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Abstract
Background: Prostate cancer is one of the leading causes of cancer death in men. Androgen
ablation, the most commonly-used therapy for progressive prostate cancer, is ineffective once the
cancer cells become androgen-independent. The regulatory mechanisms that cause this transition
(from androgen-dependent to androgen-independent) remain unknown. In this study, based on the
microarray data comparing global gene expression patterns in the prostate tissue between
androgen-dependent and -independent prostate cancer patients, we indentify a set of transcription
factors and microRNAs that potentially cause such difference, using a model-based computational
approach.

Results: From 335 position weight matrices in the TRANSFAC database and 564 microRNAs in
the microRNA registry, our model identify 5 transcription factors and 7 microRNAs to be
potentially responsible for the level of androgen dependency. Of these transcription factors and
microRNAs, the estimated function of all the 5 transcription factors are predicted to be inhibiting
transcription in androgen-independent samples comparing with the dependent ones. Six out of 7
microRNAs, however, demonstrated stimulatory effects. We also find that the expression levels of
three predicted transcription factors, including AP-1, STAT3 (signal transducers and activators of
transcription 3), and DBP (albumin D-box) are significantly different between androgen-dependent
and -independent patients. In addition, microRNA microarray data from other studies confirm that
several predicted microRNAs, including miR-21, miR-135a, and miR-135b, demonstrate differential
expression in prostate cancer cells, comparing with normal tissues.
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Conclusion: We present a model-based computational approach to identify transcription factors
and microRNAs influencing the progression of androgen-dependent prostate cancer to androgen-
independent prostate cancer. This result suggests that the capability of transcription factors to
initiate transcription and microRNAs to facilitate mRNA degradation are both decreased in
androgen-independent prostate cancer. The proposed model-based approach indicates that
considering combinatorial effects of transcription factors and microRNAs in a unified model
provides additional transcriptional and post-transcriptional regulatory mechanisms on global gene
expression in the prostate cancer with different hormone-dependency.

Background
Prostate cancer is the second leading cause of cancer death
in males in the United States [1]. When androgen ablation
therapy, an commonly-used treatment protocol, becomes
ineffective, prostate tumors progress from androgen
dependent (AD) to androgen independent (AI) stage [2].
In the past decade, many studies were conducted to inves-
tigate the mechanism that causes the transition of hor-
mone dependency in prostate cancer [3,4], including low
throughput experiments, such as Western blot, real-time
PCR, and Northern blot [5,6], and high-throughput stud-
ies including microarray experiments [7-9]. Several tran-
scription factors, including AP-1 [7], NFκB[10], and EGR
(early growth response factor) [9] etc, were reported to be
related to prostate cancer progression. From these experi-
ments, important molecular mechanisms were identified
to contribute to the cancer development, including andro-
gen amplification, promiscuous binding, outlaw path-
way, bypass pathway, and androgen receptor coregulators
[3,4]. Despite these discoveries, however, the complete
mechanism of hormone dependency in prostate cancer
regulation remains unclear. Such mechanism is further
complicated with the recent discovery of microRNA, a
class of non-coding RNAs that regulate gene expression in
the post-transcriptional level.

MicroRNAs bind to the 3'-untranslated region (3'-UTR) of
target transcripts to regulate gene expression by either
inhibiting translation or promoting mRNA degradation
[11]. Accumulating evidence indicates that microRNAs
play critical roles in multiple biological processes, includ-
ing cell cycle control, cell growth and differentiation,
apoptosis, and embryo development [12-15]. Impor-
tantly, strong links were established between microRNA
deregulation and the occurrences of human diseases, in
particular cancer. Genome-wide association studies dem-
onstrated that many human microRNA genes locate at
genomic regions linked to cancer [16,17]. Moreover, a
recent study found that the absolute expression levels of
many microRNAs were reduced significantly in tumors
[18]. It was reported that 45 microRNAs differentially
expressed in prostate cancer samples comparing with nor-
mal tissues [19], including miR-125b, which plays impor-

tant roles in inducing androgen-independent growth of
prostate cancer cells [20].

