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Abstract
Background: Susceptibility to infectious diseases is directed, in part, by the interaction between
the invading pathogen and host macrophages. This study examines the influence of genetic
background on host-pathogen interactions, by assessing the transcriptional responses of
macrophages from five inbred mouse strains to lipopolysaccharide (LPS), a major determinant of
responses to gram-negative microorganisms.

Results: The mouse strains examined varied greatly in the number, amplitude and rate of induction
of genes expressed in response to LPS. The response was attenuated in the C3H/HeJlpsd strain,
which has a mutation in the LPS receptor Toll-like receptor 4 (TLR4). Variation between mouse
strains allowed clustering into early (C57Bl/6J and DBA/2J) and delayed (BALB/c and C3H/ARC)
transcriptional phenotypes. There was no clear correlation between gene induction patterns and
variation at the Bcg locus (Slc11A1) or propensity to bias Th1 versus Th2 T cell activation
responses.

Conclusion: Macrophages from each strain responded to LPS with unique gene expression
profiles. The variation apparent between genetic backgrounds provides insights into the breadth of
possible inflammatory responses, and paradoxically, this divergence was used to identify a common
transcriptional program that responds to TLR4 signalling, irrespective of genetic background. Our
data indicates that many additional genetic loci control the nature and the extent of transcriptional
responses promoted by a single pathogen-associated molecular pattern (PAMP), such as LPS.

Background
Susceptibility to infection is determined by the nature of
the pathogen, and by the fitness of an individual to
respond appropriately. The nature of the host response is
controlled in part by the appropriate recognition of
PAMPs by cells of the innate immune system [1,2]. Inef-

fective PAMP recognition, or an inappropriate response
underlies clinical complications such as circulating bacte-
rial load or septic shock. Lipopolysaccharide (LPS), a
component of bacterial cell walls, is the predominant trig-
ger of adverse clinical consequences of infection with
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gram-negative bacteria, including host procoagulant
response and septic shock [3].

Susceptibility to gram-negative bacteria in human popula-
tions has been associated with allelic variation at TLR4
[4,5], with consequences for infectious, inflammatory and
cardiovascular disease [6]. Yet the complexity of the
innate immune response to PAMPs constrains large-scale
experimental analysis in outbred human populations.
Microarray experiments comparing PAMPs from different
organisms on human peripheral blood monocytes have
shown a remarkably stereotyped response, even between
different TLR ligands [7–9]. By contrast, LPS responses
studied by high-density microarray in the mouse trans-
formed monocyte line RAW264 establish that in a con-
trolled cell culture system there is transcriptional diversity
between different TLR agonists [10], and that even this
controlled cell culture system demonstrates heterogeneity
of response to a single PAMP [11].

As a model for human variation, inbred mouse strains
have been central to our understanding of the function of
innate and acquired immune systems. Individual strains
have differing susceptibilities to disease onset and pathol-
ogy in a wide number of experimental disease models. In
this study we have chosen to use five inbred mouse
strains, with a spectrum of LPS susceptibility as genetic
tools to determine the nature and diversity of innate
immune responses to a single pathogenic stimulus. The
strains chosen (C57Bl/6J, DBA2, BALB/c, C3H/ARClpsn

and C3H/HeJlpsd) differ on at least two genetic loci known
to influence innate immune responses. For example, pol-
ymorphism in Slc11A1 at the Bcg (also known as Ity or
Lsh) locus controls susceptibility to intracellular patho-
gens. C57Bl/6J and BALB/c carry the susceptible allele
(Bcgs), a G169D substitution in the predicted TM4 of the
Slc11A1 protein [12], whereas DBA2 and C3H substrains
carry the resistant allele (Bcgr). Slc11A1 variants exert plei-
otropic effects on LPS-inducible cytokine gene expression
[13]. The LPS-hypo responsive strain C3H/HeJlpsd has a
P712H substitution in the cytoplasmic Toll-IL1 receptor
(TIR) domain of TLR4, which prevents activation of the
Myd88 signalling cascade shared with many other Toll-
like receptors [14,15]. The comparison of C3H/HeJlpsd

with the near-isogenic line C3H/ARClpsn, which has func-
tional TLR4, provides an important control for specificity
of TLR4 signalling, since LPS contaminants may signal via
TLR2 [16].

In this study we show that macrophages from each strain
display an idiosyncratic gene expression profile upon LPS
activation, indicating that loci other than Tlr4 profoundly
affect LPS responsiveness. We have also identified a core
set of genes that respond to LPS in a TLR4-dependent fash-
ion, regardless of genetic background. This set describes a

conserved transcriptional program underlying inflamma-
tory responses to LPS.

Results and discussion
To determine the effect of genetic background on macro-
phage responses to LPS, we exposed primary populations
of bone marrow-derived macrophages (BMM) from each
mouse strain to LPS over a 21 h time course. For the pur-
poses of cDNA microarray analysis, this system had the
additional advantage that pure populations of cells
undergo large, relatively synchronous, and reproducible
changes in gene expression. We have previously shown
that macrophages derived from the bone marrow of three
of these strains cluster as a single tissue subtype when
compared to 49 other mouse and embryonic tissues. In
this system, C3H/HeJlpsd mice do not express inflamma-
tory transcripts in response to our LPS preparation, and
cluster on a separate branch of the macrophage lineage
tree to activated LPS-responsive strains [17].

