the model assumptions, but it has poor results in
experiments with higher dependence (p-values below
0.05 for settings 3, 4 and 5). The mixture of Gaussians
with full covariance matrix (MG-Full) has a reasonable
sensitivity in all settings, but very poor specificity (p-value
below 0.05 in settings 3, 4 and 5 for specificity and in all
settings for specificity). The reason for these results is that
MG-Full tends to populate some clusters with few data
points, a problem known as spurious local maxima [17].
Note that we use a MAP estimate of MG-Full to mitigate
this problem. Even though there are other methods for
detection of spurious local maxima in MG-Full, which
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MicroRNA enrichment

Strategy to identify enriched microRNAs. Strategy to identify microRNAs and their target genes overrepresented in
groups of co-expressed genes (indicated left) as part of a post-transcriptional regulatory mechanism. In the middle mRNAs
clustered according to our mixture results are depicted and potential microRNA binding sites in their 3'UTRs are symbolized.

could lead to better specificity, this would require exten-
sions of the EM method, and consequently slower conver-
gence [17]. On the other hand, MixDTrees, which has a
lower computational running time than MG-Full,
achieves good results without the need of any extension.
MixDTrees with MLE estimates (MixDTrees-MLE) has
good overall performance, but is outperformed by
MixDTrees-MAP in all cases, except experimental settings
1 and 5 (p-value below 0.05 for settings 2, 3 and 4). In
experimental setting 5, where data is highly dependent, by
definition, both methods work similarly well. Neverthe-
less, such high dependency would never be found in real
data sets, since noise in the data obfuscates dependencies
between variables. Additionally, we performed further
experiments with simulated data to evaluate the robust-
ness of the method with respect to noise (see Additional
data file 1). There, MT-MAP maintains good sensitivity
and specificity of cluster recovery even for high noise lev-
els.

This demonstrates that the MixDTrees is a superior alter-
native to SOM and k-means in all cases. In relation to
other mixture models, MixDTrees represents a good trade-
off between a complex model class such as multivariate
Gaussian with full covariance matrices and the simple
Gaussian with diagonal covariance matrices. Further-
more, MAP estimates of the MixDTrees represent a more
robust alternative to the MLE counterpart.

MicroRNA target discovery

LympMIR contains a set of 17 microRNAs that are poten-
tially involved in lymphocyte cell development (for
details see Methods section). It has been proposed that
microRNAs bind target mRNAs specifically via base pair-
ing, which subsequently leads to interference with the
translational machinery or mRNA degradation, and thus

can control whole groups of genes simultaneously [45].
Recent microarray studies have demonstrated that the
microRNA expression negatively correlates with mRNA
target expression in a tissue specific manner [46-48].

Having identified a cluster of co-expressed genes during
lymphoid development we ask whether a certain micro-
RNA could be a potential regulator of this cluster (see Fig.
8). For this task we first obtain lists of potential target
genes for each microRNA from the miRBase Targets data-
base [49], which contains predictions made by sequence
based methods. Given our clustering results, we use the
statistic of the Chi-Square Test [50] to obtain a list of
microRNAs, whose potential targets are overrepresented
in a cluster. This is an analogous approach to finding
Gene Ontology [51] terms over-represented in a cluster of
genes. Given a set of n genes, we count the number ¢ of
genes in a given cluster, the number ¢ of genes identified
as targets for a given microRNA and the number h of genes
that are both in the cluster and are targets of the micro-
RNA. The resulting p-value reflects the statistical signifi-
cance of observing a count h, given 1, ¢ and t. A lower p-
value indicates a higher "microRNA enrichment”, and,
consequently, a better result. By choosing a p-value cutoff,
we can construct a list of enriched microRNAs for each
cluster as well as a list of target genes related to the
enriched microRNAs. Note, that the statistics for micro-
RNA-binding are not well developed; intricate dependen-
cies introduced by sequence similarities among the
microRNAs and the target genes exist and complicate the
analysis. As we also consider a manually selected set of
microRNAs, we choose a somewhat relaxed p-value cutoff,
foregoing multiple testing corrections [52], followed by a
careful biological evaluation. For the following discus-
sions we restrict our result set to clusters that contain at
least four target genes in total.
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Table I: List of LympMIR enriched in the clusters from MixDTrees on data sets TCell and BCell