Similar to transcription factors, microRNAs regulate gene
expression in a combinatorial fashion, i.e., individual
microRNA can regulate multiple genes, and individual
gene can be regulated by multiple microRNAs [21,22].
Based on this principle, we previously developed a model-
based approach, MotifModeler [23], to identify de novo
transcription factor and microRNA binding sites from
array-derived gene expression data. In this study, we mod-
ify the previous approach by focusing on a set of biologi-
cally-known transcription factor and microRNA binding
sites documented in the TRANSFAC database [24] and
microRNA registry [25]. This modification allows direct
interpretation of the predicted results.

We apply this model on the microarray data that measure
the differences in global gene expression levels in andro-
gen-dependent and androgen-independent prostate tis-
sues [7]. Our model identifies 5 transcription factors and
7 microRNAs that potentially contribute to such differ-
ences. The biological functions of predicted transcription
factors and microRNAs are further reassured through var-
ious bioinformatics analysis.

Results
Data set description
In order to investigate the molecular mechanisms under-
lying the progression of androgen-independent prostate
cancer, microarray experiment was conducted in an earlier
study, which reported that 239 genes were differentially
expressed (p < 0.005) between primary prostate tumors
from 10 untreated androgen-dependent and 10 andro-
gen-independent prostate carcinoma patients. In this
study, we focus on these 239 differentially expression
genes, which include 92 genes and 147 genes are over-
expressed and under-expressed in androgen-independent
samples, respectively. The original microarray data are
retrieved from Gene Expression Omnibus (GEO) data-
base (GEO number: GSE9545).
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Computational identification of functional transcription 
factors and microRNAs
In order to understand potential transcriptional and post-
transcriptional mechanisms that cause the differences in
gene expression in AD and AI samples, we develop a com-
putational procedure to identify transcription factors and
microRNAs that potentially result in the expressional
changes of hundreds of genes. This algorithm is an exten-
sion of MotifModeler[23], a procedure we previously devel-
oped to identify de novo cis-acting DNA elements from
array-derived gene expression data. In this study, in stead
of identifying potential binding sites of transcription fac-
tors and microRNAs from all the potential DNA elements
of a fixed size (such as hexamers), we focus our investiga-
tion on the biologically known transcription factors doc-
umented in TRANSFAC database and microRNAs
documented in microRNA registry. Among 741 position
weight matrices (PWMs) documented in TRANSFAC data-
base [24], 459 PWMs represent binding sites of transcrip-
tion factors in human, mouse, or rat genome. We further
reduce our searching space on the 335 PWMs, where
mRNA expression levels of at least one of their binding
proteins can be reliably detected in at least 10% of the
samples (called "present" using MAS5 algorithm in the
original microarray experiment). For microRNA predic-
tion, we use all the 564 microRNA in the microRNA regis-
try [25,26] (miRBase, v.10.1).

In order to identify the functional transcription factors
and microRNAs that potentially cause the differences in
gene expression between androgen-dependent and -inde-
pendent samples, we construct a matrix that contains 239
rows representing differentially-expressed genes and 899
columns representing 335 PWMs and 564 microRNAs,
respectively. Each element in the matrix denotes a score
that describes the binding potential of the corresponding
transcription factor or microRNA on the promoter or 3'-
UTR of the corresponding gene. The goal of our modelling
is to identify a subset of the 899 columns that best
describe the expression level differences of the 239 genes.

For each potential transcription factor and microRNA, our
procedure calculates a fitness score (GEC: gene expression

contributing score) by assessing how well its occurrences
in the promoter or 3'-UTR correlate with the expression
level difference, in the context of combinatorial regula-
tion, and a functional score (TF or MI) that evaluates its
potential function on the global gene expression differ-
ence. A positive and negative functional score implies that
its occurrence in the gene regulatory region contributes to
the global gene over- and under-expression in the andro-
gen-independent samples comparing with the -dependent
samples, respectively.

