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Abstract
Background: Using genomic DNA as common reference in microarray experiments has recently
been tested by different laboratories. Conflicting results have been reported with regard to the
reliability of microarray results using this method. To explain it, we hypothesize that data
processing is a critical element that impacts the data quality.

Results: Microarray experiments were performed in a γ-proteobacterium Shewanella oneidensis.
Pair-wise comparison of three experimental conditions was obtained either with two labeled
cDNA samples co-hybridized to the same array, or by employing Shewanella genomic DNA as a
standard reference. Various data processing techniques were exploited to reduce the amount of
inconsistency between both methods and the results were assessed. We discovered that data
quality was significantly improved by imposing the constraint of minimal number of replicates,
logarithmic transformation and random error analyses.

Conclusion: These findings demonstrate that data processing significantly influences data quality,
which provides an explanation for the conflicting evaluation in the literature. This work could serve
as a guideline for microarray data analysis using genomic DNA as a standard reference.

Background
DNA microarray technology has been quickly adapted by
mainstream laboratories to explore gene expression pro-
files of part or whole-genome for an organism [1,2]. A
number of microarray studies use an experimental design
in which experimental and reference RNA samples are
transcribed into cDNA molecules, labeled with different
fluorescent dyes (typically Cy5 and Cy3) and co-hybrid-

ized to the same microarray slide [3]. This approach,
sometimes called type 1 approach [4], is very costly and
tedious for a large number of samples, for which compar-
ison across all samples are often desired. Mathematic cal-
culation reveals that pairing all of the possible pairs for n
samples results in a total of n*(n-1)/2 combinations. This
polynomially increasing number could become unman-
ageable for individual laboratory when n is a big number.
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In addition, it is nearly impossible to compare data across
experiments since the cDNA reference sample composi-
tion is subjected to differences of experimental design and
hence not universal. It has been desired for a long time to
develop novel strategies to integrate data across multiple,
initially unrelated studies between laboratories or over a
long period of time to promote data sharing and integra-
tion. Lastly, this approach provides no information on the
absolute mRNA abundance, which is often useful since it
has been established in that global transcriptional levels
in microorganisms have strong correlation with global
protein levels and gene essentiality [4-6].

A conceptually sound solution to the problems in type 1
experiments is to use "reference design", which requires
co-hybridization of a common reference with all of the
samples of the microarrays. Typically, the ratio (γ1) from
cDNA: common reference is compared to another ratio
(γ2) from cDNA: common reference. The computed "ratio
of ratios" (γ1/γ2) is considered to be equivalent to direct
cDNA: cDNA comparisons. In contrast to the type 1
approach, this "reference design" approach is called type
2 approach [4], in which only n microarrays are needed to
calculate the ratios of any possible pairs of n samples.
Apparently, this strategy greatly reduces the costs and time
incurred in type 1 experiments. In addition, the absolute
mRNA abundance of each gene could be deduced from γ1
and γ2, when the copy number of each gene is known for
the common reference.

An ideal reference should fulfill the criteria of universality,
reproducibility and uniformity, meaning that it should be
universal across diverse microarrays, reproducible over a
long time frame and in different laboratories, and repre-
sents each gene at a uniform level. One kind of such refer-
ences is common RNA pools assembled from a number of
different cell lines, tissues and conditions. Commercial
universal RNA references are now available for mouse and
human samples (Stratagene). However, the RNA refer-
ences fall well short of the aforementioned criteria.
Although RNA pools are more comprehensive than a sin-
gle source of RNA sample, it still partially represents the
whole genome; there is inherent biological variability
among different RNA samples; and RNA could be
degraded over time. Therefore, data quality across multi-
ple studies is inevitably compromised. To address these
issues, genomic DNA has been proposed to replace uni-
versal RNA reference [7]. It is easy and economic to pre-
pare genomic DNA in large amount with low variations
between different laboratories. Furthermore, genomic
DNA is stable and could be stored over a long period of
time. It is independent of variations from one preparation
to another, which is a desirable feature of universal refer-
ence. In addition, genomic DNA represents entire genome
completely and uniformly, since the majority of genes are