Cluster ID  MicroRNA Target Genes
TCell 3 miR-222 Elovi6, Nmel, Renl, Rps3
TCell 5 miR-15a!, miR-181a2, miR-2213,  24100/5N17Rik*, Alad'4, Atpifl 5, Aurkb?, Cdc25a', Chekl'

miR-244, miR-26a°
Trip13!, Uchl5S

Cksb24, Cks25, Eed?, H2afx*, Kpnb 13, Mecm53, Nasp35, Pex72, Psmd |22, Ranbp52, Rars', Tkl3,

TCell 10 miR-142-3p¢, miR-1507 Gfilé, Marcksé, Mshé®, Pp | Ir7, Psmcl67
TCell Il miR- 1468, miR-16%, miR-181b!0  AtpIb310, Ipo4°, Klhdc2'9, Mrpl308, Orc5B, Tuba4®
BCell 3 miR-181b!, miR-181c2, miR-26a3  Atpifi3, Aurkb'?2, Cbx |3, Cdc45I2, Ckslb'2, Cks23, Cox5a3, Hmgb2'2, Melk'?2, Ttk!2, Uchl53
BCell 5 miR-15a%, miR-15b5, miR-2216, Cdca4*3, Chekl*>, Mcm47, Nasp®, Nfybé, Smc4ll?
miR-2237 Tuba2457
BCell 6 miR-1558, miR-191° Ctps®, Ddx 18, Hint1%, Mcm28, Phf| 78, Prdx4°, SNrpd I°
BCell 19 miR-142-3p'4, miR-342!5 2410002F23Rik'4, H2-Eb 14, Ltb'5, Tap2'415

We display the cluster and data set id, the list of microRNA and list of target genes, with p-values <0.05 and at least four target genes per cluster.
Genes involved in cell proliferation or DNA repair are depicted in bold. The indices indicates to which microRNA a gene is related, when there is

more than one enriched microRNA in a cluster.

In summary, in TCell our target prediction scheme detects
significant enrichment for eleven out of the 17 initial
microRNAs in four out of the 20 clusters (Table 1). In
these four clusters we detect in total 35 candidate target
genes, which is a considerable reduction of the set of 229
targets that have been predicted by sequence based meth-
ods alone [49]. For BCell these numbers are respectively,
eleven out of the 17 microRNAs, four out of the 20 clus-
ters, and 29 out of the 273 predicted targets (Table 1). In
particular, we find the five microRNA families miR-15,
miR-181, miR-221, miR-26, and miR-142-3p to be
enriched in both TCell and BCell by our criterion. See
Table S6 in Additional data file 3 for microRNA enrich-
ment in LymphoidTree and Table S7, Table S8, Table S9,
for p-values of microRNA enrichment of all data sets. As
mentioned earlier, the BCell clusters 3, 5, and 6 show a
similar expression profile. We find that cluster 5 of the
results of the TCell set overlaps substantially with clusters
3 and 5 of BCell (Table 1). In TCell cluster 5 we find miR-
15a, miR-181a, miR-26a, miR-24, and miR-221 as poten-
tial regulators and 20 potential target genes, seven of
which are also present among the 18 BCell candidate
genes of clusters 3 and 5. The developmental profiles of
the clusters of both lineages show strikingly analogous
phenotypical features, namely up-regulation in the prolif-
erating large cell populations (DN4, DPL, large pre-BII)
and from then on strict down-regulation. In TCell cluster
5 there are eight genes and in the BCell clusters 3 and 5
there are nine target genes that are known to be involved
in DNA metabolism, cell-cycle and mitosis (Table 1). This
suggests a regulatory role for the identified microRNAs in
reducing the transcript levels of genes that are important
for cell proliferation. This is supported by the fact that a
similar role for microRNA was found in Drosophila germ-
line stem cells [53].

At the individual gene level we identify some candidate
microRNA targets for further detailed analysis: the three
known genes (H2-Eb1, Ltb, Tap2) of BCell cluster 19 are all
involved in the antigen presentation by MHC class II mol-
ecules [33,54]. In the context of the cell cycle, Chek1 (clus-
ters TCell 5 and BCell 5) and Cdc25a (cluster TCell 5) are
important for the transition between G1/S and G2/M
phases [55].