Fig 1 shows the histograms of GEC scores of all the tran-
scription factors and microRNAs, where a larger GEC
score implies a more significant contribution to the differ-
ences of gene expression between two prostate tumor
groups. In order to distinguish the functional transcrip-
tion factors and microRNAs from the nonfunctional ones,
we only consider the candidates whose GEC scores are
larger than mean + 3 × standard deviation as functional
regulators (the cutoff is indicated by the arrow in Figure
1). Based on this criterion, 7 PWMs, corresponding to 5
unique transcription factor binding sites (Table 1), and 7
microRNAs with highest GEC score are selected (Table 2).
Interestingly, the identified transcription factors and
microRNAs demonstrate significant bias on their esti-
mated functional levels. All the 7 PWMs that represent
transcription factor binding sites are predicted to contrib-
ute to the under-expressions in the AI samples than in AD
samples (TF < 0), while 6 out of 7 selected microRNAs
show opposite functions (MI > 0). Considering the fact
that microRNAs bind to complementary sites of 3'-UTR to
induce RNA degradation, the positive MI values can be
translated to the decreased capabilities to trigger RNA deg-
radation in androgen-independent prostate tumors.

Expression levels of predicted transcription factors and 
microRNAs
We further examine the mRNA expression levels of tran-
scription factors that potentially bind on the predicted
PWMs. We find that 4 transcription factor genes, JUNB,
JUND, STAT3, DBP, whose products bind to 3 out of 5
predicted transcription factor binding sites (AP-1, STAT3,
and DBP) are under-expressed in the AI samples in the

Table 1: GEC scores and predicted function levels (TF) of top 7 selected position weight matrices

Index ID Name PWM Description GEC TF

1 M00199↓ AP-1 AP-1 binding site 0.0886 -7.61E+05
2 M00225↓ STAT3 signal transducer and activator of transcription 3 0.0885 -6.48E+05
3 M00926↓ AP-1 AP-1 binding site 0.0878 -1.35E+06
4 M00495 Bach1 BTB and CNC homolog 1 0.0870 -5.91E+05
5 M00925↓ AP-1 AP-1 binding site 0.0870 -1.97E+05
6 M00982 KROX early growth response 0.0860 -6.86E+05
7 M00624↓ DBP albumin D-box 0.0857 -6.47E+05

↓: the expression level of the transcription factor binding to the predicted binding site is down-regulated in expression array.
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microarray experiment (indicated by ↓ in table 1). This
result provides important evidence that the functional dif-
ferences of these factors between AI and AD samples are
potentially driven by the expressional changes in the tran-
scription level.

In order to evaluate the biological relevance of the pre-
dicted microRNAs, we examine their expression profiles
in 6 different cancer types, published by an independent
study that includes prostate, lung, breast, colon, gastric,
and pancreatic cancers, using microRNA microarray tech-
nology (Table 3) [19]. Five out of 7 predicted microRNAs
are included in the microRNA microarray design. Among
them, 3 microRNAs, hsa-miR-135a, hsa-miR-135b, hsa-
miR-21 are differentially expressed in prostate tumor
comparing with normal samples. Interestingly, hsa-miR-
21 is ubiquitously differentially expressed in all six cancer
types comparing with normal tissues, while hsa-miR-135a

and hsa-miR-135b are specific to prostate tumors.
Although no significant expressional difference is detected
for hsa-miR-155 between prostate tumors and normal tis-
sues, its signal can be reliably detected in the microRNA
microarray (or present) in prostate cancer. In addition,
this microRNA is differentially expressed in four other
cancer types, including lung, beast, colon, and pancreatic
cancers, which suggests its potential roles in regulating
tumorigenesis.