presented in single or double copies in the genomes. It is
especially useful for microbial functional genomics
because of low representation of repetitive sequences and
intergenic regions in the genome. In addition, this feature
makes it easy to profile absolute mRNA levels. Several
recent studies have proven that genomic DNA reference is
indeed very effective and faithful for gene expression pro-
filing [8-14]. Furthermore, a comparative study between
genomic DNA reference and universal RNA reference has
reached the conclusion that genomic DNA is superior for
routine use [11].

Nevertheless, adopting genomic DNA as reference also
creates new challenges. It is conceivable that though this
strategy enables the integration of disparate studies, it
brings in new variations. For example, spots with low sig-
nal intensity from labeled genomic DNA are prone to high
standard errors for measurements, and spots with high
intensity considerably interfere with the hybridization of
cDNA samples to the probes, leading to low fidelity in the
ratio of cDNA to genomic DNA. For quality control pur-
pose, it is critical to identify these variances and remove
ambiguous values by data analyses. However, to our best
knowledge, so far this problem has not been unequivo-
cally tackled and there is no consensus among the scien-
tific community for the data analyses of microarray using
genomic DNA reference. For instance, some researchers
conducted array-to-array comparison with little data
processing except for background subtraction and
removal of poor or negative spots [15,16], while the oth-
ers employed extensive techniques involving complicated
statistical models [8,9,13,14]. It is thus necessary to
appraise the performance of different data processing
techniques.

In this study, we address this need by conducting a com-
parative study of type 1 and 2 experiments in a γ-proteo-
bacterium Shewanella oneidensis, which was capable of
respiring with oxygen, fumarate, trimethylamine-N-oxide
(TMAO), manganese (IV) oxides and ferric oxides as ter-
minal electron acceptors [17-19]. Gene expression pro-
files of S. oneidensis were generated under three growth
conditions – aerobic growth or anaerobic growth with
fumarate or ferric citrate as electron acceptor. Variations
among gene expression profiles were compared and we
concluded that data processing techniques, including set-
ting minimal number of replicates, logarithmic (log)
transformation and random error analyses, appeared to
be valuable to improve data quality.

Results
As indicated in the introduction, type 2 experiments using
genomic DNA reference could add an additional layer of
variance and hence impair data quality as compared to
type 1 experiments. To evaluate it, we performed both
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type 1 and 2 microarray experiments. RNA was extracted
from mid-logarithmically grown Shewanella oneidensis
strain DSP10 under aerobic condition (O2), or under
anaerobic conditions with fumarate (Fum) or ferric citrate
(Fe) as electron acceptors. cDNA was subsequently tran-
scribed and labeled with Cy5 or Cy3, and any pair of two
conditions was co-hybridized on microarray slides, yield-
ing three direct ratios, namely Fum/O2, Fe/O2 and Fe/
Fum. Meanwhile, RNA from each condition was reversely
transcribed and labeled by Cy5 and co-hybridized with
Cy3-labeled Shewanella genomic DNA. To obtain expres-
sion ratios of Fum/O2, Fe/O2 and Fe/Fum, the ratios of
cDNA: gDNA were calculated, and then the inferred (indi-
rect) ratios were obtained by calculating the "ratio of
ratios" as (cDNA1/gDNA) over (cDNA2/gDNA). Results
from type 1 experiments were compared to those
obtained in type 2 experiments. Two previous studies
employed few data processing techniques except for basal
ones such as background subtraction and removal of poor
or negative spots [15,16]. Therefore, the same procedures
were applied to generate the inferred ratios. Two criteria
were used to judge the similarity between both methods.
First of all, the overall similarity was determined by corre-
lation coefficient derived from both sets of expression
ratios over the entire genome, which provides a compre-
hensive view of the impact when a data processing tech-
nique is evaluated. Secondly, to identify the most
inconsistent data, the changes of gene expression were cat-