Furthermore, both genes are candidate targets of the same
microRNA, miR-15a, which is related to apoptosis in
chronic lymphoid leukemia cells [56]. Another interesting
gene codes for the nuclear factor Y (Nfyb; cluster BCell 5),
which regulates Hoxb4 [57], Cdc34 [58] and the major his-
tocompatibility complex in mice [59]. These are all
important genes for lymphoid development. The mRNA
of the growth factor independence-1 transcription factor
(Gfi1; cluster TCell 10) is a potential target of miR-142-3p
with a function in the restriction of cell proliferation and
maintenance of the functional integrity of lymphocyte
cells [60]. Moreover, Gfil is implicated in the transition
from CD4/CD8 double negative to double positive T cells
[61].

In order to relate our approach with [4,5], we also perform
a microRNA enrichment analysis with the results of SOM
(see Table S4 and S5 in the Additional data file 3). In TCell
there is little overlap between the microRNA targets, with
the exception of SOM cluster 6, which is a subset of targets
genes from cluster 5 from MixDTrees. We also compare
the p-values obtained by both methods in a procedure
similar to the one performed in [31]. For TCell, MixDTrees
results in lower p-values in nine out of 14 microRNAs (see
Fig. S5 in Additional data file 2). In BCell, gene targets
found with SOM are partially a subset of the ones encoun-
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tered with MixDTrees; 14 out of 24 targets genes in BCell
SOM are also detected by MixDTrees (Table S5 in the
Additional data file 3). For BCell, (Fig. S6 in Additional
data file 2), MixDTrees obtains lower p-values in 8 out of
14 microRNAs. Even though SOM obtains lower p-values
for microRNAs found to be enriched with both methods,
MixDTrees detects seven enriched microRNA not signifi-
cantly enriched in SOM. An inspection of the cumulative
distribution function of these p-values also reinforces the
view that MixDTrees is more sensitive in detecting
enriched microRNAs than SOM in BCell (Fig. S8 in Addi-
tional data file 2). Overall, the results suggests a higher
sensitivity of MixDTrees-MAP in finding groups of micro-
RNA targets sharing similar expression patterns compared
to SOM. Additionally, we performed microRNA enrich-
ment p-value comparison between MixDTrees-MAP and
MixDTrees-MLE for both data sets (see Additional data file
2 Fig. §9 and $10). For TCell, MixDTrees-MAP achieves a
higher enrichment for nine out of 14 microRNAs; while
for BCell, six out of 13 microRNAs. In summary, clusters
computed according to MAP have an increased enrich-
ment for TCell and a slightly lowered enrichment for
BCell. A manual inspection of the contingency table com-
paring the clusters from MAP and MLE (Additional data
file 3 Table S15) and in the cluster size distributions
(Additional data file 2 Fig. S11) shows that MixDTrees-
MLE has a tendency to produce spurious, small clusters as
a result of over-fitting, a known disadvantage of MLE esti-
mates [17]. Note that the resulting p-values decrease dras-
tically as a function of the cluster size, making a clustering
which joins clusters appear preferable. Enrichment analy-
sis should be used cautiously to compare clusterings, if the
cluster size distributions are not similar, as it is the case for
the MLE results. This and the results on simulated data
supports our preference of MixDTrees-MAP over
MixDTrees-MLE.

Conclusion

The regulatory processes behind cell proliferation and dif-
ferentiation are of central interest to developmental biol-
ogists and clinicians alike and are frequently the focus of
large-scale studies to investigate gene expression along
paths of differentiation. To make full use of this data in a
principled manner we present a novel statistical frame-
work which models gene expression in the course of
development. By combining the dependence trees in a
classical mixture model, we facilitate interactive querying
and visualization of data and, more importantly, the
detection of possibly overlapping clusters of co-expressed
genes, which provide a basis for the identification of key
players in the regulatory mechanism and their mode of
action.

In particular, we detect interesting groups of genes not
found by classical clustering methods such as SOM. By

http://www.biomedcentral.com/1471-2172/8/25

incorporating microRNA binding data, we show how to
identify complex regulatory relationships. Compared to
an analysis based only on sequence, we predict a manage-
able number of plausible microRNA targets. Moreover,
our method offers some insights into the biological role of
predicted microRNAs, by the inspection of the develop-
mental profiles of gene targets associated with one micro-
RNA. A comparison with SOM indicates that our
approach is more sensitive for finding co-expressed genes
on which the same microRNA can have a regulatory effect.

