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Abstract
Background: Vitamin A (VA) deficiency induces a type 1 cytokine response and exogenously
provided retinoids can induce a type 2 cytokine response both in vitro and in vivo. The precise
mechanism(s) involved in this phenotypic switch are inconsistent and have been poorly
characterized in humans. In an effort to determine if retinoids are capable of inducing Th2 cytokine
responses in human T cell cultures, we stimulated human PBMCs with immobilized anti-CD3 mAb
in the presence or absence of all-trans retinoic acid (ATRA) or 9-cis-RA.

Results: Stimulation of human PBMCs and purified T cells with ATRA and 9-cis-RA increased
mRNA and protein levels of IL-4, IL-5, and IL-13 and decreased levels of IFN-γ, IL-2, IL-12p70 and
TNF-α upon activation with anti-CD3 and/or anti-CD28 mAbs. These effects were dose-
dependent and evident as early as 12 hr post stimulation. Real time RT-PCR analysis revealed a
dampened expression of the Th1-associated gene, T-bet, and a time-dependent increase in the
mRNA for the Th2-associated genes, GATA-3, c-MAF and STAT6, upon treatment with ATRA.
Besides Th1 and Th2 cytokines, a number of additional proinflammatory and regulatory cytokines
including several chemokines were also differentially regulated by ATRA treatment.

Conclusion: These data provide strong evidence for multiple inductive roles for retinoids in the
development of human type-2 cytokine responses.

Background
An uncommitted precursor T helper (pTh) cell can be
induced to differentiate into at least two distinct subsets of
effector cells, T helper type 1 (Th1) and T helper type 2
(Th2) cells [1,2]. Th1 cells secrete IFN-γ, TNF-α, and TNF-
β and are important for the development of delayed type

hypersensitivity (DTH) reactions and protective responses
to intracellular pathogens [1,2]. These cells also contrib-
ute to the pathology of autoimmune disease and graft
rejection. Th2 cells express and secrete IL-4, IL-5, and/or
IL-13 and are essential for the development of humoral
and allergic reactions [1,2]. During T cell activation, the

Published: 21 November 2006

BMC Immunology 2006, 7:27 doi:10.1186/1471-2172-7-27

Received: 15 May 2006
Accepted: 21 November 2006

This article is available from: http://www.biomedcentral.com/1471-2172/7/27

© 2006 Dawson et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118196
http://www.biomedcentral.com/1471-2172/7/27
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Immunology 2006, 7:27 http://www.biomedcentral.com/1471-2172/7/27
relative cytokine milieu within the local microenviron-
ment is a major determinant of the direction of pTh cell
differentiation. Cytokines such as IL-12 and to a lesser
extent IFN-γ directly induce pTh cell differentiation into
type 1 cells [1]. In contrast, IL-4 stimulates pTh cell differ-
entiation into type 2 cells even in the presence of moder-
ate levels of IL-12 and IFN-γ [2]. In addition to IFN-γ, IL-
12 and IL-4, recent evidence also suggests an important
role for cytokines such as IFN-(, IL-1α/β, IL-15, and IL-18
in stimulating type 1 responses [2] and IL-10 and IL-13 in
stimulating type 2 responses [1,3]. Additional factors
including hormones, growth factors and co-stimulatory
molecules have also been shown to influence T cell devel-
opment of type 1 or type 2 responses [1].

Vitamin A (VA) or VA-like analogs known as retinoids, are
potent hormonal modifiers of rodent type 1 or type 2
responses but a definitive description of their mecha-
nism(s) of action is lacking [4-16]. Several early studies
using models of pathogen-challenged rodents indicated
that VA deficiency induced a dominant Th1 response that
interfered with the development of a protective humoral
response [17]. These researchers proposed several poten-
tial mechanisms to account for these observations includ-
ing the direct downregulation of T cell IFN-γ synthesis,
direct promotion of Th2-cell differentiation, and/or alter-
ation of accessory or antigen presenting cell function
toward a Th2-inducing phenotype [18]. Recent evidence
from interventional studies show that VA supplementa-
tion of VA-deficient infants and children reduces morbid-
ity and/or mortality from measles, malaria, and certain
forms of diarrhea [16]. These studies have stimulated
renewed interest in elucidating VA's role in the immune
response, particularly in modification of human Th1 or
Th2 response development.

There are a number of contradictory findings in the litera-
ture examining the effects of retinoids on type 1 and 2
cytokine production in rodent models and cells. Several
reports using murine and rat models of VA deficiency have
demonstrated diminished type 1 reactions including DTH
and anti-viral responses [7,19-21]. Exogenous administra-
tion of VA or RA have also been shown to increase DTH
reactions and augment immune responses to viruses sug-
gesting that these compounds potentiate type 1 reactions
[21,22]. Several additional published studies using in vitro
and in vivo systems of VA or retinoid deficiency and
rodents and humans have also demonstrated either inhib-
itory, stimulatory or no effects on IFN-γ production [4-
15,23,24]. As for Th2 cytokines, to date only one study
has described a decrease in IL-4 production in VA defi-
ciency [18], while several recent studies have demon-
strated that retinoids induce IL-4 synthesis during in vitro
murine T cell activation [9,25,26]. The majority of rodent
studies have failed to demonstrate any effect of exogenous

retinoids on IL-4 production but have observed a type 2-
promoting effect of RA only when exogenous IL-4 was
added to the cultures [12,22,27-29]. However, a recent
study by Iwata et al. [29] demonstrated the direct effects of
ATRA and 9-cis-RA on Th2 cytokine production by murine
T cells derived from TCR transgenic mice. These authors
also demonstrate the ability of RA to inhibit Th1 cytokine
responses, while enhancing IL-4 production by Th2-polar-
ized cells. In contrast, RA has also been shown to inhibit
IL-4 production by a antigen-stimulated rat mast cell line
[30] and inhibited IL-4-induced IgE synthesis from CD40-
stimulated B cells [31,32]. Moreover, additional studies
have suggested that VA or retinoids possess limited direct
type 2 differentiating effects on purified T cells but appear
to act primarily at the level of the APC by reducing type 1
cytokine synthesis [28,33]. Obviously, given all the varia-
tions in these findings, the selective differentiating effects
of VA and retinoids on cytokine synthesis by T cells
remains controversial. Despite all of this work, little to no
detailed data exists utilizing purified human T cells and T
cell subsets in such studies. In the current manuscript, we
provide the first systematic analysis of the effects of the
retinoids, ATRA and 9-cis-RA, on the development of a
Th2 cytokine response as well as several cytokines and
chemokines using an in vitro model of human T cell acti-
vation.

