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Abstract

Background: Thymic involution is a prominent characteristic of an aging immune system. When thymic function is
reduced/absent, the peripheral T cell pool is subject to the laws of peripheral T cell homeostasis that favor survival/
expansion of T cell receptors with relatively higher functional avidity for self-peptide/MHC complexes. Due to
difficulties in assessing the TCR avidity in polyclonal population of T cells, it is currently not known whether high
avidity T cells preferentially survive in aging individuals, and what impact this might have on the function of the
immune system and development of autoimmune diseases.

Results: The phenotype of T cells from aged mice (18-24 months) indicating functional TCR avidity (CD3 and CD5
expression) correlates with the level of preserved thymic function. In mice with moderate thymic output (> 30% of
peripheral CD62L" T cells), T cells displayed CD3'°"CD5™ phenotype characteristic for high functional avidity. In old

avidity for self.

mice with drastically low numbers of CD62L™ T cells reduced CD5 levels were found. After adult thymectomy, T
cells of young mice developed CD3"°“CD5"™ phenotype, followed by a CD3'°CD5" phenotype. Spleens of old
mice with the CD3'°"/CD5" T cell phenotype displayed increased levels of IL-10 mRNA, and their T cells could be
induced to secrete IL-10 in vitro. In contrast, downmodulation of CD5 was accompanied with reduced /L-10
expression and impaired anti-CD3 induced proliferation. Irrespective of the CD3/CD5 phenotype, reduced severity
of experimental allergic myelitis occurred in old mice. In MTB TCRB transgenic mice that display globally elevated
TCR avidity for self peptide/MHC, identical change patterns occurred, only at an accelerated pace.

Conclusions: These findings suggest that age-associated dysfunctions of the immune system could in part be due
to functional erosion of T cells devised to protect the hosts from the prolonged exposure to T cells with high-

Background

Immune system of elderly displays complex set of
changes relative to young individuals. Of the many varia-
tions observed, altered T cell function is the most consis-
tent and most dramatic one [1]. Despite relatively normal
numbers of CD4" and CD8" lymphocytes, T-cell depen-
dent functions of the immune system of aged individuals
are defective, as evidenced by reduced DTH reactions
and antibody production in response to vaccination and
infection [2]. This could be due to reduced proliferation
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of T cells, evident at biochemical level by defects in prox-
imal TCR signaling cascade activation [3-5] and calcium
signaling [6], and at cellular level by defects in cytokine
production [7] and differentiation to Thl or Th2 effector
cells [8]. In addition, the frequency of antigen-specific
naive T cells is reduced, due to an impaired production
of T cells caused by thymic involution [9]. Reduction of
the thymus size and cellularity generally starts in puberty
[10] and is thought to reflect depletion of thymic stromal
tissue [11], as well as thymus repopulation by bone mar-
row derived precursors [12].

The lower supply of naive T cells leads to a shift in
the balance between memory and naive T cells, with
overrepresentation of the former [3]. This is due to
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transitioning of the naive into the memory T cells fol-
lowing activation with antigen, but also in response to
the laws of T cell homeostasis. The peripheral T cell
pool is maintained by production of new T cells by the
thymus, and homeostasis-driven expansion of peripheral
T cells [13]. If the function of thymus is reduced, the
numbers of T cells are maintained by a compensatory
increase in homeostatic expansion [14,15]. The extent of
homeostatic expansion of any given T cell is dependent
on the functional avidity of the TCR for self-peptide/
MHC complexes [16-18]. One would therefore predict
that the peripheral repertoire of T cells would skew
towards high avidity T cells sometime following age-
associated thymic involution. This issue, however, has
not been addressed to date, due to difficulties in asses-
sing the TCR avidity in polyclonal population of T cells.
T cells constantly tune their sensitivity to self-peptide/
MHC complexes by changing the levels of TCR/CD3
and CD5 molecules [19-21]. The letter is an inhibitor of
TCR signaling [22], and T cells perceiving strong signals
up-modulate CD5 to reduce signaling and avoid over-
stimulation. Similar impact is achieved by down-modu-
lating CD3, producing a CD3'°CD5" phenotype. Con-
verse phenotypic changes occur if surrounding signals
are perceived weak- T cells increase their sensitivity by
up-regulating CD3 levels and down-modulating CD5,
producing a CD3"CD5'" phenotype. Thus, CD3 and
CD5 levels can serve as indicator of the strength of sig-
nal perception by T cells, and if the levels of self-pep-
tide/MHC are constant, the major determinant of the
signal magnitude generated is the affinity/avidity of the
TCR for self-peptide/ MHC complexes. Taking advantage
of the fact that levels of CD5 and TCR/CD3 expression
can be used to predict relative TCR avidity [21], we
have shown that relative levels of these two molecules
could be used as markers of overall avidity of the TCR
repertoire [23].

The avidity of TCR for antigen is considered an
important characteristic of an efficient T cell-mediated
immunity [24]. Protection against tumors or infectious
agents by monoclonal (or oligoclonal) T cell populations
correlates with the avidity of the TCR for given antigen
[25,26]. However, increase in the avidity to foreign anti-
gens also elevates the avidity to self-peptide/MHC com-
plexes [27], likely due to cross-reactivity between
cognate antigen and self-peptides that promote selection
and homeostasis of T cells [28]. As with foreign anti-
gens, higher avidity for auto-antigens leads to more
severe autoimmunity [29-32]. Furthermore, high avidity
TCR engagement with self peptide/MHC molecules may
induce both cell intrinsic and extrinsic compensatory
mechanisms [33], rendering it impossible to predict the
net effect of high avidity TCR recognition on the func-
tion of a polyclonal immune system. We here show that
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CD3/CD5 phenotype of T cells undergoes a two-phase
change in aged, as well as mice subjected to adult thy-
mectomy. Increased CD5 and reduced CD3 levels in the
first phase are consistent with preferential survival of
high-avidity T cells, while the second phase was charac-
terized by a drop in CD5 levels. The latter change
appears to be a part of a shut-down of T cell function,
that followed a period with increased production of IL-
10. We speculate that this may be an attempt to coun-
teract the preferential survival of high avidity T cells
due to their potential to induce stronger autoimmune
responses.