Ingenuity pathway analysis
Interaction networks among genes differentially expressed
between androgen-independent and -dependent tumors
are identified using Ingenuity pathway analysis (Fig. 2 and
3). Transcription factors binding on 2 predicted binding
sites, AP-1 and STAT, are identified in the enriched net-
works. AP-1, a protein complex of FOS and JUN, appears
at the centre of the network, in which 19 down-regulated

Table 2: GEC scores and predicted function levels (MI) of top 7 selected microRNAs.

Index Name Mature miRNA sequence GEC MI

1 hsa-miR-144 uACAGUAUAgaugauguacu 0.0651 8.84E+05
2 hsa-miR-135b uAUGGCUUUucauuccuauguga 0.0627 6.45E+05
3 hsa-miR-135a uAUGGCUUUuuauuccuauguga 0.0626 5.86E+05
4 hsa-miR-654 uGGUGGGCCgcagaacaugugc 0.0625 -5.23E+05
5 hsa-miR-448 uUGCAUAUGuaggaugucccau 0.0619 6.35E+05
6 hsa-miR-155 uUAAUGCUAaucgugauaggggu 0.0613 5.71E+05
7 hsa-miR-21 uAGCUUAUCagacugauguuga 0.0611 5.65E+05

Seed sequences are highlighted by capital letter.

The histogram of GEC score for known position weight matrices and microRNA binding sitesFigure 1
The histogram of GEC score for known position weight matrices and microRNA binding sites. (A) Histogram of 
GEC scores of 335 known PWMs documented in the TRANSFAC database. (B) Histogram of GEC scores of 564 microRNAs.
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genes and 3 up-regulated genes are related. This result is
consistent with model prediction, where all the three AP-
1-related binding sites are predicted to contribute to the
under- expression in androgen-independent samples (TF
< 0, Table 1).

Clinical relevance of identified transcription factors
Using Oncomine database, we examine the expression
patterns of identified transcription factors in different
types of prostate tissues, including normal prostate,
benign prostatic hyperplasia, primary prostate tumors
and metastatic prostate tumors. Expression levels of eight
transcription factors targeting on 3 identified binding sites
can be retrieved from Oncomine, where six proteins, JUN,
JUNB, JUND, FOS, FOSL1, and FOSL2 bind on AP-1 site,
EGR1 (early growth response element 1) binds on KROX
site, and STAT3 (signal transducer and activators of tran-
scription 3) binds on STAT3 site. It turns out that expres-
sion levels of all the 8 transcription factors have
significantly negative correlation with the severity of the
disease, which means that with the deterioration of pros-
tate cancer, the gene expression levels of these transcrip-
tion factors decrease (Fig. 4 and Table 4).

Combinatorial regulation
In order to evaluate the combinatorial effects of transcrip-
tional and post-transcriptional regulation that result in
the differences in gene expression between AI and AD
samples, co-occurrences of any pair of predicted transcrip-
tion factors or microRNAs in the promoter or 3'-UTR of
the 239 differentially expressed genes are examined. Fig-
ure 5 shows the percentage of common genes regulated by
two transcription factors or microRNAs among the total
genes targeted by the same factor pair. Fisher's exact test is
used to assess the significance of the co-occurrences of two
factors targeting a common gene, and false discovery rate
(FDR) is calculated by correcting the p-value with multi-
ple hypotheses. Since hsa-miR-135a and hsa-miR-135b
have identical seed and similar sequences, the percentage
of predicted commonly-regulated genes is as high as 90%.
This number, however, is potentially caused by the arte-
fact that the microRNA-target prediction algorithm being

used (PITA) is incapable to distinguish their target genes,
and therefore excluded from further discussion. Eleven
pairs of transcription factors or microRNAs are found to
significantly co-exist in regulating common genes (FDR <
20%, Table 5). Among them, 9 pairs are between microR-
NAs, 1 pair is between transcription factors (AP-1 and
Bach1), and 1 pair are between transcription factor
(KROX) and microRNA (hsa-miR-448).