Results
ATRA and 9-cis-RA inhibit Th1 and promote Th2 reactions 
by human T cells and peripheral blood mononuclear cells 
(PBMC)
Given the multiple reports describing the effects of retin-
oids on cytokine production by murine splenocytes and T
cells, we initially examined the effects of various concen-
trations of ATRA and 9-cis-RA on the production of Th1-
and Th2-associated cytokines by anti-CD3-stimulated
human T cells and PBMC in vitro. Culture supernatants
were examined 48 hrs after stimulation for cytokine levels.
The results in Figure 1 demonstrate a representative dose
response curve of ATRA and 9-cis-RA on the expression of
IL-4, IL-5 and IFN-γ by human T cells and PBMC. These
data reveal that the Th2 cytokines, IL-4 and IL-5, are
induced in T cells and PBMC in a dose-dependent man-
ner, while the production of the Th1 cytokine, IFN-γ, is
inhibited in response to increasing concentrations of
ATRA and 9-cis-RA. These findings were highly reproduc-
ible in greater than 95% of the PBMC and T cells donors
examined (n > 20). Based on the above curves, ATRA and
9-cis-RA were utilized in subsequent experiments at the
10-7 M (100 nM) concentration, a dose range that we and
others [34] have shown to be optimal for human T cell
stimulation.

Besides these Th1 and Th2 cytokines, additional cytokines
were also examined including IL-12p70, IL-13 and TNF-α.
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ATRA and 9-cis-RA induces IL-4 and IL-5 and inhibits IFN-γ expression by anti-CD3 mAb-stimulated human T cells and PBMCFigure 1
ATRA and 9-cis-RA induces IL-4 and IL-5 and inhibits IFN-γ expression by anti-CD3 mAb-stimulated human T 
cells and PBMC. IL-4, IL-5 and IFN-(levels were quantitated by ELISA in the culture supernatants of anti-CD3 mAb (200 ng/
ml)-activated human T cells [circles} or PBMC [inverted triangles] (2.5 × 106/ml) treated with either ATRA (filled symbol) or 9-
cis-RA (open symbol). The results are expressed as fold change over vehicle control treated cells. The results shown here are 
the pooled data from 4 separate experiments using different PBMC donors. It should also be noted that the vehicle controls 
did not alter the expression of any of the cytokines in these cultures. A paired T test was performed on the combined values 
from each donor as described in the Methods. *P < 0.05.
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Protein levels of IL-12p70, TNF-α and IFN-γ in the culture
supernatants were significantly decreased, while IL-4, IL-5
and IL-13 protein levels were significantly increased by
ATRA treatment in all donors tested (Table 1). ATRA and
9-cis-RA were equipotent in their effect on the majority of
these cytokines. However, 9-cis-RA was significantly more
effective than ATRA in inhibiting TNF-α. ATRA and 9-cis-
RA failed to significantly alter IL-10 and IL-15 cytokine
production by stimulated human PBMCs. While not
shown, IL-18 levels were not consistently affected by
ATRA or 9-cis-RA.

As PBMCs are a heterogeneous population of cytokine
producing cell populations, we also examined the influ-
ence of ATRA on Th1- and Th2-associated cytokine pro-
duction from purified CD4+, CD8+ and non-fractionated
T cells. Similar to the above results, our data revealed that
IL-4 and IL-5 synthesis was increased and IFN-γ expression
was inhibited in the supernatants of all stimulated T cell
populations examined (data not shown). The ATRA-
induced changes in the ratio of these two cytokines were
greatest in PBMCs followed by CD4+ T cells, T cells and
then by CD8+ T cells.

ATRA also modulated the expression of several other
inflammatory cytokines and chemokines by human
PBMCs (Table 2). Many of these factors have not been
previously shown to be influenced by retinoids. Interest-
ingly, the expression of IL-8 and MCP-1 were both aug-
mented by ATRA treatment, while the expression of
RANTES, MIP-1β, G-CSF, IL-1β and IL-6 were significantly
inhibited by ATRA treatment of anti-CD3 mAb-stimulated
human PBMCs. While MIP-1α was not significantly differ-
ent between the control and ATRA-treated groups, there
was a trend towards downregulation (p = 0.09). IL-17,
GM-CSF and IFN-α failed to demonstrate any significant
differences between control and experimental cultures.
The relevance of exogenous or endogenous retinoids and
their nuclear receptors in the expression and production
of various cytokines and chemokines remains to be
defined.

We next sought to determine whether the RA-induced
decrease in IFN-γ and increase in IL-4 production may be
due to a shift in the frequency of cytokine producing T
cells and/or the quantity of cytokine being produced by
individual cytokine-producing cell. Using intracellular
flow cytometric analysis of several donors, we observed a

Table 1: Effects of ATRA and 9-cis-RA on human type 1 and type 2 cytokine expression by human PBMC post TCR stimulationa.