Results

Dynamics of peripheral T cell CD3 and CD5 levels in the
function of thymic export

To determine whether the level of thymic output in old
mice affects the functional avidity of the peripheral TCR
repertoire, we compared the levels of CD3 and CD5 cell
surface molecules on T cells of young (8-12 weeks old)
and old (18-24 months old) mice. Because of day-to-day
experimental variations and the use of antibodies conju-
gated to different fluorochromes, we calculated ratios of
mean fluorescence intensities (MFI) obtained in spleen
cells from paired old and young mice, as previously
described [23]. Significant (p < 0.0001) reduction of CD3
levels was observed in all old mice, while the levels of
CD5, although overall significantly (p = 0.0127) reduced,
were heterogenous (Figure 1A). These differences were
observed in both CD4" and CD8" T cells. Expression of
CD62L and CD44 were taken as indicators of preserved
thymic output in individual old mice (Figure 1B). These
parameters revealed a correlation between relatively well-
preserved thymic export (> 30% CD62Lhi cells) and the
upregulation of CD5 on peripheral T cells (Figure 1C).
The individual old mice carrying T cells with higher
levels of CD5 are herewith referred to as “type A”, while
the mice with T cells having lower levels of CD5 than the
control mice as “type B”.

Since the thymic function progressively declines with
age, development of “type A” likely precedes that of
“type B” phenotype. This, however, is difficult to verify
due to individual variations in the rate of thymic invo-
lution. To determine the sequence of phenotypes
directly, we performed adult thymectomy and followed
the phenotype of T cells. These results clearly indi-
cated that the changes in the levels of CD5 expression
occur in two phases: phase with increased levels of
CD5 precedes the one with low CD5 levels (Figure
2A). The phenotypic switch occurred following a dras-
tic reduction of T cells with naive phenotype similar to
the one seen in old mice (Figure 2B). In contrast to
the CD5, the levels of CD3 showed mild, but a pro-
gressive decline (Figure 2C).
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Figure 1 Changes of CD3 and CD5 levels in old mice. A) Spleen cells from young (8-12 weeks old) and old (12-24 months old) mice were
stained with anti-CD4-PE, anti-CD3-FITC and anti-CD5-APC, or anti-CD8-PE, anti-CD3-FITC and anti-CD5-APC antibodies and analyzed by flow
cytometry. Shown are ratios of CD3 or CD5 mean fluorescence intensities obtained on gated CD4" or CD8" spleen cells from matched old and
young individual mice. B) Spleen cells from the same set of mice were stained with anti-CD4-PE, anﬁ—CD62L—F\TC_and anti-CD44-APC, or anti-
CD8-PE, anti-CD62L-FITC and anti-CD44-APC antibodies and analyzed by flow cytometry. Shown are % of CD62L" or CD44" cells on gated CD4*
spleen cells. Similar results were seen in CD8" T cells (data not shown). €) Dot plot showing relationship between %CD62L" cells found in
spleens of old mice and the ratio of CD5 mean fluorescence intensities (CD4™ T cells in old/CD4™ T cells in young mice). As a reference, the
value found in young mice is displayed as closed circle. Two cohorts, each consisting of 10 old mice were compared to two sets of 10 young
mice and cumulative data is shown. D) Shown are representative histograms of CD3, CD5, CD44, and CD62L staining on gated CD4" T cells
analyzed in A-C, depicting the two patterns of CD5 expression that appear in old mice.

Distinct functional phenotypes of T cells from type A- or
type B- old mice

Lower levels of CD3 and higher levels of CD5 are indica-
tors of high functional TCR avidity [21,23], and chronic
high-avidity TCR stimulation leads to production of IL-
10 [34-37]. We therefore sought to determine whether
aging immune system is prone to produce IL-10. IL-10
mRNA was significantly increased in the spleens of old
relative to young mice (Figure 3A). Stimulation of T cells
in vitro showed the propensity of young mice to respond
by IFNy production (Figure 3B), while T cells from type
A mice produced IL-10 (Figure 3C), as well as limited
amounts of IFNy. Interestingly, T cells from type B old
mice produced neither IFNy nor IL-10.

Reduced T cell responses of old mice in vitro and in vivo

Inability of type B old mice to produce IFNy suggested
that T cells from these mice may be hyporesponsive. To
test this possibility we evaluated proliferation of T cells
to anti-CD3 stimulation. As expected, the response was
dramatically reduced in type B, but not type A old mice
(Figure 4A). To evaluate whether aging affects T cell
responses to antigen in vivo, we induced experimental
allergic encephalomyelitis (EAE) and found that clinical
signs of the disease were significantly less severe in old
than in the young mice (Figure 4B), irrespective of
whether their T cells displayed type A or type B CD3/
CD5 phenotype after the end of the observation period
(data not shown). The reduced responses in old mice
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Figure 2 Changes of CD3 and CD5 levels following adult
thymectomy. A) Spleen cells from control and adult
thymectomized mice were stained with anti-CD4-PE, anti-CD3-FITC
and anti-CD5-APC, or anti-CD8-PE, anti-CD3-FITC and anti-CD5-APC
antibodies and analyzed by flow cytometry. Shown are ratios of
CD5 mean fluorescence intensities obtained on gated CD4" or CD8
* spleen cells from matched control and thymectomized individual
mice (four mice per group each time point). B) Spleen cells from
the same set of mice were stained with anti-CD4-PE, anti-CD62L-
FITC and anti-CD44-APC antibodies and analyzed by flow
cytometry. Shown are percent CD62L" or CD44™ cells on gated
CD4" spleen cells. €) Shown are ratios of CD3 mean fluorescence
intensities obtained on gated CD4" or CD8" spleen cells from
matched control and thymectomized individual mice, stained as
described in (A)
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Figure 3 Age-dependent increase in IL-10 production. A) Total
cellular RNA isolated from the spleens of young and old mice was
used to obtain cDNAs which served as templates for the real time
PCR using IL-10-specific primers. Shown are means and standard
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Figure 4 Reduced T cell responsiveness in aged mice. A) Anti- E @
CD3-induced proliferation (means + SD) of spleen cells from young & 14 1 o
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old) mice were stained with anti-CD4 (extracellular stain) and anti- Figure 5 Earlier onset of age dependent changes in CD3/CD5
FoxP3 (intracellular stain). Shown are mean (+ SD) percentage of phenotype and IL-10 induction in MTB mice. A) Spleen cells
FoxP3™ cells within gated CD4" populations (upper panel), and from 7 week old WT or MTB mice were stained with anti-CD4-FITC,
representative histograms for young (plain line) or old (bold line) anti-CD5-APC and anti-CD3-PerCP antibodies and analyzed by flow
mice. cytometry. Shown are overlay histograms of CD5 or CD3 expression
. J

occurred in the presence of similar numbers of natural
regulatory T cells (Figure 4C). Thus, at least two distinct
mechanisms (propensity to secrete IL-10 in “type A” and
globally reduced responsiveness in “type B”) contribute
to reduced susceptibility of old mice to EAE.