BMM were stimulated in the presence of macrophage
growth factor, CSF-1, which has been shown to amplify
induction of key pro-inflammatory cytokines by LPS [18].
The LPS concentration (10ng/ml) is saturating, and the
times chosen (30 min, 2, 7, 21 hours) distinguish tempo-
ral classes of inducible genes in a sequential cascade of
gene activation. We interrogated the 19,000 element
arrays arising from the RIKEN mouse gene encyclopaedia
project [19], using 17.5dpc C57Bl/6J embryo RNA as a ref-
erence for each point of the time series.

LPS stimulation of macrophages elicits global 
transcriptional changes
Analysis was restricted to elements that were detected in
every hybridisation on the reference channel. This filter
provided confidence that variation in expression between
time points or mouse strains was not due to spot artefacts,
and although this eliminated some genes that are
expressed in macrophages but undetectable in the refer-
ence embryo RNA, it greatly increased the reproducibility
of the data. 3612 array elements passed filters for repro-
ducibility, signal detection 2 fold above background and
reliability of reference signal across all of the hybridisa-
tions. The normalized distribution of cDNA signal inten-
sities is displayed for each time point and each mouse
strain in Fig 1. Each element was coloured with respect to
the unstimulated C57Bl/6J time point to illustrate the
rapid changes in gene expression upon LPS activation.
Across the C57Bl6J time course alone, 918 (25%) of genes
expressed at the median level (yellow) or below the
median (blue) at time zero were substantially induced by
LPS, and 696 (19%) of genes expressed at the median
level (yellow) or above (red) were repressed at some time
point, using a 2 fold cut-off from the median. Table 1 lists
the numbers of elements that were induced or repressed
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Temporal distribution of the entire 19,000 RIKEN cDNA datasetFigure 1
Temporal distribution of the entire 19,000 RIKEN cDNA dataset. Figure 1 describes the distribution of expression of 
19,000 RIKEN full-length cDNAs across a 21-hour time course for each of 5 mouse strains, C57Bl/6J, DBA2, BALB/c, C3H/Arc 
and C3H/HeJlpsd. A normal distribution plot allows standard deviations (SD) from the mean of the population to be calculated 
(inset). The graph describes a series of overlaid normal distribution plots; each time point is plotted as a normal distribution of 
signal intensities on the y-axis, frequency on the x-axis, with a log median intensity of 1 across the dataset. Each element is col-
oured with respect to its expression in the unstimulated C57Bl/6J time point, where blue is expressed at least 2SD below the 
median, yellow is considered within 2SD of the median and red is at least 2SD above the median.

Table 1: The number of probes on the 19 K RIKEN array that were 2 fold induced or repressed compared to the unstimulated time 
point, after the addition of LPS. The data is also expressed as a percentage (%) of the 3612 genes that were reliably expressed across 
the entire experimental series.

STRAIN Induced Repressed

C57Bl/6J 918 (25%) 696 (19%)
DBA/2J 438 (12%) 1275 (35%)
C3H/ARC 619 (17%) 409 (11%)
BALB/c 563 (15%) 791 (21%)
C3H/HeJ 779 (21%) 200 (5%)
Page 3 of 18
(page number not for citation purposes)



BMC Immunology 2003, 4 http://www.biomedcentral.com/1471-2172/4/5
in any given activated macrophage population, and shows
that this global pattern was recapitulated for each of the
LPS responsive mouse strains. Each strain presented an
idiosyncratic gene expression profile in response to LPS.
Only 11% of elements (415/3612) were co-regulated in
all 4 responder mouse strains. This variation in global
gene induction between the mouse strains is obvious in
Fig. 1, particularly in the C57Bl/6J and C3H/ARC
comparison.

Identification of a transcriptional program describing the 
core Tlr-4 dependent pathway
415 elements were identified (Table 1 Additional file: 1)
as inducible in a temporally regulated manner in all four
of the LPS responsive strains, but were not regulated by
LPS in C3H/HeJLpsd mice. This set represents candidate
targets specifically of the TLR4/MyD88/NFk B regulated
signalling pathway, as the TLR4 mutation carried by these
mice is known to prevent NF-Kappa B activation in
response to LPS [14,16,20]. Hierarchical clustering of the
core inflammatory set (Fig. 2) illustrates temporal
conservation of gene induction between the responder
mouse strains for most, but not all clusters of genes. Nota-
bly, DBA2 and C57Bl6J shared the most similar temporal
profiles, whereas BALB/c showed a universal delay in
induction of this set. Due to redundancy in the RIKEN set
these 415 elements compress to 383 unique transcripts,
and approximately 40% of these (146 transcripts) are
uncharacterised. 237 genes were annotated as part of the
following cellular processes (Fig. 3): cytoskeleton (43
genes); growth and differentiation (35 genes); phagocyto-
sis (33 genes); cell signalling pathways (32 genes); tran-
scription (26 genes); cytokine or chemokine (19 genes);
oxidative stress (14 genes); apoptosis/anti-apoptosis (13
genes); antigen presentation (12 genes) and lipid metab-
olism (9 genes). All describe inducible processes known
to accompany macrophage activation, but this is the first
and most comprehensive assembly of the individual parts
of each process in macrophage activation by LPS. The larg-
est proportion (32%) of known genes that were induced
upon LPS activation were cytoskeletal components or
components of the phagosome, which correlates with the
dramatic morphological changes that occur in BMM upon
activation with LPS [21]. This dataset provides new candi-
dates for the still poorly understood processes involved in
changes to secretory machinery induced by activation of
macrophages and dendritic cells [22].