Cytokine Controla ATRAa 9-cis-RAa Significancec

IL-4 (pg/ml) 36 ± 15 79 ± 9 73 ± 14 Control vs ATRA, p = 0.0003
Control vs 9-cis-RA, p = 0.010

ATRA vs 9-cis-RA, NS
IL-5 (pg/ml) 174 ± 39 579 ± 193 596 ± 179 Control vs ATRA, p = 0.034

Control vs 9-cis-RA, p = 0.019
ATRA vs 9-cis-RA, NS

IL-10 (pg/ml) 182 ± 13 172 ± 31 148 ± 31 Control vs ATRA, NS
Control vs 9-cis-RA, NS
ATRA vs 9-cis-RA, NS

IL-13 (ng/ml) 1.10 ± 0.15 1.80 ± 0.26 1.90 ± 0.25 Control vs ATRA, p = 0.0003
Control vs 9-cis-RA, p = 0.010

ATRA vs 9-cis-RA, NS
IFN-γ (ng/ml) 14.5 ± 3.4 7.4 ± 1.9 6.1 ± 1.5 Control vs ATRA, p = 0.0077

Control vs 9-cis-RA, p = 0.0065
ATRA vs 9-cis-RA, NS

IL-12 (pg/ml) 243 ± 35 61 ± 12 50 ± 10 Control vs ATRA, p = 0.0002
Control vs 9-cis-RA, p = 0.0003

ATRA vs 9-cis-RA, NS
IL-15 (pg/ml) 100 ± 6 111 ± 10 113 ± 7 Control vs ATRA, NS

Control vs 9-cis-RA, NS
ATRA vs 9-cis-RA, NS

TNF-α (ng/ml) 6.38 ± 1.04 2.86 ± 0.31 2.13 ± 0.36 Control vs ATRA, p = 0.0030
Control vs 9-cis-RA, p = 0.0006

ATRA vs 9-cis-RA, p = 0.049

a Supernatants of anti-CD3 mAb(200 ng/ml)-activated human PBMC (2.5 × 106/ml) treated with ETOH, ATRA (10-7 M), or 9-cis-RA (10-7 M) for 48 
h were examined for the expression of various cytokines by ELISA analysis.
b The results are expressed either as ng/ml or pg/ml ± SD (as designated in the cytokine column above). The data and statistical calculations were 
performed with data derived from at least 5 different donors.
c The data was analyzed for equality of variance using Fischer's F test. If the variance was heterogeneous, the appropriate transformation of the data 
was performed. A two-tailed paired T test was then used to determine statistical significance. A P < 0.05 was considered statistically significant for 
all analysis.
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decrease in the percentage of T cells staining for IFN-γ in
cultures treated with either ATRA (5.2%) or 9-cis-RA
(6.3%) when compared to control T cells (15.8%). Simi-
lar studies were performed for IL-4 and IL-5; however,
consistently poor intracellular staining for these cytokines
was observed using several human T cell donors in our
hands. So to more accurately measure the effects of RA on
the frequency of Th2 cytokine production, ELISPOT anal-
ysis was performed. The results in Table 3 demonstrate the
representative results of anti-CD3 mAb-activated T cells
derived from single donor of two examined where a range
of an approximate 3-fold increase in the frequency of IL-
4- and an approximate 2-fold increase in the frequency of
IL-5-producing T cells in ATRA-treated T cell cultures com-
pared to vehicle-treated cells. In addition, a 1.5-fold
decrease in IFN-γ-producing T cells was also observed
between cultures treated with ATRA compared to a vehicle
control. These data suggest that treatment with RA results
in an increase in the frequency of T cells producing Th2
cytokines, possibly through the direct induction of type 2
cytokine or transcription factor RNA.

ATRA inhibits type 1 and promotes type 2 reactions even 
under Th1- or Th2-polarizing culture conditions
We believe that inhibition of accessory cell cytokine pro-
duction by ATRA or 9-cis-RA may account for the greater
type 2 polarization observed in PBMCs versus non-frac-
tionated T cells or the CD4+ and CD8+ T cell populations.
We therefore examined whether ATRA-induced altera-
tions in IL-4, IL-5 and IL-13 production persisted under
strong Th1- or Th2-polarizing conditions. ATRA-induced
changes in IL-5 and IL-13 were not further altered upon
the addition of exogenous IL-12, IL-4, or neutralizing anti-

IL-4 and anti-IL-12 antibody (Figure 2). The biological
activity of such manipulation is evident from correspond-
ing increase or decrease in IFN-γ production. Due to
extreme variations in the degree of stimulation by IL-4
and IL-12 in the human donors examined, only a repre-
sentative experiment with one donor is shown in Figure 2.
Three individual donors were examined in this experi-
mental series and each donor demonstrated similar
effects. Moreover, we have found that the addition of
other potential type 1-inducing cytokines including IFN-γ
or IL-18 in the presence of neutralizing anti-IL-4 antibody
also failed to alter the effect of ATRA on IL-5 or IL-13 pro-
duction within the cultures (data not shown). Moreover,
similar to primary human T cells and these polarization
cultures, we have also found that ATRA increases the pro-
liferation and IL-4 production by human and murine Th2
clones with little to no major effects or inhibition on Th1
clones (data not shown).

ATRA promotes Th2 responses in the presence or absence 
of CD28 co-stimulation
To assess whether this same requirement was necessary for
RA using human cells, purified human T cells were stimu-
lated with anti-CD3 mAb and ATRA in the presence or
absence of CD28 costimulation. The results in Figure 4
demonstrate that even in the absence of CD28 costimula-
tion, ATRA increases IL-5 production by primary human T
cells. Upon stimulation with anti-CD28mAb, there is even
a greater level of IL-5 production by T cells stimulated
with ATRA. In addition, CD28-costimulation was previ-
ous found to be necessary to observe the IFN-γ-inhibitory
effects of ATRA using a murine model [35]. Similarly, we
have found that ATRA inhibited IFN-γ production in the

Table 2: Effects of ATRA on human chemokine and inflammatory cytokine expression by human PBMC post TCR stimulationa.