Age related changes in T cells are accelerated in mice
with increased avidity for self

If the age-associated increased production of IL-10 and
subsequent crush in T cell function are a consequence
of preferential survival and/or homeostatic expansion of
T cells with high avidity for self, then the observed
changes should occur prematurely if the avidity of T
cells is artificially raised. MTB TCRp transgenic mice
display globally increased avidity for peptide/MHC com-
plexes due to stronger interactions with MHC molecules
[23]. As previously reported, higher levels of CD5 with
fewer cell surface TCR/CD3 were found in MTB than in
WT mice (Figure 5A). The TCR/CD3 levels were
reduced despite about five fold higher levels of mRNA
encoding the constant region of TCRB (Figure 5B),

in WT (plain line) and MTB (bold line) CD4* cells. The numbers
indicate mean fluorescence intensities. B) cDNAs obtained from 12
weeks old MTB or WT spleens served as templates for real time PCR
using TCRB-specific primers. Shown are means and standard errors
of TCRB mRNA relative to the 18S rRNA for triplicate reactions of
each sample for two individual mice of each genotype. Total
cellular RNA isolated from the spleens of MTB or WT mice was used
to obtain cDNAs which served as templates for the real time PCR
using IL-10-specific primers. Shown are means and standard errors
of IL-10 mRNA quantities relative to the 185 rRNA for triplicate
reactions of each sample. D) CD5 or CD3 expression in 10 months
old WT (plain line) and MTB (bold line) CD4" spleen cells labeled
with anti-CD4-FITC, anti-CD5-APC and anti-CD3-PerCP antibodies.
The numbers indicate mean fluorescence intensities.

arguing against the explanations related to the transgene
expression. As predicted, we found that increases in the
IL-10 mRNA peaked much earlier in MTB than in the
WT mice (Figure 5C). The subsequent decrease
occurred also earlier in MTB mice. This decrease in IL-
10mRNA levels was associated with a more pronounced
reduction of cell surface TCR/CD3 levels, and a reverse
trend in CD5 expression (Figure 5D).

As expected, changes in T cell phenotype and IL-10
mRNA levels in MTB mice coincided with reduced
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severity of EAE in 20 weeks old MTB mice relative to
their WT couterparts (Figure 6). In contrast, young
MTB mice (10 weeks old) developed a more severe
form and an earlier onset of the disease than the WT
mice. The stronger disease in young MTB mice
occurred despite relatively mild defect of in vitro T cell
responses to anti-CD3 stimulation (Figure 7A). This
finding is consistent with relatively higher avidity of
MTB T cells for self-peptide/MHC complexes. As the
MTB mice aged, the defect in anti-CD3 induced T cell
responses became more profound (Figure 7A), consis-
tent with down-modulation of cell surface CD3.

Defective responses of T cells with down-modulated
CD5 could be a result of increased propensity for activa-
tion induced cell death. We therefore compared the
levels of apoptosis following anti-CD3 stimulation.
Reduced levels of apoptosis were observed in MTB rela-
tive to the WT T cells (Figure 7B), suggesting that acti-
vation induced cell death is not a likely cause of
reduced T cell responses in T cells with decreased CD5
levels.

To determine whether the hyporesponsiveness is due
to general inability of T cells to respond or due to TCR
signaling defect, we subjected T cells to pharmacologic
stimulation consisting of phorbol esters and ionomycin,
that by-passes the most proximal TCR signaling. The
results show relatively similar potential of cells to
respond to this stimulation (Figure 7C), suggesting that

WT (10WKS)
MTB (10WKS)
WT (20WKS)

— MTB (20WKS)

| score

mnica

‘AE cli

E

Days post immunization

Figure 6 Earlier onset of age-associated reduced severity of
EAE in MTB mice. Mean clinical scores of EAE in MTB and WT mice
(five each) immunized at 10 or 20 weeks of age with MOGsg 5o
peptide.
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Figure 7 Earlier onset of in vitro T-cell disfunction in MTB
mice. A) Anti-CD3-induced proliferation (means + SD) of spleen
cells from 7 weeks (young) or 17 months old (old) WT or MTB mice.
B) Spleen cells from 20 weeks old MTB and WT mice were cultured
in the presence or absence of anti-CD3 antibody for 3 days.
Following subsequent 24 hour stimulation with anti-CD3, cells were
stained with anti-annexin V and propidium iodide. C) Proliferation to
PMA/ionomycin of purified T cells from 15 months old MTB or WT
mice in the presence of irradiated WT antigen presenting cells.

the cause of hyporesponsiveness is related to the CD3/
TCR complex-mediated signal transduction.

Discussion

Our findings demonstrate that following a shortage in
supply of newly developed T cells due to thymic involu-
tion, peripheral T cell compartment in aged mice dis-
plays a sequence of phenotypic and functional changes
important for the functioning of the entire immune sys-
tem. These changes follow a characteristic pattern. The
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first phase was predictable by the known effects of T
cell homeostasis in lymphopenic conditions and the
effect of the functional avidity of the TCR on peripheral
T cell homeostasis. In this phase, there was an increase
of both CD4" and CD8" T cells with a phenotype
(CD3""CD5M) indicative of relatively higher functional
avidity for self-peptide/MHC complexes [21]. The sec-
ond phase is characterized by development of functional
erosion of T cells, caused by a defect in TCR-mediated
activation.