Impact of LPS on proliferation and differentiation 
transcriptional programs
Macrophages were differentiated from bone marrow pro-
genitors in vitro in the presence of CSF-1. Many in vitro
studies that characterise immunological responses of
macrophages are performed in the absence of CSF-1. CSF-
1 is, however, constitutively present in vivo, and is further

induced upon activation with LPS. CSF-1 has itself been
shown to enhance the activation of some genes by LPS
[18]. In vitro studies aimed at assessing macrophage acti-
vation should therefore be performed in the presence of
CSF-1.

LPS has been shown to down-modulate the CSF-1 recep-
tor, leading to growth arrest, but at the same time provid-
ing a signal favouring cell survival [18]. We looked for
transcriptional evidence of this LPS modulated survival
pathway in the set of transcripts conserved between the
LPS-responsive mouse strains. 30 elements corresponding
to 22 genes with roles in regulating growth, cell cycle and
differentiation were identified as part of the conserved
TLR4 dependent transcriptional pathway, and these clus-
tered together in the earliest temporal group, induced
within 30 mins (immediate – early) of LPS exposure.
Amongst this set were known targets of NF-κB in human
and mouse monocytes, including the anti-apoptotic genes
BCL2-related protein A1 (BFL-1) [23], immediate-early
gene 3 [24], Gadd45β [25,26] and myeloid cell leukaemia
[27] which have been reported as mediators of cell sur-
vival upon an inflammatory stimulus. Haematopoietic
growth and differentiation factors, including CSF-1, gran-
ule cell differentiation protein (gdf3), the myeloid onco-
gene PIM1, glia maturation factor (gmfg) and the
interferon-inducible stem cell marker Ly6e were also
actively induced by LPS as part of the core TLR4-mediated
transcriptional program. The inclusion of fibroblast
growth factor 1 (fgf1) and its intracellular binding protein
(fgfbp) in this early cluster suggests a novel role for basic
fibroblast growth factor in LPS mediated macrophage
growth and survival. We observed little regulation of cell
cycle genes early in the time course, however these were
clustered together and were induced in the late temporal
group. Potentially pro-apoptotic transcripts were also
present in this set – 5 elements corresponding to 4 genes,
although these did not cluster together. These were the
Mitochondrial ribosomal protein S30 (induced late in the
time course), Caspase 7, a downstream target of LPS-
inducible capsase11 (induced 7 hours post-LPS), and Fas
antigen (induced 2 hours post LPS-induction). Alix, (ALG-
2-interacting protein X), was initially repressed at 2 hrs
post-LPS, but induced by the 21 hr time point. The later
induction of these elements suggests that they are induced
by secondary events in the inflammatory cascade. These
data are consistent with LPS activating a survival pathway
in macrophages, even in the presence of CSF-1, through
TLR4 signalling that is fundamentally conserved between
different genetic backgrounds.

Temporal modulation of the inflammatory cascade
The examination of the gene expression profile with time
provided information about clusters of genes with similar
regulatory patterns and inferred functions. Figure 4 shows
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the principal component analysis for the core data set and
summarizes the transcriptional program underlying the
core inflammatory processes shared by the LPS responsive
strains, further illustrated in fig. 5. The PCA analysis segre-
gated genes induced within 30 mins (immediate-early),
induced within 2 hours (early), induction peaking by 7
hrs (mid), and induction continuing across the time-
course (late). The earliest sets of genes, induced by 30
mins, activated protective mechanisms against oxidative
challenge, survival/anti-apoptosis signals and cellular
adhesion molecules involved in macrophage
mobilization. Inflammatory mediators such as the
cytokines IL-1α, IL-18, components of the complement

system such as H2-Bf, and chemoattractants such as galec-
tin-9 [28] were induced in the early and mid clusters
(peaking between 2 and 7 hours post-LPS). A large cluster
of elements, including arginase 1 and 2, the transcription
factor Hif-1α and lysosomal enzymes cathepsin C, D, L
and Z were induced rapidly, and their transcription
remained elevated even at 21 hours. This temporal cluster
provided the most information on pathways that feed-
back into the inflammatory cascade. Previous studies have
indicated that LPS induces a complex transcriptional reg-
ulatory cascade leading to an adapted transcriptional
steady state that depends upon continuous LPS exposure
[29]. The cluster of elements expressed highly at 21 hours

Hierarchical clustering of the core transcriptional programFigure 2
Hierarchical clustering of the core transcriptional program. Unsupervised hierarchical clustering of 415 elements that 
were determined to be co-induced across the time course in all responder mouse strains tested, but not in the Tlr4-null mice 
C3H/HeJlpsd. The temporal samples (from left to right 0, 0.5, 2, 7, 21 h) for each strain are shown as columns across the X-
axis, and each row on the Y-axis represents a single cDNA. The colour indicates expression levels of the cDNAs, where blue 
is low expression, red is high expression, and yellow is the same expression relative to the embryo control.
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demonstrated the continuing amplification of the inflam-
matory cascade through continual exposure to LPS, and
through induction of secondary autocrine factors such as
TNF-alpha and nitric oxide (NO). Arginase is induced by
nitric oxide [30], and acts as a negative regulator of NO
synthesis by competing with inducible nitric oxide syn-
thetase for substrate. The induction of both positive and
negative regulators of inflammation demonstrated the
dynamic nature of the transcriptional cascade.