Extensions to accommodate further types of data are
straightforward. Binding sites of transcription factors can
be analyzed completely analogous to the microRNA anal-
ysis. If expression levels of microRNAs in developmental
stages investigated in TCell or BCell were available, we
could incorporate a target prediction framework [62]. Fur-
thermore, we can simply apply established techniques
[63-66] to extend our mixture model to integrate hetero-
geneous data-sequence information, protein interaction,
genotype, phenotype data-and semi-supervised exten-
sions to mixture estimation can be applied to make use of
biological knowledge about functional similarities and
regulatory relationships [22,67,68]. This is of highest rel-
evance, because the identification of regulatory modules
is actually feasible compared to the automated inference
of regulatory networks [69]. Once a statistical model is
obtained, further detailed questions about the signifi-
cance of differences, or the most likely stage, at which dif-
ferentiation occurs can be easily answered.

Fascinating extensions are possible, even when one only
considers gene expression data and the basic method.
None of the currently publicly available data sets offers
both a tree with a large number of branches and a detailed
view of all, in particular early, development stages ([70]
concentrates on mature and immature cells in final devel-
opment stages); combining data from several microarray
platforms suffers from the usual problems. Hence, we
concentrate on two smaller but detailed studies covering
several stages of T cell and B cell development [4,5], and a
tree containing three lineages of lymphoid cells. Note that
in the latter several cell types of intermediary develop-
ment stages are not measured. Nevertheless, our analysis
indicates that our method takes advantage of the tree
structure information in detecting relevant differences of
gene expression in these lineages. This also reinforces the
importance of the creation of expression compendia, such
as the one in [70], where many intermediary stages of dif-
ferentiation of the developmental tree are also present.
Such data will be of great value as computational methods
can exploit characteristics intrinsic to cell development.

Lastly, developmental biologists are still redrawing devel-

opmental trees with the discovery of new intermediary
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stages and "alternative" paths of development [1-3]; a par-
ticular developmental stage might also be formed by a
mixture of distinct cell types not well characterized yet. As
an example of an alternative path, there has been evidence
that DN1 T cells can be originated not only from the lym-
phoid progenitor as depicted in Fig. 1, but also from the
earlier multipotent progenitor cells [3]. It is an exciting
prospect to infer branches and stages of a developmental
tree from gene expression data, ideally per functional
module. This structure learning (see [16] for discrete data)
can be incorporated in the EM-based parameter estima-
tion. In conclusion, our results suggest that the mixture of
dependence trees provides a natural and powerful repre-
sentation of developmental gene expression data. Further-
more, our results reinforce the importance of the creation
of detailed and heterogeneous data sets for helping eluci-
date the regulatory mechanisms of development.

Methods

Data

Our work concentrates on two detailed studies covering
several stages of the B and T cell development [4,5] and a
tree containing three lineages of lymphoid cells [10-12].
All gene expression data sets analyzed are deposited at the
Gene Expression Omnibus [71]. Their accession entries
are: GDS44 and GDS52 for BCell, GDS237 and GDS257
for TCell, and GDS1077 (HSC), GSE2227 (Bcells) and
GDS828 (NK and SP4) for the LymphoidTree data. Final
normalized and filtered data sets are found in [26]. Fur-
thermore, we also use simulated data sets in order to eval-
uate the method. Finally, we describe a set of microRNAs
that are used in our study.