Self-peptide/ MHC complexes are involved in many
aspects of T cell physiology, promoting thymocyte dif-
ferentiation [38,39], enabling peripheral survival and
homeostasis of naive T cells and modulating their acti-
vation by antigens [40-42]. Under lymphopenic condi-
tions residual T cells proliferate to reconstitute their
nearly normal numbers [41]. T cells with higher avidity
for self-peptide/MHC complexes enjoy advantage and
expand more relative to the low avidity T cells [16-18].
During and or consequent to the expansion process T
cells acquire phenotype of activated/memory T cells and
acquire effector functions [43-47]. In addition to the fas-
ter disappearance of T cells with naive phenotype, the
accumulation of high avidity T cells and their partial
activation is potentially dangerous due to increased risk
of autoimmune disorders. In fact, lymphopenic condi-
tions are known to be associated with autoimmune phe-
nomena [48]. However, the incidence of autoimmune
diseases in general does not increase in elderly, despite
development of lymphopenia.

In humans, each autoimmune disease has a character-
istic pattern of incidence. Although average peak of inci-
dence differs for each individual autoimmune disease, a
general trend suggests that most autoimmune diseases
develop either during puberty (juvenile type diseases) or
during mature reproductive life of individuals. For
example, lupus erythematosus affects primarily women
of childbearing age, and most frequently begins between
ages of 15 and 40 years [49]. The average age of onset
of multiple sclerosis is 28-30 years [50]. The number of
new cases in both diseases, as well as other autoimmune
diseases, reduces with further age. What could be the
reason for this decline? The function of the immune
system declines with aging in both mice and humans,
limiting its ability to respond to infections and vaccines
[2,15]. The changes are mainly due to dysfunctions in
the T cell compartment while the activity of B cells and
innate immunity are less affected [2,51]. However, these
changes occur at age of 70 or higher, and are unlikely
responsible for the decline in incidence of autoimmunity
after the ages of 30-40. Our results showing attenuated
clinical EAE in aged mice are in agreement with the
incidence of human autoimmune disorders. Concomi-
tant changes in T cell phenotype and function of old
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mice suggest that reasons for reduced autoimmunity
may be intrinsic to T cells. This notion is further sup-
ported by an earlier occurrence of EAE attenuation in
MTB TCRp transgenic mice, since the transgene is
expressed by T cells and hence affects primarily the
function of T cells. Interestingly, we have previously
shown an age-dependent arrest in the progression of
lupus in F1 offsprings of MTB and lupus-prone BXSB
strain [52]. This arrest was coupled with reduced activa-
tion of T cells in vivo and reduced numbers of natural
regulatory T cells, suggesting again a mechanism intrin-
sic to T cells. The numbers and function of natural reg-
ulatory T cells in MTB mice on B6 background (used in
the present study) are indistinguishable from the WT
mice [23], arguing against the role of these cells in
reduced susceptibility of MTB mice to EAE. It remains
to be determined whether intrinsic mechanisms addi-
tional to the two identified here (increased IL-10 pro-
duction and functional arrest) may be involved, such as
possibly changes in IL-17 production- a cytokine impor-
tant for development of EAE [53].

It is tempting to speculate that the strategy of the
immune system to counteract age associated increased
risk of autoimmunity is promotion of differentiation of
T cells with a potential to secrete IL-10 (so called Trl
cells). In support of this notion, development of multiple
sclerosis in humans is associated with defective develop-
ment of Trl cells that secrete IL-10 [54,55]. IL-10 secre-
tion as a result of chronic high-avidity TCR engagement
has been described in other experimental models
[34-37], and increased IL-10 production associated with
aging has been reported in both aged mice [56] and
humans [51]. Our results showing an earlier onset of IL-
10 mRNA levels in mice with artificially higher TCR
avidity for self-peptide/MHC complexes clearly supports
this possibility, although this may not be the only
mechanism affecting the function of the immune system
in type A mice. Subsequent reduction, however, suggests
that the control of enhanced T cell reactivity for self by
IL-10 is temporary, and persisting chronic stimulation
leads to a functional shut down.

Because IL-10-deficient mice develop enterocolitis
[57], IL-10 is thought to be involved in maintenance of
tolerance to self. However, IL-10 can also exert immu-
nostimulatory properties, such as stimulation of B cell
proliferation and differentiation into the antibody-secret-
ing cells, and differentiation of CD8" T cells into effec-
tor cells [58]. Despite these stimulatory functions of IL-
10, the effect of IL-10 in most studies of autoimmune
diseases is one of regulation. Thus in EAE, systemic
administration of IL-10 prior to EAE induction prevents
the development of the disease [59,60]. In contrast to
the actively induced EAE, injection of IL-10 exacerbated
adoptively transferred form of the disease [61]. Removal
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of IL-10 by gene inactivation increases the severity of
the disease [62-64], suggesting that IL-10-production
has a physiological role in dampening the course of the
EAE. In lupus, the levels of IL-10 found in the serum of
affected patients correlate with the disease activity [65].
This could suggest involvement of IL-10 in the patho-
genesis of the disease, but also (apparently unsuccessful)
attempts of the immune system to regulate the ongoing
autoimmune response. The former possibility is sup-
ported by ameliorating effects of anti-IL-10 antibody
treatment in lupus patients [66], as well as in NZB
hybrid mice [67]. However, these early results were
countered with the findings of new studies. Thus,
genetic deficiency of IL-10 resulted in significantly
enhanced disease, while the treatment with recombinant
IL-10 ameliorated the disease in the MRL model [68].
Furthermore, continuous low levels of IL-10 achieved by
gene therapy approach also diminished the disease activ-
ity in NZB hybrid congenic mouse model [69]. There-
fore, the exact role of IL-10 in lupus remains to be
established.

T cell dysfunction resulting in progressive difficulties
to raise immune responses have been described in
elderly humans and mice [15,70]. Therefore, these find-
ings suggest that T cell dysfunctions associated with
aging can at least partly be explained by adaptive altera-
tions in high-avidity T cells caused by their autoreactiv-
ity. Our findings parallel those of tumor infiltrating T
cells that become non-functional if their TCR is of high,
but not low affinity for antigen [71]. Thus, while their
immediate impact may be effective, high avidity T cells
may not be most desirable for long-term protection
and/or preservation of immunological memory, as they
are likely to functionally erode earlier than the low avid-
ity T cells.