egorized as "induction (ratio > 2)", "repression (ratio <
0.5)" and "no change (0.5 <= ratio <= 2). For example, if
the result is 3 for type 1 experiments but 30 for type 2
experiments, the data can still be considered as consistent
from biological point of view since the gene is induced in
both experiments. However, if the result is 3 for type 1
experiments but 0.3 for type 2 experiments, they should
be considered as inconsistent because they represent two
opposite categories as induction and repression, respec-
tively. In this study, we focus on this type of inconsistency
because they have the greatest impact on the biological
interpretation.

The Pearson correlation coefficients of these two results
fell in the range of 0.72–0.77 (Figure 1). In contrast, the
average correlation coefficient of replicates within type 1
or 2 experiments was 0.87. Therefore, the results from
type 1 and 2 experiments were not very similar. In addi-
tion, a number of ratios from two methods (11 values for
Fum/O2, 17 values for Fe/O2 and 8 values for Fe/Fum) fell
into two opposite categories (induction vs. repression)
(Figure. 1). Therefore, there were clear inconsistencies
between type 1 and 2 experiments.

To provide quantitative evaluation on the consistency
from statistical viewpoint, one-way ANalysis Of VAriance
(ANOVA), a powerful statistical approach to determine
differences, was applied to selected genes. Table 1 shows

Scatter plot represents the correlation of the results from type 1 and 2 experimentsFigure 1
Scatter plot represents the correlation of the results from type 1 and 2 experiments. Genes with expression changes in oppo-
site categories (induction vs. repression) in both approaches are visualized as dots located in the 2nd and 4th quadrants and 
away from the origin. Pearson's correlation coefficients (r) are indicated in each panel.
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two representative genes with multiple replicates for the
expression ratios of Fum/O2. Analysis of OmcA leads to
the p value of 0.0198, inferring that two reference meth-
ods are significantly different as judged by significance
level of 0.05. In contrast, the p value is 0.5054 for gene
NapG, which fails to reject the null hypothesis.

A previous study has identified a number of genes previ-
ously regulated under Fum and Fe-reducing conditions in
S. oneidensis [20]. While the results of type 1 experiments
were generally consistent with existing knowledge, the
results of type 2 experiments were not. For example, it is
known that c-type cytochromes OmcA and OmcB exist as
a complex on outer membrane and function to reduce
extracellular Fe(III) and U(VI) as terminal electron accep-
tors. Their expression is induced for several folds under
anaerobic conditions ([21] and unpublished results in
our laboratory). In addition, expression of fumarate
reductase FccA and its paralog IfcA is induced under Fe-
reducing condition [21,22]. All of these expression pat-
terns have been correctly confirmed by type 1 but not type
2 experiments (Table 2). Therefore, the basal data analyses
are not efficient to remove potentially noisy values in type
2 experiments.

The minimal number of replicates
Minimal number of replicates serves as a threshold to
remove genes without sufficient number of observations.
If the number is lower than the threshold, the data for that
gene are then disregarded. We first tested whether setting
a minimal number of replicates improves the quality of
the data. Pearson correlation coefficient (r) of both
approaches were increased under all pairs of conditions
when the minimal number of slides was set higher, dem-
onstrating that it significantly improves data quality at
global level (Figure 2A). Furthermore, the inconsistency

between both approaches, as represented by the number
of genes in opposite categories, was also reduced (Figure
2B). However, this is at the expense of losing significant
amount of data (Figure. 2C). In this study, over 60% of
values were lost when the minimal number of replicates
was set to be 11.