Cytokine (pg/ml) Controlb ATRAb Significancec

IL-8 0.42 ± 0.13 0.62 ± 0.15 p = 0.002c

MIP-1α 90.1 ± 18.1 60.0 ± 14.7 NS
RANTES 2.1 ± 0.92 1.8 ± 0.89 p = 0.01c

MCP-1 65.4 ± 23.3 107.4 ± 29.2 p = 0.006c

IL-1β 1.7 ± 0.4 1.2 ± 0.20 p = 0.02c

IL-6 31.0 ± 7.2 13.7 ± 3.7 p = 0.007c

IL-17 1.8 ± 0.52 1.7 ± 0.56 NS
GM-CSF 3.4 ± 2.3 3.2 ± 2.5 NS
G-CSF 2.2 ± 0.76 1.2 ± 0.24 p = 0.04c

IFN-α 2.4 ± 1.1 1.4 ± 0.93 NS

a Anti-CD3 antibody(200 ng/ml)-activated human PBMC (2.5 × 106/ml) derived from at least 5 different donors were treated with either ETOH or 
ATRA (10-7 M) for 48 h after which the supernatants were examined for the expression of various chemokines and cytokines by ELISA and 
multiplex analysis.
b The results are expressed as the average cytokine value in ng/ml ± SD. The data and statistical calculations were performed with data derived from 
at least 5 different donors.
c The data was analyzed for equality of variance using Fischer's F test. If the variance was heterogeneous, the appropriate transformation of the data 
was performed. A two-tailed paired T test was then used to determine statistical significance. A p < 0.05 was considered statistically significant for 
all analysis. NS = not significant.
Page 5 of 15
(page number not for citation purposes)



BMC Immunology 2006, 7:27 http://www.biomedcentral.com/1471-2172/7/27
presence of anti-CD28 mAb (Figure 3). Thus, ATRA is
capable of inducing Th2 cytokine expression in the
absence of costimulatory signals such as CD28.

As type 2 differentiation is thought to involve two tempo-
rally separate signals, a differentiation and proliferation
signal [36], we next examined the time course of ATRA-
induced Th2 polarization of CD4+ T cells in response to
anti-CD3 and -CD28 mAb. As shown in Figure 4, the
effects of ATRA were evident as early as 12 hrs after the ini-
tiation of the cultures. However, these differences did not

reach statistical significance for IL-5 levels until 24 and 48
hr of culture. Similar trends for IL-4 expression were
observed as shown here for IL-5 (data not shown).

ATRA and 9-cis-RA induced Th2 cell polarization occurs at 
the mRNA level
We next examined the effects of ATRA and 9-cis-RA on the
level of mRNA of each Th1- or Th2-associated cytokine. As
shown in Figure 5, the relative copy number of IL-4 and
IL-5 mRNA was significantly increased by ATRA and 9-cis-
RA utilizing PBMC derived from 5 different donors.

ATRA facilitates type 2 and inhibits type 1 cytokine switching even in cultures favoring Th1 or Th2 polarizationFigure 2
ATRA facilitates type 2 and inhibits type 1 cytokine switching even in cultures favoring Th1 or Th2 polariza-
tion. IL-5 and IFN-(proteins were quantitated by ELISA in supernatants of 48 h, anti-CD3 mAb (200 ng/ml)-activated PBMC 
(2.5 × 106/ml) treated with ETOH (�) or ATRA 10-7 M (■) under control (irrelevant isotype control mAb), Th1 (IL-12 and 
anti-IL-4 mAb) or Th2 (IL-4 and anti-IL-12) as described in the Methods. A representative experiment of three performed is 
shown and the results are expressed as pg/ml for IFN-(and IL-5. As the degree of IL-4 and IL-12 stimulation varied between 
donors, the data was not able to be pooled and analyzed statistically; however, all of the donors examined demonstrated simi-
lar patterns of enhancement and inhibition as shown in the current graph.

Table 3: ATRA increases the frequency of human Th2 cytokine producing T cells post TCR stimulationa.

Culture Conditions IL-4b IL-5b IFN-γc, d

Media 138 ± 35 322 ± 26 489 ± 57
EtOH 156 ± 18 312 ± 38 552 ± 82
ATRA 464 ± 52* 685 ± 47* 384 ± 26*

a Purified human T cells (1 × 104, 5 × 104 or 1 × 105) were cultured in 96-well cytokine antibody-coated ELISPOT plates for 48 h in the presence or 
absence of anti-CD3 mAb. After incubation, the plates were washed and developed according to the manufacturer's instructions (as described in 
the Methods).
b The results are expressed as the mean number of spots per 105 T cells ± SD. Based on the differences in the degree of stimulation in response to 
anti-CD3 mAb between the three donors examined by ELISPOT, only data from a representative donor is shown in this Table.
c These ELISPOT data are in agreement with and support the intracellular cytokine flow cytometric analysis we also where we observed a decrease 
in the percentage of T cells derived from several donors (n > 3) staining for IFN-γ in cultures treated with either ATRA (5.2%) or 9-cis-RA (6.3%) 
when compared to control T cells (15.8%).
d A two-tailed paired T test was used to determine statistical significance with * indicating p < 0.05.
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Although similar levels of IL-4 protein were induced by
both retinoids, 9-cis-RA was found to be at least two-fold
more effective at inducing IL-4 message compared to
ATRA. In addition, the relative copy number of IFN-γ
mRNA was modestly but significantly decreased by both
9-cis-RA and ATRA. The results in Figure 5 were performed
in the presence of low dose IL-2 to assist in cell activation
and the maintenance of the cells. Similar results were
observed in the absence of IL-2 or in the presence of anti-
CD28 mAb (data not shown). Moreover, ATRA treatment
of human T cells over various time intervals enhanced the
expression of the Th2 cytokine, IL-4 and the Th2 transcrip-
tion factors, GATA-3, c-MAF and STAT6 at 6 and 24 hours
post stimulation and decreased the expression of the Th1
transcription factor, T-bet, at these same time points (Fig-
ure 6). The specific effects on the expression of Th2 tran-
scription factors and subsequently cytokine production

strongly support the ability of RA to facilitate the polariza-
tion of human T cells to a Th2 phenotype.