Mapping inducible transcripts to genomic clusters
LPS stimulation of the macrophages in all strains pro-
duced a very marked induction of genes with in 30 min-
utes of exposure. The induction of these transcripts in the
LPSd strain and the absence of obvious NF-k B transcrip-
tion factor sites in a substantial proportion of the promot-
ers examined (Matt Takovic, personal communication)
makes it unlikely that this early gene induction phenom-
enon is specifically directed, but rather may be due to
transitory changes in chromatin structure [31], RNA trans-
port [32] or stability of inducible messages [33].

Functional classification of the core transcriptional programFigure 3
Functional classification of the core transcriptional program The core inflammatory program consisted of 383 unique 
transcripts including 146 with no known function. 237 known genes were annotated using GO terms, and the results displayed 
as a pie graph. Genes were classified into the following groups: cytoskeleton (pink, 43 genes); growth and differentiation (navy, 
35 genes); phagocytosis (lavender, 33 genes); cell signalling pathways (blue, 32 genes); transcription (orange, 26 genes); cytokine 
or chemokine (aubergine, 19 genes); oxidative stress (aqua, 14 genes); apoptosis/ anti-apoptosis (yellow, 13 genes); antigen 
presentation (maroon, 12 genes) and lipid metabolism (pale blue, 9 genes).
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LPS has been reported to rapidly alter chromatin structure
at the MHC locus [34], and chromatin remodelling has
been shown to induce transcription of closely mapped
genes [35,36]. There are many examples of functional
grouping of immune related genes in the same genomic
region, including the cytokine-receptor cluster on mouse
chromosome 16 [37] and a group of cytokine-related
genes associated with IL-4 on mouse chromosome 11
[38]. We mapped 379 of the 415 conserved LPS respon-
sive transcripts to the mouse genome. The transcripts
mapped across all 19 autosomal chromosomes, as well as
the X chromosome. Transcripts grouped into clusters
across most of the chromosomes, particularly Chromo-
somes 2 and 17 (Fig. 6 and  table 2 Additional file: 2), and

these genomic clusters did not segregate with the tempo-
ral expression patterns.

Most of the genes associated together in genomic group-
ings in this study were novel, and did not necessarily share
the same temporal expression patterns. This suggests that
while chromatin remodelling may contribute to rapid
transcription in inducible systems, temporal regulation of
at least the conserved LPS-responsive set provides evi-
dence for specific amplification of these transcripts within
the inflammatory cascade.

Strain specific sensitisation of the LPS response
LPS transcriptionally modified 800 array elements in two
or more LPS-responsive strain (Fig. 7). 385 transcripts

Temporal profiling of the core transcriptional programFigure 4
Temporal profiling of the core transcriptional program. Temporal clustering of the inflammatory template by Principal 
Component Analysis (PCA) revealed a highly regulated set with early (30 min–2 hours), mid (2–7 hours) and late (21 hours) 
onset of gene induction. Average relative intensity of expression is displayed on the Y-axis, time in hours on the x-axis.
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were co-regulated in two or more mouse strains, and of
these 305 elements were co-responsive in DBA2 and
C57Bl6/J alone. 415 transcripts were regulated in all LPS
responsive strains, described above as the candidate tar-
gets of TLR4-dependant signalling. Even within this
highly conserved set C57Bl6/J and DBA2 BMM were
delineated particularly with a subset of 18 genes induced
so rapidly that they are presumed to be direct targets of the
LPS signalling cascade, evident in Fig. 2 and 5. The
delayed induction of this set in C3H/ARC and BALB/c
macrophages suggested that the transcripts were induced
as a secondary response in these strains, implying the ini-
tial lack of a necessary signalling factor which itself was
LPS inducible. Given the continuous LPS exposure in our
system, it is likely that expression of this group of genes is

co-dependent on both this unknown autocrine factor and
LPS, and implies that C57Bl6J and DBA2 BMM were sen-
sitised to LPS by the endogenous production of this factor.
Many LPS inducible genes are known to be dependent
upon priming of the cells with either type 1 or type II
interferon [39]. 55 elements corresponding to 28 proteins
associated with interferon signalling are present on the
RIKEN 19 K array. The average profile of these interferon
regulated genes in C57Bl6J and BALB/c mice is shown in
figure 8, where a delay in induction from 30 mins to 7
hours is evident in the BALB/c profile. Strain specific dif-
ferences in endogenous type 1 interferon production, or a
downstream target of type 1 interferons could underlie the
two patterns of gene induction. A knockout of the IFN-α-
receptor 1 (IFNAR1) desensitises BMM to LPS-mediated