Logarithmic transformation
If there is a positive relationship between the standard
deviation (SD) of the replicates and their mean, logarith-
mic transformation is often conducted to remove a large
portion of the relationship between the SD and mean.
This approach is called proportional model. If there is no
positive relationship between SD and mean, no log trans-
formation should be applied and the data are analyzed in
the raw form. This is called additive model. It is interesting
to test whether applying logarithmic transformation has
an impact in microarray analyses. Figure 3A indicated that
proportional model was clearly superior to additive
model in our data sets. Applying proportional model
resulted in r values of 0.73, 0.80 and 0.72 for Fum/O2, Fe/
O2 and Fe/Fum conditions, respectively. In contrast,
applying additive model resulted in much lower r values
in the range of 0.39–0.53. Furthermore, proportional
model resulted in fewer genes in opposite categories than
additive model (Figure 3B). To explain it, correlation coef-
ficient of SD and mean value was calculated for each
microarray dataset. There was clear positive relationship
between SD and mean, as indicated by correlations of
0.81–0.88. These results suggested that logarithmic trans-
formation should be applied.

Table 1: ANOVA tests for napG and omcA. 

NapG N Means SD SE

CDNA 12 -3.234 1.627 0.4698
GDNA 10 -2.674 2.241 0.7087
Source Variance SSq DF MSq F p
NapG 1.709 1 1.709 0.46 0.5054
Within-cells 74.338 20 3.717

OmcA N Means SD SE

CDNA 12 1.667 0.527 0.1521
GDNA 2 0.461 1.047 0.7400
Source Variance SSq DF MSq F p
omcA 2.494 1 2.494 7.21 0.0198
Within-cells 4.149 12 0.346

N: number of replicates; SD: standard deviation; SE: standard error; 
SSq: sum of square; DF: degree of freedom; MSq: mean square; F: F 
test value; and p: probability value.

Table 2: The results of type 1 and 2 microarray experiments for 
genes encoding cytochrome c. 

Fum/O2 Fe/Fum Fe/O2

Gene Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

ifcA-1 N/A 1.79 4.70 2.06 4.36 1.15
ifcA-2 4.16 8.52 24.16 19.88 7.87 2.33
SO1427 2.93 5.4 18.35 12.81 4.19 2.37
MtrB 2.81 6.15 3.56 1.98 1.56 0.32
MtrA 3.83 2.53 2.51 2.64 1.36 1.04
OmcB N/A 0.75 1.40 0.89 1.30 1.19
OmcA 2.61 0.96 1.70 1.11 1.41 1.15
MtrF 1.24 2.06 1.97 1.15 1.66 0.56
SO1781 0.92 1.84 1.15 0.48 1.16 0.26
MtrD N/A 1.96 N/A 0.30 N/A 0.15
FccA 1.50 1.25 2.34 0.79 1.68 0.63
NapB 0.26 0.36 0.66 0.61 3.85 1.68
NapH 0.1 0.28 1.07 0.21 3.23 0.77
NapG 0.17 0.24 0.54 0.38 5.28 1.61

Values in boldface are consistent with previous reports, while values 
underlined are not. N/A: data not available.
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Random error analyses
No measurement is entirely accurate. It is hence impor-
tant to estimate the amount of measured value that could
randomly deviate from the true value. This technique is
called random error analyses or uncertainty analyses. A
series of repeated measurements are usually used to make
a reasonable estimate. The repeated measurements
include biological and technical replicates. It is necessary
to take random error into account to determine the signif-
icance of the results. One method, called small sample
method, estimates random error on the replicates of indi-
vidual genes, regardless of all of the other genes in the
array. In contrast, random error could also be estimated
on the entire array because this might be more accurate
than estimation of small number of replicates for individ-
ual genes. A common error approach makes the assump-
tion that the SD of replicates is unrelated to mean signal
intensity. Alternatively, a curve fit approach could recog-
nize the relationship between SD and mean by a regres-
sion line (curve fit).

Figure 4 demonstrates that small sample method has the
best outcome, as judged by the highest r values (Figure
4A) and the fewest genes in opposite categories (Figure
4B). Moreover, it is better than cases without random
error analyses, suggesting that applying small sample
method improves data quality. In contrast, common error
method yields the lowest r values and the most genes in
opposite categories. This observation is consistent with

our discovery of positive relationship between SD and
mean in the dataset.