Discussion
In the current study, we have described induction of the
expression of the type 2 cytokines, IL-4, IL-5, and IL-13,
and the inhibition of IFN-γ production upon treatment of
human T cells with either ATRA or 9-cis-RA. To our knowl-
edge, this is the first report describing retinoid-induced
stimulation of IL-4 and IL-13 synthesis in human T cells.
Furthermore, our IL-5 production data supports other
reports that describe a decrease in IL-5-secreting T cells in
VA-deficient mice and an increase in murine and human
IL-5 synthesis by ATRA treatment of activated T cells in
vitro [13,18]. This suggests a coordinated regulation of IL-
4, IL-5, and IL-13 production from T cells [37]; however,
there are important differences in the activation stimuli,

Effects of CD28 co-stimulation on Th1 and Th2 cytokine production by ATRA-treated T cellsFigure 3
Effects of CD28 co-stimulation on Th1 and Th2 cytokine production by ATRA-treated T cells. IL-5 and IFN-(pro-
teins were quantitated by ELISA in supernatants of purified T cells cultured (1 × 106/ml) with immobilized anti-CD3 mAb (200 
ng/ml) ± 1 ug/ml anti-CD28 mAb and treated with ETOH (�) or ATRA 10-7 M (■) for 48 h. The results are expressed as pg/
ml (+/- SD) for IFN-(and IL-5. A paired T test was performed on the values derived from three separate experiments as 
described in the Methods. The P values listed with the brackets compared the significant changes in IFN-γ expression between 
anti-CD3 mAb +/- CD28 mAb in the presence or absence of ATRA. *P < 0.05 indicates significant differences between anti-
CD3 mAb + control IgG1 treated samples and the other experimental groups.
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kinetics, transcription factors, and cell types which govern
their production. The production of IL-4, IL-5, and IL-13
is frequently, but not exclusively, co-expressed by individ-
ual CD4+ T cells [38-40]. In vivo murine models suggest
that CD28 co-stimulation is required to induce IL-4-, but
not IL-13-dependent responses [41]. There are reported
differences in the regulation of IL-4, IL-5, and IL-13 by
transcription factors including c-MAF [42,43]. Further-
more, human CD8+ cells reportedly produce low levels of
IL-4 but substantial quantities of IL-5 and IL-13 [44]. The
potential independent regulation of the production of
these cytokines was also reflected in our observation of a
limited effect of IL-4 or IL-12 addition or neutralization
on IL-5 and IL-13 production.

One question that may arise from these studies is the vita-
min A status of the donors utilized in these experiments.
Serum for tissue culture contains a variable amount of

vitamin A and a low amount of retinoic acid [45] and the
individuals that the PBMC and T cells were obtained from
are most likely vitamin A sufficient. The use of charcoal-
stripped media to reduce the vitamin A levels used in cell
culture adds the potential for artifactual data generation
because there is no selectivity in the removal process. Sim-
ilarly, the use of serum free media adds to the potential for
artifactual data generation because it frequently provides
a minimal set of nutrients (HL-1) and/or artificial growth
stimulators such as diacylglycerol (AIM-V). Human T cells
[46], Epstein-Barr Virus (EBV)-transformed human B cell
lines [47] and myelocytic leukemia cells (HL-60) cells are
known to contain esterified vitamin A [48]. This would
allow the cells to survive for the 10–14 days in serum-free
media it takes to deplete them of endogenous retinoids
[35]. However, the time spent ex vivo greatly adds to the
potential for artifactual data generation. Perhaps for these
reasons, most recent studies, including many human

Kinetics of ATRA-induced IL-5 production and inhibition of IFN-(synthesis post activation of CD4+ T cellsFigure 4
Kinetics of ATRA-induced IL-5 production and inhibition of IFN-(synthesis post activation of CD4+ T cells. IL-5 
and IFN-(proteins were quantitated by ELISA in supernatants of CD4+ T cells cultured (1 × 106 ml) with immobilized anti-CD3 
mAb (200 ng/ml) and anti-CD28 (1 μg/ml) and treated with ETOH (-) or ATRA 10-7 M (+) for 12, 24 or 48 h. Data from 8 inde-
pendent experiments is shown here. A paired T test was performed on donor T cell values from each time period as described 
in the Methods. The results are expressed as pg/ml for IL-5 and ng/ml for IFN-(.
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studies on the potential immunoregulatory mechanisms
of retinoids in primary T cells or PBMCs generally use
unadulterated FBS and cells from vitamin A sufficient ani-
mals or humans [13,34,45,49,50]. In addition, retinoic
acid is present in human plasma at a concentration of
around 10–20 nM mainly in two stereoisomeric forms,
all-trans-RA (tRA, ~75%) and 13-cis-RA (~25%) [51]. The
concentration of RA in most rat and human tissues is
higher than the plasma concentration [52,53]. When rats,
mice and humans are supplemented with pharmacologi-
cal amounts of RA, plasma RA concentrations can

approach 0.5–3.0 uM [54]. A very large number of studies,
including several studies similar to ours have used ATRA
concentrations of 0.5 to 1.0 e-7M ATRA, doses that the
authors had previously determined to be optimal in their
systems [13,34,45,50].

Our observation that ATRA and 9-cis-RA had no consistent
effect on IL-10 production was unexpected. A previous
report indicated that overexpression of IL-10 mRNA
occurs during VA deficiency in rats [56]. However, several
studies have reported either a stimulatory or no effect of

ATRA and 9-cis-RA upregulate the expression of IL-4 and IL-5 mRNA and down-regulates the expression of IFN-(within anti-CD3 mAb-stimulated PBMCFigure 5
ATRA and 9-cis-RA upregulate the expression of IL-4 and IL-5 mRNA and down-regulates the expression of 
IFN-(within anti-CD3 mAb-stimulated PBMC. Taqman® semi-quantitative PCR for IL-4, IL-5 and IFN-(transcripts was 
performed using total cellular RNA of 48 h, anti-CD3 mAb-activated PBMC (2.5 × 106/ml) treated with ETOH or 10-7 M of 
ATRA (�) or 9-cis-RA (■). The media used in this experimental series also contained a low dose of rhIL-2 (10 U/ml). Values 
obtained for each cytokine message was normalized to that obtained for 18S rRNA in the same sample as described in the 
Methods. The normalized values were then expressed as a function of the ETOH control sample. The relative copy number of 
PBMC IL-4 and IL-5 was increased by ATRA and 9-cis-RA in all donors tested, while the relative copy number of IFN-(mRNA 
were decreased by ATRA. The results are expressed as relative fold increase or decrease in mRNA expression. A paired T 
test was performed on the values derived from five donors as described in the Methods and the P values from the pooled 
donor data comparisons are listed for each cytokine and RA stimulation.
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retinoids on IL-10 synthesis [12,15,18]. While our data
strongly support a RA-induced type 2 response, the lack of
a consistent effect of RA on IL-10 production provides
compelling evidence that IL-10 may not be an ideal indi-
cator of a type 2 phenotype [1]. IL-10 has not only been
shown to be expressed during anti-inflammatory and type
2 responses [1], but also has been reported to be expressed
by CD4+ T cells and T cell clones producing both IFN-γ
and IL-10 [1].