Discussion
In this study, using known position weight matrices
(PWMs) of transcription factors, documented in the
TRANSFAC database, and microRNA-target gene predic-
tion, we simultaneously identify the most influential tran-
scription factors and microRNAs that potentially cause the
differences in global gene expression profile between
androgen-independent and androgen-dependent
patients. Focusing on 239 differentially expressed genes
between AI and AD samples, our model predicted 5 tran-
scription factors (with 7 different PWMs) and 7 microR-
NAs that potentially cause gene expression differences.
Interestingly, all the 7 PWMs that represent binding sites
of 5 transcription factors are predicted to contribute to the
decreased levels of gene expression in AI samples, while 6
out of 7 microRNAs are predicted to have opposite effect,
i.e., contribute to the increased level of gene expression in
AI samples. One potential interpretation is that in andro-
gen-independent prostate tumors, the capability of tran-
scription factors to initiate transcription and microRNAs
to degradate mRNA are both repressed.

Many of identified transcription factors are known to be
related to the prostate cancer development. AP-1, a tran-
scription factor that consists of dimers of the c-Fos, c-Jun,
ATF and JDP families, interacts with DNA through leucine
zipper (bZIP) domains. It was reported that physiologi-
cally-elevated concentrations of androgens cause pro-
longed AP-1 DNA binding activity in androgen-
responsive prostate carcinoma cell line (LNCaP cells),
through induced production of reactive oxygen species.
Such effect was not observed in androgen-independent
cells (DU145) [27]. It was also reported that AP-1 inter-

Table 3: Expression profiles of the predicted microRNAs in six cancer types (prostate, lung, breast, colon, gastric, and pancreatic 
cancers)

Index Name Prostate Lung Breast Colon Gastric Pancreatic

1 hsa-miR-144 Absent
2 hsa-miR-135b √
3 hsa-miR-135a √
4 hsa-miR-654 Not present on the array
5 hsa-miR-448 Not present on the array
6 hsa-miR-155 Present √ √ √ √
7 hsa-miR-21 √ √ √ √ √ √

√: the expression level of microRNA is significant different comparing with normal cell.
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acts with androgen receptor both physically and function-
ally in regulating gene expression [28]. Besides androgen
receptors, various evidences suggest that nuclear receptor
AP-1 also cross-talks with signal transduction regulations
of a large amount of hormone receptors, including estro-
gen receptor [29], glucocorticoid receptor [30], retinoic
acid receptor [31], vitamin D receptor [32], thyroid hor-
mone receptor [33], and so on. In this study, AP-1 is pre-
dicted to be an inhibitor in androgen-independent
prostate tumors. This prediction is further confirmed with

the expression level decrease of JUNB and JUND genes,
and suggests that the reduction of AP-1 activity in andro-
gen-independent samples is partially from transcriptional
level. Binding site (KROX) of another androgen receptor
cofactor, EGR1 (early growth receptor 1), is predicted to
contribute to the decreased expression levels in AI sam-
ples. Previous report indicated that EGR1 binds to the
androgen receptor in prostate carcinoma cells [34]. Over-
expression and knockdown of EGR1 enhances and inhib-
its AR-mediated transactivation and signalling, respec-

Ingenuity pathway analysis on AP1-related gene networkFigure 2
Ingenuity pathway analysis on AP-1 related gene network. Green and red nodes represent repressed and induced 
genes in androgen-independent prostate samples comparing androgen-dependent prostate samples, respectively.
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tively. Expression levels of EGR1 do not demonstrate
significant difference between AI and AD samples, which
suggests such functional variation may be induced in
post-transcriptional level. The direct correlation between
androgen response in prostate cancer and BACH1 is not
well understood. This helicase-like factor, however, is
known to contribute to DNA repair by interacting with
BRCA1 gene [35], which may function as an androgen
receptor coregulator and play positive roles in androgen-
induced cell death in prostate cancer cells [36]. Abnormal
functional levels of BRCA1 in prostate cancer may also