Other data processing techniques
Outliers are data points that are not faithfully reproduci-
ble among replicates, yet have a disproportionately large
effect on the average values. Thus removal of outlier from
source file is likely to improve data quality. Hence we
compared results with and without outlier removal. Two
criteria, namely p < 0.05 and p < 0.01, were applied to out-
lier removal. p refers to the possibility of making a Type I
error in identifying outliers. Accordingly, p < 0.05 will
detect more outliers than p < 0.01. Table 3 shows that the
consistency between type 1 and 2 approaches is not
improved by removing outliers, as demonstrated by little
changes of r values and number of genes in opposite cate-
gories. Notably, when outlier removal was tested, mini-
mal number of replicates was set as 4. It is thus possible
that signal fluctuation is already fairly limited. Indeed, at
outlier filter of p < 0.05, only ~15 values (i.e. 0.3% of total
values) were removed from each of Fum/O2, Fe/O2 and
Fe/Fum comparisons. If minimal number of replicates is
not used, outlier removal has a slight impact on data qual-
ity (data not shown).

We also tested the effect of flooring. Low signals in direct
comparison of RNA samples often produce spurious
expression ratios, thus signals below a certain threshold
level are often set to the threshold level [23,24]. To test if

Assessment of minimal number of replicatesFigure 2
Assessment of minimal number of replicates. Blue line: Fum/O2; pink line: Fe/O2; and red line: Fe/Fum. X-axis: minimal number 
of replicates. (A) Plot of r values with different minimal number of replicates. Y-axis: r values comparing the results from type 1 
and 2 approaches. (B) Number of genes in opposite categories (induction vs. repression) with different minimal numbers of 
replicates. Y-axis: numbers of genes. (C) Total number of genes with different minimal numbers of replicates. Total number of 
genes was set to 100% when minimal number of replicates was 2, and the total number of genes at other minimal number of 
replicates was normalized accordingly. Y-axis: numbers of genes.
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Assessment of logarithmic transformationFigure 3
Assessment of logarithmic transformation. Black and gray columns represent proportional and additive models, respectively. 
(A) A histogram representing r values. (B) A histogram showing the number of genes in opposite categories.

Assessment of random error analysesFigure 4
Assessment of random error analyses. Column 1: small sample method; 2: Curve fit method; 3: common error method; and 4: 
no random error analyses. (A) A histogram representing r values. (B) A histogram showing the number of genes in opposite 
categories.
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employed: no floor, floor an absolute value of 20 or 50, or
floor 1% lowest signals. As shown in Table 3, data quality
is not improved, indicating that flooring does not appear
to be an effective technique in type 2 experiments.

Discussion
It is often desirable to compare results from any two
experimental conditions in microarray studies. Type 2
microarray experiments using a common reference such
as genomic DNA allows for inter-conditional compari-
sons. However, the reliability of the comparison is often
questionable since microarray is notorious for its consid-
erable fluctuation of signals. In this report, we test a vari-
ety of data processing techniques in order to improve data
quality in type 2 experiments. Two criteria are used to
evaluate these techniques: by (1) correlation coefficient to
the corresponding type 1 experiments; and (2) classifying
differential expression values of genes into "up", "down"
and "constant" categories, and then focus on genes in
opposite categories. The first criterion evaluates the
impact of techniques at the whole-genome level, while the
latter addresses the most inconsistent data. Two-fold was
used as threshold to classify the categories, which was
reported to be a solid benchmark for induction or repres-
sion of gene expression [25]. However, it is still likely that
ratio changes of less than two fold are both statistically
significant (judged by z-test or t-test) and biologically
meaningful. Thus two-fold is used here as a general guide-
line to simplify our study.