A role for retinoids in inhibiting IL-12 synthesis in
humans is consistent with data from studies describing
overexpression of IL-12p40 mRNA during VA deficiency
in mice [17] and rats [56] as well as from several in vitro
studies demonstrating diverse inhibitory effects of retin-

oids on IL-12 production by LPS- or KLH-stimulated
mouse macrophages [33,57]. However, our current stud-
ies suggest that ATRA-induced reduction in IL-12 expres-
sion is not a critical factor in RA-induced type 2
polarization of human T cells. Furthermore, in contrast to
our current findings, the addition of exogenous IL-12 to
cultures reduced ATRA and 9-cis-RA-induced murine T cell
IL-4 synthesis to the level of control cultures [33] and the
neutralization of IL-4 within the cultures decreased the
type 2-promoting effect of 9-cis-RA [26]. Our current data
also contrast with the recent studies suggesting that the
RA-induced type 2 polarization of T cells is exclusively reg-
ulated at the level of the APC [28,33]. In these studies, RA-
pretreated, LPS-stimulated macrophages induced antigen-
specific T cells to polarize into Th2-like cells in the

ATRA upregulates the expression of Th2 transcription factors within anti-CD3 mAb-stimulated T cellsFigure 6
ATRA upregulates the expression of Th2 transcription factors within anti-CD3 mAb-stimulated T cells. Taq-
man® semi-quantitative PCR for the Th2 transcription factors, GATA-3, STAT6 and c-MAF, and the Th1 transcription factor, 
T-bet, were examined using total cellular RNA derived from 2, 6 and 24 hour stimulated anti-CD3 mAb-stimulated T cells (2.5 
× 106/ml) treated with ETOH or ATRA (10-7 M). In addition, IL-4 and GAPDH assessments were also performed. Values 
obtained for each cytokine message was normalized to that obtained for GAPDH in the same sample as described in the Meth-
ods. The normalized values were then expressed as a function of the ETOH control sample. The data shown is representative 
of two donors examined.
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absence of exogenous RA, presumably through reduced
IL-12 synthesis. However, our studies demonstrate an IL-
12 independent role for ATRA in type 2 cytokine polariza-
tion in vitro.

Data presented herein showing the equipotency of ATRA
and 9-cis-RA in promoting a type 2 response in human T
cells contrasts with in vitro murine T cell development
studies where 9-cis-RA, but not ATRA, stimulated Th2
development [58]. Our data suggest the involvement of
ligated nuclear retinoic acid receptors (RARs) but not
retinoid X receptors (RXRs) in Th2 differentiation as ATRA
binds to only to RARs and 9-cis-RA binds to both RARs
and RXRs. We have found that RARα agonists recapitulate
the effect of retinoic acid shown here and the use of a
RARα antagonist inhibits the effect of retinoic acid on the
Th2-related responses (data not shown). These data must
be interpreted with caution because of the non-specific
interconversion of ATRA and 9-cis-RA under normal cell
culture conditions [59]. In addition, we can not rule out
the possibility that RXR receptors also play a role in Th2
development as have recently been shown in murine T
cells [60]. We are currently exploring which nuclear recep-
tors (RAR and/or RXR) are involved in ATRA-induced Th2
differentiation by the use of stable receptor-selective retin-
oids.

Costimulation with CD28 reportedly favors development
of human type 2 T cells in vitro [61]. CD28-costimulation
was also necessary to observe the IFN-γ-inhibitory effects
of ATRA using a murine model [36]. However, our obser-
vation that the preservation of the ATRA-induced type 2
responses by T cells in the absence of CD28-costimulation
is unique. The differential CD28-dependency of these two
responses is unknown but is supported by previous data
which suggests that CD28 costimulation is required for
inhibition of IFN-γ production but not induction of IL-5
production during Th2 polarization [62]. Unlike murine
T cells [35], we have also observed a relatively equal
decrease (ranging from 10–30%) in the frequency (Table
3) and the percentage and intensity of T cells staining for
IFN-γ (intracellular flow analysis, data not shown) in cul-
tures treated with ATRA and 9-cis-RA in the presence or
absence of CD28 mAb. These data are inconsistent with a
murine study where ATRA failed to alter the frequency of
the IFN-γ secreting T cells [18]. Our preliminary observa-
tions demonstrating that this decrease appears to only
occur within TNF-α/IFN-γ double producing T cells sup-
ports a general negative regulatory effect of retinoids on
type 1 cytokine production. These cytokines have been
reported to be frequently co-expressed by pathogen-gener-
ated human Th1 clones [40].

What are the potential mechanisms for direct induction of
Th2 differentiation by ATRA or 9-cis-RA? It is possible that

RA directly activates transcription through its nuclear
receptors, RAR and or RXRs; however, our search of the 5'
promoter region of the Th2 cytokine genes, IL-4, IL-5 and
IL-13, did not reveal any RAR or RXR-response elements.
The refractory nature of retinoid-induced Th2 differentia-
tion to changes in IL-4 and IL-12 levels and CD28-medi-
ated costimulation suggests that ATRA may act through a
master Th2 differentiation factor such as Ets-1, cMAF,
GATA-3 or STAT-6. This is consistent with recent data
obtained from tumor cell lines where RA induced the syn-
thesis of Ets-1 [63] and STAT-6 [64], transcription factors
that are involved in Th2 differentiation [2]. Ectopic
expression of GATA-3 in Th1 cells induces IL-4, IL-5, and
IL-13 production and ectopic expression of Stat6 in Th1
cells induces the production of Th2-cytokine such as IL-4
and IL-5 [65]. STAT-6 also induces the expression of Ets-1,
MAF and GATA-3 and reduces the expression of IL-12R∃2
message independently of IL-4 production [65]. Here,
through the use of real time RT-PCR using several of the
retinoid-treated T cells and PBMCs, we also observed
increases in the gene expression of the Th2 factors, cMAF,
GATA-3, and STAT-6, using ATRA and a concomitant
decrease in the expression of the Th1 factor, T-bet, 4–12
hours post stimulation (Figure 6). These data strongly
support a specific role for retinoids in the development of
Th2 cells.