Conclusions

T cell function deteriorates with age, leading to
increased susceptibility of elderly to infections and
higher incidence of cancer. We demonstrate that follow-
ing arrest of thymic export (either due to aging or adult
thymectomy), T cells undergo a two-phase change in
the expression of CD3 and CD5 molecules. Initial
increase in CD5 and decrease in CD3 levels are consis-
tent with preferential peripheral survival of T cells with
relatively high avidity for self. These cells are prone for
production of IL-10. Subsequently, the T cells reduce
the levels of CD5 and become generally unresponsive
(including the IL-10 production). Through both phases
mice display reduced severity of an autoimmune disease
EAE. These findings suggest that age-associated dys-
functions of the immune system could in part be due to
functional erosion of T cells devised to protect the hosts
from autoreactivity induced by T cells with high-avidity
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for self, that preferentially survive in mice with reduced
thymic function (Figure 8).

Methods

Mice and in vivo manipulations

C57BL/6 mice were purchased from Taconic Farms
(Germantown, NY). The generation of MTB TCRf
transgenic mice has been previously described [72]. All
experiments using laboratory animals have been
approved by the Institutional Animal Care and Use
Committee.

For induction of EAE five mice per group were
injected with an emulsion of MOGszs_50 peptide ([73]
solution in Complete Freund’s adjuvant containing
Mpycobacterium tuberculosis, as described [74]. Mice also
received 500 ng Pertussis toxin on days 0 and 2 relative
to the encephalitogenic challenge. Mice were followed
daily for clinical signs of the disease and were graded on
the following basis: 0) no clinical signs; 1) flaccid tail; 2)
hind limb paresis or partial paralysis; 3) total hind limb
paralysis; 4) hind and front limb paralysis; and 5) mori-
bund state or death.

Quantitative PCR

Total RNA was isolated from cells using TRIzol fol-
lowed by RNAse clean-up and treatment with DNAse L.
Total RNA was reverse transcribed using the Super-
script II RT kit and random hexamers as primers (Invi-
trogen, Carlsbad, CA). All PCR reactions were done in
triplicates using ABI Prism 7700 Sequence Detector
(Applied Biosystems, Piscataway, NJ), as previously
described [23]. Briefly, TCRf, IL-10, and 18SrRNA were
amplified using TagMan Universal PCR master mix
(Applied Biosystems). The average threshold cycles (Ct)
of the triplicates was used to compare the relative abun-
dance of the mRNA. Ct of 18SrRNA was used to nor-
malize all samples.

I
T CELL DYSFUNCTION;

AUTOIMMUNITY INFECTIOUS DISEASES

THYMIC EXPORT

AVERAGE TCR AVIDITY

IL-10

AGE
Figure 8 Summary and implications of the findings in the
present manuscript.
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Flow cytometry

Direct immunofluorescence staining was performed
using following reagents: FITC conjugated anti-VB2,
FITC- or APC-conjugated anti-CD5, FITC- or APC-
conjugated anti-CD4, PerCP-conjugated anti-CD3, PE-
conjugated anti-mouse CD8a., PE-conjugated anti-CD25
(all supplied by Pharmingen, San Diego, CA).

Cell purification

Spleen cells were purified using pan T cell purification
kit (Miltenyi Biotec, Bergisch Gladbach, Germany).
Microbead labeled cells were negatively selected on
magnetic cell separation (MACS) columns (Miltenyi
Biotec), as per manufacturer instructions. Cell purity
was generally 92-97%, as determined by flow cytometry.
Intracellular staining for FoxP3 was performed using the
anti-mouse/rat FoxP3 staining kit from eBioscience (San
Diego, CA).

In vitro stimulation assays

Spleen cells (2 x 10°/well) were incubated for 72 hours
in flat bottom 96-well plates in the presence of various
concentrations of purified anti-CD3 monoclonal anti-
body. Irradiated (2500 rads) WT spleen cells served as
antigen presenting cells in cultures with thymocytes (5
X 105/well), where indicated. During the last 8-16 hours
of culture cells were pulsed with 0.5 uCi of *H-thymi-
dine (ICN Biomedicals, Costa Mesa, CA, USA) and thy-
midine incorporation was subsequently measured using
a beta scintillation counter 1450 MicroBetaTM (Wallac,
Turku, Finland).

AICD analysis

T lymphocytes from WT or MTB TCR transgenic
mice were isolated from the spleen by negative selec-
tion (Pan T Cell Isolation Kit, Miltenyi Biotec). T cells
(10°/ml) were stimulated in vitro using CD3/CD28
beads (Dynabeads mouse CD3/CD28 T cell expander,
Invitrogen) according to the manufacture’s instruction.
After 3 days, T cells were harvested and dead cells
were removed by using gradient centrifugation. Viable
T cells were then incubated for an additional 24 h
with 10 U/ml recombinant mouse IL-2. For the sec-
ondary culture, T cells (5 x 10°/ml) were restimulated
with anti mouse CD3 beads. Cells were then harvested
and stained with Annexin-FITC and Propidium Iodide-
PE using Annexin V-FITC apoptosis detection kit II
(BD Biosciences) and CD4-allophycocyanin (BD Bios-
ciences) according to the manufacturer’s instructions.
Analysis was based on a CD4 cell gate. Data were col-
lected on a FACSCalibur (BD Biosciences) and ana-
lyzed using CellQuest software.
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Statistical analysis

Statistical significance of differences in the mean fluor-
escence intensities of CD5 and CD3 staining was calcu-
lated using Wilcoxon matched pairs test, performed
using Graphpad Prism software, version 5.0a.

Abbreviations
EAE: Experimental allergic encephalomyelitis

Acknowledgements

This work was supported in part by a grants from the National Institutes of
Health; National Heart, Lung, and Blood Institute 1U54 HL090503 (ZT-C), and
by TRO1 Al48837 and 1R01 Al41573 from the National Institute for Allergy
and Infectious Diseases (SV).

Author details

'Center for Cancer and Immunology Research, Children’s Research Institute,
Children’s National Medical Center, Washington, DC, USA. “Sheikh Zayed
Institute for Pediatric Surgical Innovation, Children’s National Medical Center,
Washington, DC, USA. *Immunobiology Section, Laboratory of Parasitic
Diseases, National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Bethesda, MD, USA. “Sheikh Zayed Institute for Pediatric
Surgical Innovation, Children's National Medical Center, 111 Michigan
Avenue NW, Washington, DC 20010-2970, USA.