Temporal profiling of the core transcriptional programFigure 5
Temporal profiling of the core transcriptional program. The profiles of 8 key genes representing each temporal clus-
ter. Immediate (30 min peak) IL1α, SOD2, Pellino and EVI Early (2 hr peak) IL18, FAS; Late (24 hr peak) Hif1α, Arginase I.
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growth inhibition [40] and C57Bl/6J and BALB/c differ in
their ability to produce type 1 interferon in response to
pathogen challenge [41–43]. Consistent with this hypoth-
esis, 7 of the 13 interferon-responsive genes found in the
conserved LPS responsive set distinguish C57Bl6/J and
DBA/2 from BALB/c and C3H/ARC and include Isg20
(interferon stimulated gene (20 kD)), interferon α
induced gene Ifi56 and guanylate-binding protein-2
(Gbp2) (Figure 8); Interferon-γ induced GTPase (GTPI);
torsin-3, an ATP-dependent interferon responsive gene
[44]; IFIT-1 and IFIT-2, a family of interferon-induced
genes with tetratricopeptide repeats. Also delayed in C3H/
ARC and BALB/c were Tpl2/Cot, and the NF-κB-regulated

myeloid differentiation primary response gene MyD118/
GADD45β, which are necessary for LPS induced proin-
flammatory signalling in macrophages [26,45] as well as
the chemokine Ccl-6, and six ESTs with no annotated
function. The interferon receptor IFNAR2 was also ele-
vated in C57Bl6/J macrophages compared to BALB/c
(Supplementary Table 2).

Human microarray studies have shown remarkable con-
sistencies of response between individuals to a range of
PAMPs, including LPS. The massive variation that we have
observed between mouse strains appears diluted in the
heterogeneity of an outbred human population. One

Genomic clustering of conserved LPS inducible transcriptsFigure 6
Genomic clustering of conserved LPS inducible transcripts. Full length cDNA sequences corresponding to the con-
served LPS responsive set were mapped to the mouse genome using the BLAST function of the FANTOM2 server at http://fan 
tom.gsc.riken.go.jp/viewer/ Map positions (in base pairs) were plotted against the position of chromosome band boundaries to 
identify sequences mapping within the same chromosomal region. Chromosomes 2 and 17 are given as examples, the remain-
ing data may be found in the supplementary information accompanying this paper.
Page 9 of 18
(page number not for citation purposes)

http://fantom.gsc.riken.go.jp/viewer/
http://fantom.gsc.riken.go.jp/viewer/


BMC Immunology 2003, 4 http://www.biomedcentral.com/1471-2172/4/5
study did find a "donor variant response" among healthy
individuals in a set of interferon-responsive transcripts
[7]. Our data suggests that genetic variation in an auto-
crine factor modulating the type1 interferon signalling
pathway may be critical for appropriate induction of an
innate response to LPS.

Evidence for novel genetic loci underlying strain specific 
LPS responses
The cytokine expression profiles of stimulated T lym-
phocytes differ between mouse strains. Such variation led
to the discovery of T helper cell phenotypes associated
with cell-mediated immunity (Th1) or humoral immu-
nity (Th2) [46]. C57Bl/6J and BALB/c are archetypal Th1
and Th2 strains respectively [47,48]. We directly
compared these strains to look for transcriptional differ-
ences in the macrophage populations that may prime the
nature of any subsequent Th1/Th2 polarization. This
smaller, focused analysis allowed 5039 elements to pass
restrictions between BALB/c and C57Bl6J across the time

course and in all replicates. Of these, 436 differed signifi-
cantly (p < 0.05) between the two strains (Table 3 Addi-
tional file: 3). We saw no evidence for endogenous
differences in expression of known Th1/Th2-regulating
cytokines IL-12 or 18, although IL-18 was induced earlier
in C57Bl6J than in BALB/c (Fig. 5). In their definition of
M1-M2 macrophage phenotypes, Mills et al. [47]
identified the regulation of arginase as a key distinguish-
ing factor in the propensity to bias Th1 or Th2 T-cell
responses. It is the alternative metabolism of arginine to
nitric oxide or ornithine that predicts M1 or M2 develop-
ment. Accordingly, BALB/c and DBA/2 mice fall into the
M2 class whilst C57Bl6J is an M1 strain. Arginase I and II
also distinguished C57Bl/6 from BALB/c in our study. Sur-
prisingly, arginase mRNA was induced 10–50 fold less in
BALB/c macrophages than in C57Bl/6J BMM or either of
the other LPS-responsive strains (Fig 5). The model pro-
posed by Mills et al was generated on enzyme levels,
where our gene expression data contradicts the M1/M2
hypothesis. Our observation that C57Bl/6J and DBA/2

The distribution of LPS-responsive transcripts between mouse strainsFigure 7
The distribution of LPS-responsive transcripts between mouse strains. Venn Diagram showing the number of LPS-
responsive elements shared between the 4 LPSn mouse strains. 960 were inducible in C3H/ARC and/or BALB/c alone, 803 
were expressed in DBA/2 alone and 664 were expressed in C57Bl/6J alone. 415 elements were expressed in all 4 LPS-respon-
sive strains. 80 transcripts were expressed in 3 of the 4 LPS responsive strains, including C57Bl6J and DBA/2. 305 elements 
were shared only between DBA and C57Bl/6J.
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have similar expression profiles, even in an unactivated
state may actually reflect the fact that these two strains are
genetically related [49]. These data do not support classi-
fication of DBA as an M2 strain, nor indeed the predilec-
tion for a strain based M1 or M2 bias, at least at a
transcriptional level.