T cell development (TCell)

This data set contains measurements of gene expression
during the development of T cells in mouse [4]. Based on
cell surface markers seven stages have been distinguished:
CD4 and CD8 double negatives (DN2, DN3, DN4), large
double positives (DPL), small double positives (DPS),
single positive CD4 (SP4) and single positive CD8 (SP8)
(see Fig. 1 for the corresponding tree, and the original
publication for details [4]). Affymetrix MU11k chips with
four or five replicates were used to measure the expression
levels of 13,104 mouse genes. We performed variance sta-
bilization [72] on all chips, and computed the median
values of replicates. To facilitate comparisons, we restrict
the set to the same list of 1318 differentially expressed
genes that was used by Hoffmann and colleagues [4]. Fur-
thermore, we normalize the expression levels separately
for each gene to mean zero and standard deviation one, as
is routine in gene expression analysis. Finally, we map
each probe set to a gene symbol if it exists in the respective
chip platform annotation provided by the GEO database
[73]. The final dataset is found at Additional data file 4.
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B cell development (BCell)

This data set contains expression levels of five consecutive
stages of the B cell lineage, Pre-BI, large Pre-BII, small Pre-
BII, immature, and mature B cells [5]. This study was con-
ducted on Affymetrix MU 11k chips also, and we pre-proc-
ess the data exactly as it is described for TCell. The final
dataset is found at Additional data file 5.

Lymphoid tree (LymphoidTree)

We combine the data of the wild-type control measure-
ments of three studies [10-12] based on the Affymetrix
U74 platform to obtain a development tree with distinct
lymphoid lineages. This results in expression values of a
hematopoietic stem cell (pHSC) from [10], of Natural
Killer cells (NK) and of SP4 cells from [11], and of three B
cell stages from [12], which are pro-B, pre-B and imma-
ture B cells. We pre-process the data exactly as it is
described for TCell. Additionally, we remove genes which
do not display a 2-fold change in expression at least once.
The final dataset is found at Additional data file 6.

Simulated data (SIM)

We use MixDTrees with random parameterizations to gen-
erate simulated data. For the tree structure given in Fig. 2,
we randomly chose the z,, , from the range [-1.5, 1.5]

and 0'5|v , from [0, 1]. We create five experimental set-

tings to inspect the performance of the method in the
presence of distinct levels of dependence. For these five

settings, we sample w,, , uniformly from [-& ¢ | (inde-

ulv,
pendent data), [-0.5, 0.5], [-1, 1], [-1.0, -0.5] U[0.5, 1] and
[-1,-1 + €] U[1 - & 1] (tree dependent data) respectively,
where ¢ = 0.01. We chose K = 5 and mixture coefficients
equal to a = (0.1, 0.15, 0.2, 0.2, 0.35). For each experi-
mental setting, we generate ten such mixtures, and sample
500 development profiles from each (see Additional data
file 1 for more results on simulated data and Additional
data file 7 for datasets). To evaluate the results we com-
pare the class information from the data generation to
#TP

compute sensitivity, —————, and specificity,
P Y #TP+ #FN P Y
#TP . .

———, where, for a given clustering result and the

#TP + # FP

class information, TP denotes the number of pairs of
objects in the same cluster and same class. The remaining
three types of pairs are counted as FP (same cluster, dis-
tinct class), TN (distinct cluster and class) and FN (distinct
cluster, same class). For each method, we compute the
sensitivity and specificity on all 10 data sets of an experi-
mental setting and take the mean (see Fig. 7). To compare
MixDTrees-MAP with other methods, we apply a one
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tailed paired t-test to evaluate the hypothesis that two
methods have the same mean specificity (or sensitivity) in
a given experimental setting. Low p-values indicate that
the equal means hypothesis was rejected and that mean
specificity (or sensitivity) was significantly higher in
MixDTrees-MAP. For brevity, in the Simulated data sec-
tion, we simply state-MixDTrees-MAP had a higher sensi-
tivity than method X (p-value below 0.05)-when the null
hypothesis is rejected.

Lymphoid development related microRNAs (LympMIR)

We collect 17 microRNAs that have been found to be
involved in Lymphoid development or at least differen-
tially expressed between distinguishable lymphocyte cell
types [7-9,56,74]: mmu-miR-24, mmu-miR-26a, mmu-
miR-142-3p, mmu-miR-146, mmu-miR-150, mmu-miR-
155, mmu-miR-181a, mmu-miR-181b, mmu-miR-181c,
mmu-miR-191, mmu-miR-221, mmu-miR-222, mmu-
miR-223 and mmu-miR-342. Additionally, we include
mmu-miR-15a, mmu-miR-15b, and mmu-miR-16
because, according to recent papers, they participate in the
regulation of cell proliferation and apoptosis [75,76].
Since we refer exclusively to microRNAs of the mouse in
this work, the species prefix mmu is omitted throughout
the text. The lists of candidate targets of these were
obtained in the miRBase Targets database [49] (Version
2.0), which uses the Miranda algorithm [77] to search for
possible microRNA binding sites in the gene sequences.