Conclusion
In conclusion, we have demonstrated that ATRA and 9-cis-
RA increase the expression of IL-4, IL-5 and IL-13 but not
IL-10 mRNA and protein from activated human T cells.
ATRA acts early and directly polarizes T cells towards type
2 responses even in the presence of type 1-inducing sig-
nals or in the absence of CD28-costimulation. Although
ATRA decreased IL-12 synthesis within PBMC cultures,
this was not obligatory as RA directly induced type 2
cytokine production by highly purified human T cells in
the absence of APCs. A better understanding of the type 2
cytokine promoting activity of ATRA and 9-cis-RA in
human T cells would provide better clinical interventions
to boost vaccine efficacy to certain antigens or to reduce
various types of pro-inflammatory and autoimmune
pathologies [66].

Methods
Reagents
ATRA, 9-cis-RA were purchased from Sigma, St. Louis,
MO. Retinoids were dissolved at various concentrations in
100% ETOH, overlayered with argon gas and stored at -
80°C in the dark until used. Recombinant human IFN-γ,
IL-4, IL-12 and IL-18 were obtained from R & D Systems
(Minneapolis, MN). Recombinant IFN-γ was obtained
from Biosource Int. (Camarillo, CA). Neutralizing mono-
clonal antibodies (mAbs) to human IFN-γ (clone
25718.111) IL-4 (clone 34019.111), and IL-12 (clone
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24910.1) were also obtained from R & D Systems. Based
upon manufacturer's testing lot-specific testing, 1 :g of
anti-IFN-γ, anti-IL-4, and anti-IL-12 will neutralize 5 ng/
ml, 300 pg/ml and 700 pg/ml of rhIFN-γ, rhIL-4, and rhIL-
12, respectively.

Cell preparation
Whole blood was acquired from healthy human volun-
teers between the ages of 21–55 years who provided
informed consent. PBMC were isolated by Ficoll Paque
(Amersham Pharmacia Biotech, Piscataway, NJ) density
gradient centrifugation followed by treatment with
ammonium chloride (ACK) lysis solution (Biofluids,
Gaithersburg, MD) to eliminate the remaining erythro-
cytes. The isolated cells were subsequently washed 2 times
in PBS and resuspended in RPMI 1640 (Biofluids) supple-
mented with 10% heat-inactivated FBS (Sigma), 2% heat-
inactivated pooled human AB serum (Sigma), 50 μM mer-
captoethanol (Gibco BRL Gaithersburg, MD), 1 mM
sodium pyruvate (Biofluids), 2 mM glutamine, 1 × non-
essential amino acid solution (Biofluids), 1 mg/ml gen-
tamicin (Biowhittaker, Walkersville, MD), 100 U/ml pen-
icillin (Biofluids), 100 :g/ml streptomycin (Biofluids),
and 20 mM HEPES buffer (Biofluids). T cells, CD4+ T cells
and CD8+ T cells were isolated by negative selection using
enrichment columns according to manufacturer's instruc-
tions (R & D Systems). All of these cells were typically >
93% pure as assessed by flow cytometric analysis. The
contaminating cell population was largely CD8+ cells.
Most likely, these cells were NK cells based on their size
and granularity.

Cell culture and harvest
PBMC (2.5 × 10 6 cells/ml) were activated with 200 ng/ml
of immobilized anti-CD3ε OKT-3, Ortho, Raritan, NJ) ±
0.001 to 1 μM of various retinoids or ETOH vehicle con-
trol for 48 h. IL-2 (Teceleukin, Hoffman LaRoche, Nutley,
NJ) at 10 U/ml was added where indicated. Where indi-
cated, 1 μg/ml of neutralizing anti-cytokine mAb was
added to the cultures. Alternatively, T cells (1.0 × 10 6

cells/ml) were activated with 200 ng/ml of immobilized
anti-CD3 and 0.1 to 1 μg of soluble anti-CD28 (clone
28.2, Pharmingen) or IL-2 at 10 U/ml was added where
indicated to provide co-activation or costimulatory sig-
nals. PBMCs or T cells were harvested at various times
after incubation at 37° and 5% CO2. The 48 hr time inter-
val was selected for many of the studies shown based on
the optimal and reproducible cytokine expression in
response to anti-CD3 mAb. Non-adherent cells were
decanted from the flasks and centrifuged to obtain super-
natants. The flasks were then treated with Enzyme-Free
cell disassociation solution (Specialty Media, Phil-
lipsburg, NJ) to remove the adherent cells (a typical result
of cell activation and the anti-CD3 coated flasks) and were
gently scraped to remove and harvest the cells. Viable cells

from the decanted cells and cell removal mixture were iso-
lated by Ficoll Paque density gradient centrifugation (as
described above). Cell viability was not significantly
affected by this enzyme treatment process (viability
>95%).

It should be noted that we have also utilized the serum
free medium AIMV in these various cultures and observed
similar effects to serum containing medium (data not
shown).

Cytokine ELISA
ELISA (Biosource) and Bio-Plex Human Cytokine 17-Plex
(Biorad, Hercules, CA) were utilized to examine the fol-
lowing human-specific cytokines: IFN-α, IFN-γ, IL-1α, IL-
1β, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 p70, IL-13, IL-
15, IL-17, G-CSF, GM-CSF, MIP-1∀, MIP-1∃, RANTES,
MCP-1 and TNF-α. The IL-18 ELISA was obtained from R
& D Systems (Minneapolis, MN). All of the ELISAs and
multiplex assays were performed according to the manu-
facturer's instructions. The results are expressed as pg/ml
or ng/ml and all assays were run in duplicate with at least
three separate experiments being examined.