cause activation or inhibition of STAT3 (signal transducer
and activator of transcription 3) [37], which is predicted
by our computational model. In addition, STAT3 is
known to induce AR-mediated gene activation in prostate
carcinoma via IL-6 signalling pathways [38,39]. D-box
binding protein (DBP), a proline and acidic-rich (PAR)
protein family member, forms heterdimeric complex with
hepatic leukemia factor (HLF) in regulating gene expres-
sion [40]. Although the function of DBP on androgen
dependency in prostate cancer is not known, we do

Ingenuity pathway analysis on NFκB-related gene networkFigure 3
Ingenuity pathway analysis on NFκB related gene network. Green and red nodes represent repressed and induced 
genes in androgen-independent prostate samples comparing androgen-dependent prostate samples, respectively.
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observe differential expression of DBP between AI and AD
prostate tumors.

Besides available biological knowledge, further bioinfor-
matics analysis also supports the potential functions of
predicted transcription factors. Ingenuity pathway analy-
sis demonstrates strong link between differentially
expressed genes and predicted factors including STAT3,

JUNB, JUNC and AP1 (Fig. 2 and 3). In addition, expres-
sion profiles of JUN family, FOS family, EGR1, STAT3
monotonically decrease with the deterioration of prostate
cancer development, according to the Oncomine data-
base. These clinical evidences are accordant with the pre-
dicted functions of identified transcription factors and
expression differences in microarray data.

Table 4: Expression profiles of the predicted transcription factor in the Oncomine database

PWM Gene Symbol Genbank ID Correlation P-value Study

AP-1 JUN NM_002228 -0.62 2.1E-11 Dhanasekaran_Prostate
JUNB NM_002229 -0.57 1.5E-9 Dhanasekaran_Prostate
JUND NM_005354 -0.36 2.6E-4 Dhanasekaran_Prostate
FOS NM_005252 -0.30 2.0E-3 Lapointe_Prostate

FOSL1 NM_005438 -0.42 7.0E-3 Vanaja_Prostate
FOSL2 NM_005253 -0.63 3.9E-13 Lapointe_Prostate

KROX EGR1 NM_001964 -0.69 3.8E-15 Dhanasekaran_Prostate
STAT3 STAT3 NM_213662 -0.68 1.1E-16 Lapointe_Prostate

Expression patterns of predicted transcription factors in different stages of prostate abnormalityFigure 4
Expression pattern of predicted transcription factors in different stages of prostate abnormality. Expression pro-
files of JUN, JUNB, JUND, EGR are from the same study in Oncomine database, which classifies prostate abnormality into four 
stages, normal prostate, benign prostatic hyperplasia, primary prostate cancer, and metastatic prostate cancer. FOS, FOSL1, 
FOSL2, STAT3 are from other two studies both of which include three subtypes, including normal prostate, and primary and 
metastatic prostate cancer. JUN, JUNB, JUND, FOS, FOSL1, FOSL2 bind to AP-1 binding site, EGR1 binds to KROX binding 
site, STAT3 binds to STAT3 binding site.
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Ingenuity pathway analysis clearly indicates that another
nuclear transcription factor, NFκB is closely connected to
many differentially expressed genes (Fig. 3). This factor,
however, is not predicted by our model. Further investiga-
tion suggests that the expression levels of two members in
the NFκB gene families, NFκB1 and NFκB2, do not
express in either androgen-independent or -dependent
prostate tumors, based on the initial microarray experi-

ment. Therefore, it is less likely that NFκB will pose signif-
icant influence on the global gene expression differences.