Several effectors of the Rac 1 activation pathway were
found to be significantly up regulated in C57Bl6J com-
pared to BALB/c, including Rac 1, the activating enzyme
farnesyltransferase, and interactor Profilin. Rac1 has a role
in the generation of reactive oxygen species (ROS) in

phagocytic and nonphagocytic cells [50], and has been
shown to activate STAT3 in response to ROS [51]. Simi-
larly, a number of genes required for ROS induction,
including cytochrome b-245 and neutrophil cytosolic fac-
tor 4 were also differentially expressed between C57Bl/6J
and BALB/c macrophages. These data suggest that
C57Bl6/J macrophages are more readily activated to pro-
duce cytocidal oxygen free radicals. Interestingly, the
redox status of BMM has been shown by others to be crit-
ical in supporting polarization of antigen presenting cells
[48]. Slc11A1 is predicted to affect redox potential

The sensitisation of interferon-responsive transcripts in C57Bl6J miceFigure 8
The sensitisation of interferon-responsive transcripts in C57Bl6J mice. The averaged temporal profile of 13 inter-
feron-responsive genes compared between C57Bl/6J and BALB/c mice, where the Y axis represents the fold induction from 
the unstimulated timepoint and the X-Axis categorises the time points for both mouse strains. The C57Bl6/J profile (red) is 
induced by 2 hours, whereas the BALB/c profile is delayed at 7hours. This segregation of temporal induction was observed in 
18 genes within the conserved TLR4-dependent set, and 3 examples are given: A/ Isg20; B/ Ifi56 and C/ Gbp2 for all 5 mouse 
strains.
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through iron homeostasis in the phagosome (reviewed in
[52,53]), but BALB/c and C57Bl6J share the susceptible
Slc11A1 allele at the Bcg locus.

61 (12.5%) of the 436 genes differentially expressed
between BALB/c and C57Bl/6J mapped to mouse chromo-
some 11 (Figure 9, table 4 Additional file: 4). 45% of these
mapped to a single cytogenetic band, 11b. This region of
mouse chromosome 11 was identified as conferring a sal-
monella-resistant phenotype in a study between resistant
C57Bl/6J and the susceptible wild-mouse strain MOLF/Ei
[54], although the mapping was of low resolution. Our
data further refines the 11b locus to two regions where dif-

ferentially expressed genes cluster within 10 Mb of each
other (Figure 10).

12 candidates cluster at 70 Mb, and these include 7 novel
proteins and one putative noncoding RNA. 11 of the 12
transcripts in this cluster had significantly lower expres-
sion in the Salmonella-resistant strain C57Bl/6J than in
BALB/c. Profilin1 (Pfn1) was the only transcript mapping
into this cluster with significantly higher expression in
unstimulated C57Bl6J than BALB/c BMM, and was
induced by LPS across the C57Bl6J but not BALB/c time
course. Pfn1 is a cytoskeletal protein that is essential for
cell survival and division and acts in a dose-dependent
manner [55]. The three other known genes were Slc25a11,

Genomic clustering of transcripts differentially expressed between C57Bl/6J and BALB/c miceFigure 9
Genomic clustering of transcripts differentially expressed between C57Bl/6J and BALB/c mice. Full-length cDNA 
sequences corresponding to the 436 transcripts identified as significantly (p = 0.05) differentially expressed were mapped to 
the mouse genome using the BLAST function of the FANTOM2 server at http://fantom.gsc.riken.go.jp/viewer/. The chromo-
some locations are graphed as frequency (number of transcripts) vs Chromosome number.
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a mitochondrial transporter; the cell adhesion molecule
vitronectin and Supt6h, a chromatin structural protein
thought to regulate transcription [56]. Vitronectin is the
only protein in this set with a known biology in macro-
phage adhesion and activation, binding plasminogen
activator inhibitor 1 (PAI-1) and urokinase plasminogen
activator (u-PA) [57,58], and recruiting ERK1 signalling
through alpha(v)beta 3 integrin [59]. Interestingly iNOS
also maps into this region, but is not present on the
RIKEN 19 K arrays, and its expression may not be regu-
lated in the absence of IFN-γ priming of the BMM [60].

9 genes clustered together around 100 Mb. This region
encompasses the keratin complex 1 – a region of 9 acidic
keratins, 4 of which are identified as significantly different

between BALB/c and C57Bl6/J in this analysis; keratin 1,
13, 17 and 19. The remaining keratins in this complex
were present on the array, but did not pass confidence cri-
teria, particularly that of low signal threshold. Also
identified in this cluster were the calcitonin receptor mod-
ifying protein 2 (Ramp2); granulin; a macropain (Psmc5);
and the lymphocyte antigen CMRF35. These data suggest
that the dominant genetic regions controlling LPS-
induced changes in redox status lie outside the Bcg locus,
and highlight new candidates for LPS/Salmonella suscep-
tibility in a region of chromosome 11 plentiful in innate-
immune mediators.