Real Time PCR
Cytoplasmic RNA was extracted and purified using a com-
mercially available kit (RNAeasy, Qiagen, Valencia, CA).
Purified RNA was electrophoresed on a 1% agarose gel to
assess the integrity of the purified RNA. One :g of RNA was
reverse transcribed into cDNA using a commercial availa-
ble kit (Applied Biosystems, Foster City, CA). One hun-
dred pg RNA equivalent of this cDNA was used for PCR
amplification. PCR reactions were performed in special
optical tubes in a 96 well microtiter plate format on an
ABI PRISM 7700 Sequence Detector System (PE Applied
Biosystems) using pre-developed FAM- and TAMRA-
labeled internal oligonucleotide probes and primers for
IFN-γ, IL-4, IL-5, IL-10, IL-12p30, IL-12p40, IL-15, and
TNF-α (PE Applied Biosystems). Each reagent also con-
tains VIC- and TAMRA-labeled internal oligonucleotide
probes and primers specific for the 18S RNA ribosomal
subunit. Amplification conditions were as follows 25°C
for two min; 95°C for 10 min; 40 cycles of 95°C 15 s and
60°C for 1 min. Fluorescence signals measured during
amplification were processed post-amplification and were
regarded as positive if the fluorescence intensity was ten
fold greater than the standard deviation of the baseline
fluorescence. This level is defined as the threshold cycle
(Ct). The Ct value for 18S ribosomal subunit was sub-
tracted from the Ct value for each cytokine message to
normalize for RNA content. This value is defined as ΔCT.
To evaluate the effects of retinoids, ΔCTtreatment was sub-
tracted from ΔCtcontrol. This value is defined as ΔΔCT. The
relative folds increase or decrease was then calculated as 2
-ΔΔCT.
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The PCR was also set up using SYBR green Master Mix
(Applied Biosystems), 1 μl cDNA and gene-specific prim-
ers at a final concentration of 0.3 μM. Thermal cycling was
carried out on the Applied Biosystems GeneAmp 7700
Sequence Detector and SYBR green dye intensity was ana-
lyzed using GeneAmp 7700 SDS software. Primers for
human GATA3, STAT6, C-MAF, and T-bet genes and glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) as
control were designed using ABI prism software (PE
Applied Biosystems). Primers are available upon request.
Similar amplification procedures and data computation
were followed as described above. No PCR products were
generated from genomic versus cDNA template.

Intracellular Flow Cytometry and ELISPOT analysis
Mouse anti-human CD3-Cy-Chrome®, anti-human IL-4-
phycoerytrin (PE), anti-human IFN-(-fluorescein isothio-
cyanate (FITC) anti-human TNF-∀-FITC, and the appro-
priately labeled isotype control mAbs were obtained from
Pharmingen. PBMCs were cultured for 36 hrs as described
above after which the cells were treated with 2 :M mon-
ensin (Sigma) and subsequently harvested as described
above. Cells (0.25 × 106) were suspended in 50 :L of stain-
ing buffer (1% FCS, 1% goat serum, 2.5 :g of mouse IgG/
50 μL) in round-bottom 96-well plates at 4°C for 15 min.
5 :L of the appropriate dilution of each antibody was then
added. Cells were then incubated for 30–40 min at 4°C.
Cells were pelleted and medium was aspirated carefully.
Cells were then washed with 100 :L of PBS/FBS buffer
twice. Cells were fixed and permeabilized with Cytofix/
Cytoperm® solution (Pharmingen). Various combinations
of labeled anti-human cytokines were used to stain cells.
Cytochrome-conjugated mouse IgG1 mAb and PE mouse-
IgG were used as isotype controls at the same concentra-
tions as the anti-cytokine antibody. Additional controls in
which the labeled mAbs and 10 fold saturating recom-
binant cytokine proteins were pre-incubated for 30 min at
room temperature before staining (IL-4). Alternatively,
cells were pretreated with unlabeled mAb (IFN-γ). Three-
color cytofluorometry was performed using a FacScan
(Becton Dickinson, San Diego, CA). A minimum of
10,000 CD3+ cells were analyzed in these experiments.
Data are expressed as the % of CD3+ cells expressing the
marker of interest or the mean channel number (MCN) of
the marker's fluorescent intensity.

The ELISPOT assays (BD Biosciences) used to quantify
IFN-γ-, IL-4, and IL-5-producing T cells were performed
according to the manufacturer's instructions. Briefly, T
cells were prepared at different cell densities ranging from
1 × 105, 1 × 106, and 2.5 × 106 cells per ml and 100 :l of
the suspensions were added to each well of mouse anti-
human cytokine antibody-coated BD ELISPOT plates. The
cells were stimulated using ATRA or 9-cis-RA and/or solu-
ble anti-CD3 and CD28 antibodies described above under

cell culture. The plates were then incubated at 37°C in a
5% CO2 humidified incubator for 24 hr after which the
cell suspension were aspirated, the wells were washed
with various combinations of deionized water and wash
buffer, and subsequently developed using the proper anti-
body, conjugate and substrate pairs defined by the manu-
facturer. The plates were air-dried overnight at room
temperature and the plates were stored in a sealed bag in
the dark until analyzed. Spots were then enumerated
using an ImmunoSpot® Series 2 Analyzer (Cellular Tech-
nology Limited, Cleveland, Ohio) and the supporting
ImmunoSpot® Software. Spots were counted by an auto-
mated system using a defined set of parameters for size,
intensity, and gradient. The background (the mean num-
bers of spots in wells without stimulation) was subtracted
from each well on each cytokine plate. A response was
considered positive if the average number of cytokine-
producing cells (CPC) per triplicate wells exceeded back-
ground +/- 2SD. The data are shown as the average
number of CPC per 106 cells.

Statistical analysis
Data were analyzed for equality of variance using Fischer's
F test (Statview 5.0 for Macintosh, Abacus Concepts, Ber-
keley, CA). If the variance was heterogeneous, the appro-
priate transformation of the data was performed. A two-
tailed paired T test was then used to determine statistical
significance. A P < 0.05 was considered statistically signif-
icant for all analysis.
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