One important prerequisite in our study is that the results
from type 1 experiments are more reliable than those
from type 2 experiments. One way to comprehend it is to
analogize with triangle inequality relation for metric
spaces: errors of an indirect path should be no less than
errors of a direct path. To date, the reliability of data in
type 1 experiments has been extensively studied. It has
been estimated that over 90% of the results could be veri-
fied by other techniques such as quantitative reverse tran-
scription PCR or northern blot [26]. Therefore, it is
reasonable to believe that the results of type 2 experiments

will be more reliable when their consistency to those of
type 1 experiments is improved. This is also confirmed by
the existing information of gene expression ratios, as
exemplified in Table 2.

Among data processing techniques, the minimal number
of replicates seems to be a critical one to filter out incon-
sistency between the results of type 1 and 2 experiments,
as demonstrated in Figure 2. Consistently, previous stud-
ies adopting this technique concluded that the results of
type 2 experiments were fairly reliable [8,9], while other
studies without using it gave unfavorable opinion to the
reliability of microarray data using genomic DNA refer-
ence [15,16].

A large number of data processing strategies are available
for microarray data analyses. In this short report, we could
only examine several of them. Moreover, caution should
be taken to extend conclusions from our study to other
microarray experiments. It is likely that some of our con-
clusions would not hold for specific microarray datasets.
Nevertheless, since we show here that data analysis proc-
ess has a significant impact on the reliability of the results
in type 2 experiments, it is thus advisable for researchers
to evaluate their data processing techniques carefully
when genomic DNA or another common reference is used
in microarray experiments.

Materials and methods
Sample preparation and microarray scanning
Shewanella oneidensis whole-genome microarray was con-
structed as described previously [27]. Strain DSP10, a
rifampin-resistant derivative of strain MR-1, was used in
this study because this strain has been widely used in
genetic studies of Shewanella oneidensis. It is thus of inter-
est to catalog DSP10's gene expression.

DSP10 was grown aerobically in 100 ml Luria-Bertani
medium (LB, Difco) to mid-logarithmic phase at 30°C.
Alternatively, DSP10 was grown anaerobically to mid-log-
arithmic phase in 200 ml LB liquid supplemented with 20

Table 3: Assessment of outlier removal and flooring. 

Techniques r Number of genes in opposite categories

Fum/O2 Fe/O2 Fe/Fum Fum/O2 Fe/O2 Fe/Fum

No_outlier 0.76 0.84 0.76 5 1 1
Outlier_p < 0.01 0.76 0.84 0.75 4 3 1
Outlier_p < 0.05 0.76 0.84 0.75 5 5 1
No floor 0.76 0.85 0.77 2 6 2
Floor of 20 0.76 0.84 0.75 5 5 1
Floor of 50 0.77 0.84 0.78 5 4 1
Floor of 1% 0.75 0.83 0.72 7 7 2