Authors’ contributions

RD and GLB performed and analyzed the activation induced cell death
experiments. MS performed and analyzed real time PCR and T cell
proliferation assays. DJ performed and analyzed IL-10 production and
detection assays, and participated in drafting the manuscript. ZTC performed
and analyzed all other experiments, and participated in drafting the
manuscript. SV conceived the study and the manuscript and took part in
writing the manuscript. All authors read and approved the final manuscript.

Received: 1 November 2011 Accepted: 9 February 2012
Published: 9 February 2012

References

1. Sadighi Akha AA, Miller RA: Signal transduction in the aging immune
system. Curr Opin Immunol 2005, 17:486-491.

2. Miller RA: The aging immune system: primer and prospectus. Science
1996, 273:70-74.

3. Lerner A, Yamada T, Miller RA: Pgp-Thi T lymphocytes accumulate with
age in mice and respond poorly to concanavalin A. Eur J Immunol 1989,
19.977-982.

4. Miller RA, Garcia G, Kirk CJ, Witkowski JM: Early activation defects in T
lymphocytes from aged mice. Immunol Rev 1997, 160:79-90.

5. Hirokawa K: Age-related changes of signal transduction in T cells. £xp
Gerontol 1999, 34:7-18.

6. Grossmann A, Maggio-Price L, Jinneman JC, Rabinovitch PS: Influence of
aging on intracellular free calcium and proliferation of mouse T-cell
subsets from various lymphoid organs. Cell Immunol 1991, 135:118-131.

7. Thoman ML, Weigle WO: Lymphokines and aging: interleukin-2
production and activity in aged animals. J Immunol 1981, 127:2102-2106.

8. Linton PJ, Haynes L, Klinman NR, Swain SL: Antigen-independent changes
in naive CD4 T cells with aging. J Exp Med 1996, 184:1891-1900.

9. Scollay RG, Butcher EC, Weissman IL: Thymus cell migration. Quantitative
aspects of cellular traffic from the thymus to the periphery in mice. Eur J
Immunol 1980, 10:210-218.

10.  Metcalf D, Moulds R, Pike B: Influence of the spleen and thymus on
immune responses in ageing mice. Clin Exp Immunol 1967, 2:109-120.

11. Hartwig M, Steinmann G: On a causal mechanism of chronic thymic
involution in man. Mech Ageing Dev 1994, 75:151-156.

12. Kadish JL, Basch RS: Hematopoietic thymocyte precursors. I. Assay and
kinetics of the appearance of progeny. J Exp Med 1976, 143:1082-1099.

13. Freitas AA, Rocha B: Population biology of lymphocytes: the flight for
survival. Annu Rev Immunol 2000, 18:83-111.


http://www.ncbi.nlm.nih.gov/pubmed/16061371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16061371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8658199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2666144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2666144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9476667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9476667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10197724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1826862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1826862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1826862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6457862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6457862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8920876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8920876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7379836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7379836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4291612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4291612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7823637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7823637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10837053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10837053?dopt=Abstract

Tatari-Calderone et al. BMC Immunology 2012, 13:8
http://www.biomedcentral.com/1471-2172/13/8

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

Mackall CL, Gress RE: Pathways of T-cell regeneration in mice and
humans: implications for bone marrow transplantation and
immunotherapy. Immunol Rev 1997, 157:61-72.

Linton PJ, Dorshkind K: Age-related changes in lymphocyte development
and function. Nat Immunol 2004, 5:133-139.

Ge Q, Rao VP, Cho BK, Eisen HN, Chen J: Dependence of lymphopenia-
induced T cell proliferation on the abundance of peptide/MHC epitopes
and strength of their interaction with T cell receptors. Proc Natl Acad Sci
USA 2001, 98:1728-1733.

Moses CT, Thorstenson KM, Jameson SC, Khoruts A: Competition for self
ligands restrains homeostatic proliferation of naive CD4 T cells. Proc Nat/
Acad Sci USA 2003, 100:1185-1190.

Kieper WC, Burghardt JT, Surh CD: A role for TCR affinity in regulating
naive T cell homeostasis. J Immunol 2004, 172:40-44.

Azzam HS, DeJarnette JB, Huang K, Emmons R, Park CS, Sommers CL, El-
Khoury D, Shores EW, Love PE: Fine tuning of TCR signaling by CD5. J
Immunol 2001, 166:5464-5472.

Smith K, Seddon B, Purbhoo MA, Zamoyska R, Fisher AG, Merkenschlager M:

Sensory adaptation in naive peripheral CD4 T cells. J Exp Med 2001,
194:1253-1261.

Kassiotis G, Zamoyska R, Stockinger B: Involvement of avidity for major
histocompatibility complex in homeostasis of naive and memory T cells.
J Exp Med 2003, 197:1007-1016.

Perez-Villar JJ, Whitney GS, Bowen MA, Hewgill DH, Aruffo AA, Kanner SB:
CD5 negatively regulates the T-cell antigen receptor signal transduction
pathway: involvement of SH2-containing phosphotyrosine phosphatase
SHP-1. Mol Cell Biol 1999, 19:2903-2912.

Stojakovic M, Salazar-Fontana LI, Tatari-Calderone Z, Badovinac VP,

Santori FR, Kovalovsky D, Sant'/Angelo D, Harty JT, Vukmanovic S: Adaptable
TCR avidity thresholds for negative selection. J Immunol 2008,
181:6770-6778.

Turner SJ, Doherty PC, McCluskey J, Rossjohn J: Structural determinants of
T-cell receptor bias in immunity. Nat Rev Immunol 2006, 6:383-894.

Zeh HJI, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC: High avidity
CTLs for two self antigens demonstrate superior in vitro and in vivo
antitumor efficacy. J Immunol 1999, 162:989-994.

Derby MA, Alexander-Miller MA, Tse R, Berzofsky JA: High-avidity CTL
exploit two complementary mechanisms to provide better protection
against viral infection than low-avidity CTL. J Immunol 2001,
166:1690-1697.