Genomic clustering of transcripts differentially expressed between C57Bl/6J and BALB/c miceFigure 10
Genomic clustering of transcripts differentially expressed between C57Bl/6J and BALB/c mice. Sixty-one tran-
scripts mapped to chromosome 11. The graph plots frequency (number of transcripts) vs Mb (x-axis).
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Conclusions
We provide transcriptional evidence for the enormous
potential for variation in individual response to pathogen
challenge, which is unsurprising given the infinitely
variable and changing face of pathogens. Our data pro-
vides a description of the genetic networks activated by
LPS induction in primary murine macrophages from
different genetic backgrounds. The data shows the many
possible transcriptional consequences of macrophage
activation by LPS in a strain dependent manner. Func-
tional conclusions drawn solely from gene expression
data can be at odds with protein levels – indeed increases
in gene expression can be a direct consequence of falls in
corresponding protein level. We describe a conserved
TLR4/MyD88/NfkB signalling cascade that is amplified at
a transcriptional level over the 24 hour time course. These
co-ordinately regulated transcripts provide insights into
pathways that are likely to function in an innate immune
context, and provide candidates for further functional
analysis on individual mouse backgrounds. The
differences that we have demonstrated between inbred
mouse strains contrast to the stereotyped response
observed in monocytes of healthy human individuals to a
suite of pathogenic materials including LPS [7,8]. Never-
theless, variation in TLR4 and Slc11A1 occurs in humans
and underlies susceptibility to infectious disease and arte-
riosclerosis [6]. The P712H Tlr4 mutation has been shown
to act as a dominant negative on some mouse back-
grounds (C3H/b11r30m) [61], and the degree of LPS hypo
responsiveness in Tlr4 null mice may be modulated by
mutations in RAN/Gtpase [62,63] on the C3H
background, or in IL-12R on the C57Bl10Cr background
[64]. The Tlr4 locus is clearly important in determining
LPS sensitivity, but many additional genetic loci control
the extent and the nature of transcriptional response pro-
moted by LPS.

Methods
Mouse Strains
BALB/c, C3H/ARC, C57Bl/6J and DBA2 mice were
sourced from the Animal Resources Center, Western
Australia and housed at the SPF facility, Biological and
Chemical Faculty, University of QLD, Australia. C3H/
HeJlpsd mice were sourced from the Walter and Eliza Hall
Institute, Victoria. The Tlr4 genotype of each strain was
confirmed by genomic sequencing.

All procedures were carried out under the NH&MRC
guidelines for animal research; animal ethics license
number IMB132/00.

Derivation and culture of BMM
Bone marrow derived macrophages were taken from the
femurs of a pool of 6–8 week old male mice. Macrophages
were differentiated from bone marrow progenitors in

RPMI1640 (BRL), 10% FCS and 104 U/ml (100 ng/ml)
recombinant human CSF-1 (a gift from Chiron, Emery-
ville, CA) for 6 days [65]. Specific, homogeneous differen-
tiation of macrophages under these conditions has been
well characterised by our and other laboratories [18,66–
68]. Gross phenotypic changes associated with macro-
phage differentiation were monitored and by day 5 BMMs
from all strains had become semi-adherent on bactoplas-
tic, were of uniform size and displayed characteristic cyto-
plasmic and nuclear morphology. No gross differences
were observed between the strains in cell yield or mor-
phology under these controlled culture conditions. At day
6 macrophages were seeded at 1 × 106 cells/ml and stimu-
lated on the following day with 10 ng/ml LPS Salmonella
minnesota (Sigma-Aldrich, St. Louis, MO). 3 × 10 cm
dishes were harvested for each time point – unstimulated
(time 0), 30 min, 2, 7 and 21 h. RNA was extracted using
RNeasy midi kit (Qiagen) according to the manufacturers
instructions. The optimal LPS dose of 10 ng/ml was deter-
mined by assaying iNOS and TNF-α production in the
presence and absence of IFN-γ, where 10 ng/ml gave max-
imal activation in all strains, but no response in C3H/
HeJLpsd mice (data not shown). Replica data was derived
from independent RNA extractions of a different pool of
6–8 week old mouse femurs.

Microarray labeling, hybridizing, scanning and analysis
The experimental design, using 17.5dpc C57Bl/6J embryo
as a common reference, has been described previously
[19]. Briefly, cDNA was indirectly labeled with ami-
noallyl-conjugated Cy3 (time course) or Cy5 (embryo),
and hybridized overnight to RIKEN 19,000 full-length
cDNA microarrays. Slides were washed and scanned on a
ScanArray 5000 confocal laser scanner. Molecularware
(Digital Genome) was use to process the images, and data
was corrected for local background, and confidence status
flagged for empty spots, signal/noise ratio, spot CV ratio
and spot morphology. Data was imported into
GeneSpring4.2 (Silicon Genetics) for further filtering,
clustering and comparative analysis. Hybridisations were
performed in duplicate to replicate each data point,
shown as an average in the figures. Each element was spot-
ted onto the arrays once, but the redundancy in the RIKEN
19 K set provides multiple hybridisation events for many
of the genes represented on the array. These are treated as
separate elements in the data analysis, but do present a
high level of confidence in the consistency of the
hybridisation across each array. Most of the elements
(80%) expressed by BMM did not alter across each time
course, and many of these (>60%) did not change in
expression level between mouse strains. The Global Error
Model in GeneSpring4.2 (Silicon Genetics) tested each
element for reproducibility against its replica hybridisa-
tion, and against the population of invariantly expressed
elements on the array using a single sample t-test to gen-
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erate a confidence (p) value. Microarray hybridisations
are inherently noisy at signal strengths outside the linear
range of detection. Elements expressed below 700 units
and above 65,000 units were therefore excluded from
subsequent analysis. Data was flagged for empty spots,
high signal/noise ratio, aberrant spot CV ratio and abnor-
mal spot morphology, and replica confidence (p) value of
less than 0.1 (or greater than 90% confident).