Both techniques are dispensable for type 2 microarray analyses.
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mM lactate, and with either 10 mM fumarate or 10 mM
ferric citrate as electron acceptor. Mid-logarithmic phase
was determined by measuring the turbidity at 600 nm in
a spectrophotometer for aerobic or anaerobic 10 mM
fumarate cultures, or by epifluorescence microscopy using
acridine orange staining [28] for anaerobic 10 mM Fe(III)
citrate cultures. Cells were then collected by centrifugation
at 4 krpm for 10 minutes. After discarding the superna-
tant, the pellets were immediately lysed by Trizol (Invitro-
gen), or chilled in liquid nitrogen and then kept at -80°C
for later use. Total RNA was extracted as described previ-
ously [29]. RNA samples were treated with RNase-free
DNase I (Ambion) to digest residual chromosomal DNA
and then purified with RNeasy Kit (Qiagen) prior to spec-
trophotometric quantification at 260 and 280 nm. For
type 1 experiments, cDNA was produced in a first-strand
reverse transcription (RT) reaction and labeled with Cy5
or Cy3 dUTP (Amersham Biosciences) in the presence of
random hexamer primers (Invitrogen). Fluorescein
labeled probes were then purified using a PCR purifica-
tion kit (Qiagen). Slides were pre-hybridized at 50°C for
about one hour to remove unbound DNA probes in a
solution containing 50% (V/V) formamide, 9% H2O,
3.33% SSC (Ambion), 0.33% sodium dodecyl sulfate
(Ambion), and 0.8 μg/μL bovine serum albuminin (New
England Biolabs). Slides were hybridized at 50°C over
night with Cy5- and Cy3-labeled probes in the above solu-
tion, minus BSA and with the addition of 0.8 μg/μL her-
ring sperm DNA (Invitrogen) to prevent random binding.
Pre-hybridization and hybridization were carried out in
hybridization chambers (Corning). Slides were then
washed on a shaker at room temperature in the following
order: 7 minute in 1 × SSC, 0.2% SDS; 7 minute in 0.1 ×
SSC, 0.2% SDS; and 40 second in 0.1 × SSC. For type 2
experiments, 100 ng S. oneidensis genomic DNA (gDNA)
was amplified by incubated at 37°C for 3 hours using Kle-
now fragment of DNA polymerase (Invitrogen) and ran-
dom primers followed by transferring on ice to stop the
labeling. Cy3 dUTP was incorporated in the product
(Amersham Biosciences) and then Cy3-labeled genomic
DNA was co-hybridized with Cy5-labeled cDNA on pre-
hybridized microarray slides as described above. A total of
twelve replicates were prepared for both approaches. A
program ImaGene version 5.5 (Biodiscovery) was used to
grid and quantify microarray images. Background signals
around each spot were calculated and subtracted from the
signal intensity of each spots. Spots of Signal/background
ratios < 3 were regarded as negative spots. All negative,
poor and empty spots were flagged and discarded.

Data analysis of type 1 experiments
Data analysis of type 1 experiments in S. oneidensis was
carried out as previously described [29]. Quantified
microarray was loaded onto GeneSight-Lite, a plug-in pro-
gram of ImaGene 5.5 for background subtraction, flagged

spots removal, floor of 20 and normalization by mean.
The results after processing were subsequently transferred
onto software ArrayStatTM (Imaging Research), in which
extensive statistical tools were available. In general, mini-
mal number of replicates was set as 4, proportional model
and small sample model were selected before outlier
removal at p < 0.05. The significance of differential expres-
sion was determined by two-way t-test.

Data analysis of type 2 experiments
Local background subtraction and flagged spots removal
were implemented in the same way as type 1 experiments.
If no other data processing technique was used, inferred
ratio was calculated by T2/T1 = (T2/R2)/(T1/R1), where T
and R represented the mean value of cDNA and genomic
DNA reference signals from all of the twelve replicates,
respectively. To evaluate selected data processing tech-
niques, data were processed in the same order as type 1
experiments, with change in only one parameter for each
time. Certain parameters were specified as: floor of 20 and
normalization by mean, data with less than the minimal
number of replicates of 4 were removed, and then fol-
lowed by execution of proportion model and small sam-
ple model. Then outlier was removed by p < 0.05 and
finally, expression ratios were obtained by calculating the
division of two ratios.

Pearson correlation coefficient, the number of genes in 
opposite categories and one-way ANOVA
Pearson correlation coefficient (r) was computed between
results acquired from type 1 and 2 approaches. To obtain
the number of genes in opposite categories, two-fold
change was used as criterion. We consequently catego-
rized the differential expression values into three classes:
"up" for expression ratios of more than 2, "down" for
expression ratios of less than 0.5, and "no change" for all
other ratios. A gene was considered to be in opposite cat-
egories if its expression ratio was classified as "up" in type
1 experiment and "down" in type 2 experiment, or vice
versus. For one-way ANOVA, the logarithmic transforma-
tion was applied to the ratio values to normalize the
expression variation among genes and equalize the data
scale intervals for ANOVA test. The significance level of p
value < 0.05 was used as criterion to reject or accept the
null hypothesis "the two reference methods are not signif-
icantly different from each other".
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