Holler PD, Chlewiski LK, Kranz DM: TCRs with high affinity for foreign
PMHC show self reactivity. Nature Immunol 2003, 4:55-62.

Santori FR, Brown SM, Vukmanovic S: Genomics-based identification of
self-ligands with T cell receptor-specific biological activity. Immunol Rev
2002, 190:146-160.

Amrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P: Progression
of autoimmune diabetes driven by avidity maturation of a T-cell
population. Nature 2000, 406:739-742.

Garcia KC, Radu CG, Ho J, Ober RJ, Ward ES: Kinetics and thermodynamics
of T cell receptor- autoantigen interactions in murine experimental
autoimmune encephalomyelitis. Proc Nat Acad Sci USA 2001,
98:6818-6823.

Gronski MA, Boulter JM, Moskophidis D, Nguyen LT, Holmberg K, Elford AR,
Deenick EK, Kim HO, Penninger JM, Odermatt B, et al: TCR affinity and
negative regulation limit autoimmunity. Nat Med 2004, 10:1234-1239.
Han B, Serra P, Yamanouchi J, Amrani A, Elliott J, Dickie P, Dilorenzo T,
Santamaria P: Developmental control of CD8 T cell-avidity maturation in
autoimmune diabetes. J Clin Invest 2005, 115:1879-1887.

Li L, Boussiotis VA: Physiologic regulation of central and peripheral T cell
tolerance: lessons for therapeutic applications. J Mol Med 2006,
84:887-899.

Buer J, Lanoue A, Franzke A, Garcia C, von Boehmer H, Sarukhan A:
Interleukin 10 secretion and impaired effector function of major
histocompatibility complex class Il restricted T cells anergized in vivo. J
Exp Med 1988, 187:177-183.

Sundstedt A, Hoiden I, Rosendahl A, Kalland T, van Rooijen N, Dohlsten M:
Immunoregulatory role of IL-10 during superantigen-induced
hyporesponsiveness in vivo. J Immunol 1997, 158:180-186.

Burkhart C, Liu GY, Anderton SM, Metzler B, Wraith DC: Peptide-induced T
cell regulation of experimental autoimmune encephalomyelitis: a role
for IL-10. Int Immunol 1999, 11:1625-1634.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

Page 10 of 11

Seewaldt S, Alferink J, Forster I: Interleukin-10 is crucial for maintenance
but not for developmental induction of peripheral T cell tolerance. Fur J
Immunol 2002, 32:3607-3616.

Starr TK, Jameson SC, Hogquist KA: Positive and negative selection of T
cells. Annu Rev Immunol 2003, 21:139-176.

Palmer E: The T-cell antigen receptor: a logical response to an unknown
ligand. J Recept Signal Transduct Res 2006, 26:367-378.

Vukmanovic S, Neubert TA, Santori FR: Could TCR antagonism explain
associations between MHC genes and disease? Trends Mol Med 2003,
9:139-146.

Jameson SC: T cell homeostasis: keeping useful T cells alive and live T
cells useful. Semin Immunol 2005, 17:231-237.

Jabbari A, Harty JT: Cutting edge: differential self-peptide/MHC
requirement for maintaining CD8 T cell function versus homeostatic
proliferation. J Immunol 2005, 175:4829-4833.

Oehen S, Brduscha-Riem K: Naive cytotoxic T lymphocytes spontaneously
acquire effector function in lymphocytopenic recipients: a pitfall for T
cell memory studies? EurJimmunol 1999, 29:608-614.

Kieper WC, Jameson SC: Homeostatic expansion and phenotypic
conversion of naive T cells in response to self peptide/MHC ligands. Proc
Natl Acad Sci USA 1999, 96:13306-13311.

Goldrath AW, Bogatzki LY, Bevan MJ: Naive T cells transiently acquire a
memory-like phenotype during homeostasis-driven proliferation.
JExpMed 2000, 192:557-564.

Cho BK, Rao VP, Ge Q, Eisen HN, Chen J: Homeostasis-stimulated
proliferation drives naive T cells to differentiate directly into memory T
cells. JExoMed 2000, 192:549-556.

Murali-Krishna K, Ahmed R: Cutting edge: naive T cells masquerading as
memory cells. J Immunol 2000, 165:1733-1737.

Baccala R, Theofilopoulos AN: The new paradigm of T-cell homeostatic
proliferation-induced autoimmunity. Trends Immunol 2005, 26:5-8.
Hochberg MC: The epidemiology of systemic lupus erythematosus. In
Dubois" Lupus Erythematosus. Edited by: Wallace DJ, Hahn BH. Baltimore:
Williams  1997:49.

Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J,
Ebers GC: The natural history of multiple sclerosis: a geographically
based study. 2. Predictive value of the early clinical course. Brain 1989,
112:1419-1428.

Castle SC: Clinical relevance of age-related immune dysfunction. Clin Inf
Dis 2000, 31:578-585.

Stojakovic M, Tatari-Calderone Z, Maric C, Hoang A, Vukmanovic S:
Paradoxical arrest in lupus activity in BXSB mice with highly
autoreactive T cells. Lupus 2010, 19:182-191.

Zepp J, Wu L, Li X: IL-17 receptor signaling and T helper 17-mediated
autoimmune demyelinating disease. Trends Immunol 2011, 32:232-239.
Astier AL, Meiffren G, Freeman S, Hafler DA: Alterations in CD46-mediated
Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest
2006, 116:3252-3257.

Martinez-Forero |, Garcia-Munoz R, Martinez-Pasamar S, Inoges S, Lopez-Diaz
de Cerio A, Palacios R, Sepulcre J, Moreno B, Gonzalez Z, Fernandez-Diez B,
et al: IL-10 suppressor activity and ex vivo Tr1 cell function are impaired
in multiple sclerosis. Fur J Immunol 2008, 38:576-586.

Hobb sMV, Weigle WO, Ernst DN: Interleukin-10 production by splenic
CD4+ cells and cell subsets from young and old mice. Cell Immunol 1994,
154:264-272.

Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W: Interleukin-10-deficient
mice develop chronic enterocolitis. Cell 1993, 75:263-274.

Groux H, Cottrez F: The complex role of interleukin-10 in autoimmunity. J
Autoimmun 2003, 20:281-285.