Data handling and annotation of clusters
The ratio of the experimental signal/the control signal for
each spot was calculated; intensity-dependent normaliza-
tion was also applied, where the ratio was reduced to the
residual of the Lowess fit of the intensity versus ratio curve
[69]. The dataset was restricted to those spots passing con-
fidence status on the control channel of every
hybridization, across each temporal series and on 5 sepa-
rate mouse strains. 3612 elements passed these criteria.
Figure 1 describes the normalised distribution of elements
at each time point, and for each mouse strain. A 2-fold
cutoff was employed to identify elements expressed 2
standard deviations (S.D.) from the normalised popula-
tion median of 1. An additional normalisation was per-
formed to identify those elements that were temporally
regulated, where at each post-lps time point the intensity
of each element was divided by its average intensity at
time 0. A set of genes was identified induced or repressed
across the time course if they were found more than 2 S.D.
from the sample-normalised population median of 1 and
a list was compiled for each mouse strain. A small subset
(415) of genes was identified in all 4 responder strains,
but not C3H/HeJlpsd. This set was clustered using the
unsupervised hierarchical clustering tool in GeneSpring,
where similarity was measured by Pearson correlation; the
separation ratio was 0.5 and the minimum distance was
0.001. Temporally conserved profiles were identified by
principle component analysis of the co-expressed subset.

441 genes were identified by Genespring4.2 as statistically
different between C57Bl/6J and BALB/c (Table 3 Addi-
tional file: 3), using parametric test, variances not
assumed equal (Welch t-test), p-value cutoff 0.05, where
the multiple testing correction used was the Benjamini
and Hochberg False Discovery Rate option. This
restriction tested 5,039 genes; 153 genes had insufficient
data for a comparison, and 5.0% of the identified genes
could be expected to pass the restriction by chance.

Clusters of co-expressed genes were annotated using
SOURCE http://genome-www5.stanford.edu/cgi-bin/
SMD/source//sourceBatchSearch assisted extraction of
Gene Ontologies (GO) from UniGene http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene.

Genomic analysis of LPS-inducible transcripts
Full length cDNA sequences were mapped to the mouse
genome using the BLAST function of the FANTOM2 server
at http://fantom.gsc.riken.go.jp/viewer/[70]. Array identi-
fiers were first associated with their representative
transcript using a local BLAST of the sequence tags from
the RIKEN 19 K array and the representative transcript and
protein set RTPS version 6.2. 415 RIKEN clones from the
conserved TLR4 dependent set were associated with 379
representative transcripts, 35 RIKEN clones were not
found in the RTPS v6.2 set. Similarly, of the 436 RIKEN
clones identified as statistically different between C57Bl6/
J and BALB/c mice, 347 were associated with a corre-
sponding representative transcript, and 89 were not found
in the RTPSv 6.2 set. These clones are most likely to have
been excluded from the RTPS set because of sequence arte-
facts associated with the clones – poor available sequence,
or no similarity with sequences in the EST and genomic
databases, and were annotated as "unclassifiable tran-
scripts" in the FANTOM annotation process.

The FANTOM annotation pipeline included automated
mapping of each RTPS with SIM4 and blEST, which are
cDNA-genome alignment programs integrated in TIGR
Gene Index genomic mapping pipeline. The output used
in this analysis was obtained as chromosome number,
and base pair position numbered from proximal to distal.
Transcript frequency was plotted against chromosome
number in excel to determine distribution of transcripts
across the genome (figure 8). A number of conventional
mouse mapping studies have identified genetic loci asso-
ciated with susceptibility to pathogens, but these have
been based on cytogenetic or genetic maps rather than
physical maps. The location of each transcript on its
corresponding chromosome was displayed as a function
of both physical position (basepairs on the y axis) and
cytogenetic position (chromosome band) on the x-axis
(figure 6). The number of diamonds plotted on the graph
indicates frequency of transcripts at any one position.

List of Abbreviations
CSF-1 colony stimulating factor-1

GO Gene Ontology

dpc Days post coitum

LPS lipopolysaccharide

lpsd Defective LPS allele

lpsn Normal LPS allele

NO Nitric Oxide
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PAMP pathogen associated molecular pattern

PAI-1 plasminogen activator inhibitor 1

PCA Principle Component Analysis

ROS reactive oxygen species

TLR Toll-like receptor

u-PA urokinase plasminogen activator
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