Comparing with transcription factors, functions of indi-
vidual microRNA on cancer development are much less
understood. In recent years, many studies used microRNA
expression profiles to classify human cancers and
observed that expression levels of many microRNAs were
under-expressed in cancers [18]. It becomes clear that as
oncogenes and tumor suppressors, microRNAs pose
important function in cancer development. Among the 7
identified microRNAs, 6 microRNAs are predicted to con-
tribute to the induced gene expression in androgen-inde-
pendent prostate tumor. This observation may be caused
by lowered expression or reduced function of these micro-
RNAs in androgen-independent prostate samples. Dem-
onstrated in Table 3, most predicted microRNAs are
differentially expressed in prostate cancer cells comparing
with normal tissues, among which, hsa-miR-155 and hsa-
miR-21 are observed in many cancer types [41]. Together
with other published reports, prediction of our model
supports the hypothesis that differentially expressed
microRNAs may contribute to the progression of prostate
tumor.

Table 5: Transcription factors and microRNAs with common 
target genes

Index Factor 1 Factor 2 Fisher's p-value FDR

1 hsa-miR-144 hsa-miR-155 0.0% 0%
2 hsa-miR-144 hsa-miR-21 0.0% 0%
3 hsa-miR-155 hsa-miR-21 0.1% 2%
4 AP1 Bach1 0.1% 2%
5 hsa-miR-135a hsa-miR-21 0.8% 10%
6 hsa-miR-135b hsa-miR-21 1.3% 14%
7 hsa-miR-135a hsa-miR-448 1.6% 15%
8 KROX hsa-miR-448 2.0% 16%
9 hsa-miR-135b hsa-miR-144 2.2% 16%
10 hsa-miR-135b hsa-miR-448 2.5% 16%
11 hsa-miR-135b hsa-miR-155 2.5% 16%

Heatmap of the percentage of target genes that contain co-occurrent transcription factors or microRNAsFigure 5
Heatmap of the percentage of target genes that contain co-occurrent transcription factors or microRNAs.
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How microRNAs regulate gene expression remains a chal-
lenging problem. Based on microRNA target prediction
[22,42] and transcription factor binding site database
[24], several groups focus on coordinated gene regulation
by extracting network motif from pairs of microRNAs and
transcription factors [43,44]. The uniqueness of our
approach is to integrate the transcription factor and
microRNA target prediction into functional data, i.e.,
array-derived gene expression measurements. This allows
identifying functional transcription factors and microR-
NAs in regulating global gene expression pattern in
response to certain biological perturbation or in two dif-
ferent biological conditions. Different from MotifModeler
[23], a computational approach we developed previously
to focus on predicting de novo cis-acting DNA elements of
a fixed length, the current methodology highlights biolog-
ically known information, such as position weight matri-
ces of transcription factors documented in the TRANSFAC
database and microRNAs in microRNA registry. This strat-
egy allows direct interpretation of the predicted results,
and prompts biological experiments in testing the pro-
posed hypothesis. Despite these advantages, if the goal of
the study is to identify de novo binding sites, the original
MotifModeler algorithm remains an appropriate choice.

Conclusion
We present a model-based computational approach to
indentify transcription factors and microRNAs that influ-
ence the progression of androgen-dependent prostate can-
cer to androgen-independent prostate cancer. All the 5
transcription factor binding sites are inhibitory in andro-
gen-independent samples comparing to the androgen-
dependent ones. Six out of 7 microRNAs are stimulatory.
This result suggests that the capability of transcription fac-
tors to initiate transcription and microRNAs to degradate
mRNA are both decreased in androgen-independent pros-
tate cancer. The proposed model-based approach indi-
cates that considering combinatorial effects of
transcription factors and microRNAs in a unified model
provides additional transcriptional and post-transcrip-
tional regulatory mechanisms on global gene expression
in the prostate cancer with different hormone-depend-
ency.