Rott O, Fleischer B, Cash E: Interleukin-10 prevents experimental allergic
encephalomyelitis in rats. £ur J Immunol 1994, 24:1434-1440.

Nagelkerken L, Blauw B, Tielemans M: IL-4 abrogates the inhibitory effect
of IL-10 on the development of experimental allergic encephalomyelitis
in SJL mice. Int Immunol 1997, 9:1243-1251.

Cannella B, Gao YL, Brosnan C, Raine CS: IL-10 fails to abrogate
experimental autoimmune encephalomyelitis. J Neurosci Res 1996,
45:735-746.

Bettelli E, Das MP, Howard ED, Weiner HL, Sobel RA, Kuchroo VK: IL-10 is
critical in the regulation of autoimmune encephalomyelitis as
demonstrated by studies of IL-10- and IL-4-deficient and transgenic
mice. J Immunol 1998, 161:3299-3306.


http://www.ncbi.nlm.nih.gov/pubmed/9255622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9255622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9255622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14749784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14749784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11172019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11172019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11172019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12525694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12525694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14688307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14688307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11313384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11696591?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12707300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12707300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10082557?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10082557?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10082557?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18981094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18981094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17110956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17110956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9916724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9916724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9916724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11160212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11160212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11160212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12493012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12493012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11391002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11391002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11391002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15467726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15467726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15937548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15937548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16972086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16972086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8977189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8977189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10508180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10508180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10508180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12516547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12516547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12414722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12414722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17118787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17118787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12727139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12727139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15826828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15826828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16210583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16210583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16210583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10557316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10557316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10925249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10925249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15629402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15629402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22357259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2597989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2597989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19946033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19946033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21493143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21493143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17099776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17099776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18200504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18200504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7510582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7510582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8402911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8402911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12791313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7515815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7515815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9310827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9310827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9310827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8892085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8892085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9759845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9759845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9759845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9759845?dopt=Abstract

Tatari-Calderone et al. BMC Immunology 2012, 13:8 Page 11 of 11
http://www.biomedcentral.com/1471-2172/13/8

63. Segal BM, Dwyer BK, Shevach EM: An interleukin (IL)-10/IL-12
immunoregulatory circuit controls susceptibility to autoimmune disease.
J Exp Med 1998, 187:537-546.

64. Samoilova EB, Horton JL, Chen Y: Acceleration of experimental
autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of
interleukin-10 in disease progression and recovery. Cell Immunol 1998,
188:118-124.

65. Beebe AM, Cua DJ, de Waal Malefyt R: The role of interleukin-10 in
autoimmune disease: systemic lupus erythematosus (SLE) and multiple
sclerosis (MS). Cytokine Growth Factor Rev 2002, 13:403-412.

66. Llorente L, Richaud-Patin Y, Garcia-Padilla C, Claret E, Jakez-Ocampo J,
Cardiel MH, Alcocer-Varela J, Grangeot-Keros L, Alarcén-Segovia D,
Wijdenes J, et al: Clinical and biologic effects of anti-interleukin-10
monoclonal antibody administration in systemic lupus erythematosus.
Arthritis Rheum 2000, 43:1790-1800.

67. Ishida H, Muchamuel T, Sakaguchi S, Andrade S, Menon S, Howard M:
Continuous administration of anti-interleukin 10 antibodies delays onset
of autoimmunity in NZB/W F1 mice. J Exp Med 1994, 179:305-310.

68. Yin Z, Bahtiyar G, Zhang N, Liu L, Zhu P, Robert ME, McNiff J, Madaio MP,
Craft J: IL-10 regulates murine lupus. J Immunol 2002, 169:2148-2155.

69. Blenman KR, Duan B, Xu Z, Wan S, Atkinson MA, Flotte TR, Croker BP,
Morel L: IL-10 regulation of lupus in the NZM2410 murine model. Lab
Investig 2006, 86:1136-1148.

70.  Ely KH, Roberts AD, Kohlmeier JE, Blackman MA, Woodland DL: Aging and
CD8+ T cell immunity to respiratory virus infections. Exp Gerontol 2007,
42:427-431.

71. Janicki CN, Jenkinson SR, Williams NA, Morgan DJ: Loss of CTL function
among high-avidity tumor-specific CD8+ T cells following tumor
infiltration. Cancer Res 2008, 68:2993-3000.

72. Santori FR, Popmihajlov Z, Badovinac VP, Smith C, Radoja S, Harty JT,
Vukmanovic S: TCRB chain that forms peptide-independent alloreactive
TCR transfers reduced reactivity with irrelevant peptide/MHC complex. J
Immunol 2007, 178:6109-6114.

73. Hilliard B, Samoilova EB, Liu TS, Rostami A, Chen Y: Experimental
autoimmune encephalomyelitis in NF-kappa B-deficient mice:roles of
NF-kappa B in the activation and differentiation of autoreactive T cells. J
Immunol 1999, 163:2937-2943.

74. Oliver AR, Lyon GM, Ruddle NH: Rat and human myelin oligodendrocyte
glycoproteins induce experimental autoimmune encephalomyelitis by
different mechanisms in C57BL/6 mice. J Immunol 2003, 171:462-468.

doi:10.1186/1471-2172-13-8

Cite this article as: Tatari-Calderone et al.: Age-related accumulation of T
cells with markers of relatively stronger autoreactivity leads to
functional erosion of T cells. BMC Immunology 2012 13:8.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.ncbi.nlm.nih.gov/pubmed/9463404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9463404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9756642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9756642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9756642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12220553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12220553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12220553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10943869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10943869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8270873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8270873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12165544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16924244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17197143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17197143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18413769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18413769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18413769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17475836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17475836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10453042?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10453042?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10453042?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12817031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12817031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12817031?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Dynamics of peripheral T cell CD3 and CD5 levels in the function of thymic export
	Distinct functional phenotypes of T cells from type A- or type B- old mice
	Reduced T cell responses of old mice in vitro and in vivo
	Age related changes in T cells are accelerated in mice with increased avidity for self

	Discussion
	Conclusions
	Methods
	Mice and in vivo manipulations
	Quantitative PCR
	Flow cytometry
	Cell purification
	In vitro stimulation assays
	AICD analysis
	Statistical analysis

	Acknowledgements
	Author details
	Authors' contributions
	References