Mixtures of dependence trees estimation
We combine K DTrees in a mixture

K
f(x]©)= zkzl(xkp[x |6,], where ©® = (0,, ..., 6, y, ...,
ax), 6, denotes the parameter set of the k-th Dtree and ok

K . .
20, z 1O =1, are the mixture weights or component

priors. By introducing a discrete hidden variable Y = {y;}
for 1 < i < N, which indicates which DTree generated
which developmental profile x;, we can formulate a com-
plete log-likelihood function and estimate the parameters
with the Expectation-Maximization (EM) algorithm [28].
Given an initial parameterization ©®% EM iterates two
steps: first estimating the posterior probabilities
Ply; =k|x;,6;"]] (E Step), and second the computation

of the maximum-likelihood parameters @™ +1 (M-step), as
defined in Eq. 4, Eq. 5 and Eq. 6. We refer the reader to
[36] for details of the EM-algorithm.

To avoid over-fitting the models, in particular for compo-
nents with low component priors ¢,-that is, a small
number of assigned genes-we propose maximum-a-pos-

http://www.biomedcentral.com/1471-2172/8/25

teriori (MAP) approach. We assume that wy,, ;, ~ N(O,
G Pujy, e G;é ) [78]. Consequently, the estimates take the

form.

w Wk = % (9)
L) -1 4/
O-u|k(1+ Bu\v,k)
22 a2 A2 a2 -1
Oy =Ou —W,,0p (l_ﬁu\v,k)' (10)

For the sake of simplicity we omit the coefficients k which
indicates a tree in a given mixture from formulas in the
Dependence tree section. See Protocol for exact MLE and
MAP formulas in the mixture context. When S — oo, we
obtain a non-informative prior, for which the MAP and
MLE estimates are equal. As f#— 0, w — 0 and we have a
univariate Gaussian. As in [78], we use a empirical Bayes
approach to estimate the value of the hyper-parameter

ﬁu|v, ras

>
2 _ i=1'1
.Bu|v,k - ) ’
o, 0
ulk ™ vk
—o 1
Cyuv|k

(11)

where r;,is equal to the posterior probability P [y; = k|x;, 6]
calculated in the E step. This term can be interpreted as the
inverse of the linearity evidence. It penalizes components
with low responsibilities and larger variances, enforcing
lower w,,, |, values (see Protocol in Additional data file 1
for derivations of all formulas).

The last step after the mixture estimation is the assign-
ment of genes to groups. This is done by assigning genes
to the component that maximizes the posterior of the i-th
gene, which is y; = argmax; <, < x(r;). Note, that more
refined assignment schemes [22] (i.e., decoding a mix-
ture) which increase the robustness of the clustering
method can also be used.

Application in lymphoid development

We perform the following steps on each of the sets TCell,
BCell, LymphoidTree, and SIM. The mixture estimation
method is initialized with K random DTrees, which are
obtained by choosing random values uniformly and in [0,
1] independently for each r;, and estimating the individ-
ual models. Subsequently, we train the mixture model
using the EM-algorithm and MAP estimates. To avoid the
effect of the initialization, all estimations are repeated 15
times, and the one with highest likelihoods is selected (a
similar procedure is applied for k-means and SOM). The
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implementation of our method (licensed under the GPL)
and MS Windows binaries are available at [26]. There you
can also find a web database-generated with our
MixDTrees Report tool-with results of all analyses
described in this article.

On TCell and BCell, we used the SOM results as given by
[4,5]. For SOM experiments on SIM data, we used the
default parameters of the implementation [25], which
uses a set of heuristics to select the values. Furthermore,
we performed a clustering of SOM nodes with k-means as
itis a common practice [79]. In order to facilitate the com-
parison between our clustering results and the clusters of
the original work we reorder our clusters accordingly.
Dependence between developmental stages is measured
as the correlation between variables. Given two stages, X,
and X, the correlation is defined as

o-lll)

Puy = (12)

0,0y

where -1 < p, ,<1and p, ,= 0 indicates independence of
variables.
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