Methods
Biological system
To identify the important transcription factors and micro-
RNAs which influence the prostate cancer after androgen
ablation therapy, we download the gene expression pro-
file from Gene Expression Omnibus Database (GEO
number: GSE2443), where Affymetrix Human Genome
U133A GeneChip was used to access the global gene
expression patterns in 10 androgen-independent prostate
tumor biopsies and 10 androgen-dependent prostate
tumors.

Promoter sequence, 3'-UTR sequences and microRNA 
sequences
Human RefSeq transcript annotation (hg17 genome
assembly) is downloaded from the UCSC Genome
Browser [45]. For each differentially expressed gene we
extract 3'-UTR sequences and promoter sequences up to
1000 bp upstream of transcription start site. Human
mature microRNA sequences are downloaded from
microRNA registry [25,26] (miRBase, v.10.1).

Transcription factor and microRNA target prediction
Position weight matrices (PWMs) in the TRANSFAC data-
base are used to predict the transcription factor target
genes. For each TF-target gene pair, a series of similarity
scores are calculated by scanning the PWM of the tran-
scription factor along the promoter sequences of target
gene.

where Nt is total number of sample sequences while deriv-
ing the PWM in the TRANSFAC database; dic is the distrib-
ute of the i-th nucleotide (i = A, C, G or T) in the human
genome (30% for A and T, and 20% for G and C); bic is the
number of real counts of the i-th nucleotide in the c-th
position in the PWM. For each PWM, we select top 2,000
matching positions with the highest similarity scores in
the promoter regions genome-wide as potential TF-target
sites.

We adopt PITA algorithm[46] to predict the microRNA-
target relationship. While predicting microRNA targets,
PITA considers the differences between the energy gained
by binding of the microRNA to the transcript target and
the energy required to make the target region accessible
for microRNA binding. Similar as transcription factor tar-
get identification, for each microRNA, top 2,000 micro-
RNA-target interactions with lowest energy difference are
selected as candidate microRNA binding sites.

Transcription factor and microRNA selection procedure
In order to describe the correlation between differences in
genes expression levels and the matching scores of tran-
scription factors and microRNAs in the promoter and 3'-
UTR, a linear mathematical model is established:

GK = SK × N TFN - EK × M MIM (2)

where, GK represents logarithmic ratio of observed mRNA
expression levels in the AI group comparing to AD group;
SK × N is the sum of matching score of the N-th PWM (Eq.
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1) in the promoter region of the K-th gene; EK × M is the
sum of microRNA-target interaction energy (PITA calcula-
tion) of the M-th microRNAs in the 3'-UTR of the K-th
gene. In this calculation, only the top 2,000 matching
positions genome-wide with highest TF similarity score or
lowest microRNA-target interaction energy are considered
as transcription factor or microRNA binding loci, respec-
tively. In eqm 2, TF and MI represent functional levels of
transcription factors and microRNAs, respectively. Both of
these two numbers are not measurable, and therefore will
be estimated using the following iterative procedure.

Similar as MotifModeler selection procedure, in each itera-
tion, we randomly pick Nrandom PWMs and Mrandom micro-
RNAs as candidate regulators, and use least-squares
method to estimate the functional levels of selected candi-
date. Since a smaller model error indicates a better selec-
tion, a gene expression contributing score (GEC) is
assigned to each selected candidate using the following
formulation:

where,  and  are estimated functional levels of

transcription factors and microRNAs, respectively; α is a
power factor that influences the effect of single selections

(α > 1).

In the present study, the procedure to select PWMs and
microRNAs can be described as: randomly pick 10 PWMs
and 10 microRNAs; estimate TF and MI using least-
squares method; calculate the predicted model error and
the current gene expression contributing score (GEC) of
each PWM and microRNA; add the current GEC score to
the cumulative gene expression contributing score; add
PWM function levels (TF) and microRNA function levels
(MI) to the cumulative functional levels of each PWM and
microRNA. We repeat this procedure 2 million times; the
correlation of GEC score of each 1 million calculation is
larger than 0.95. The transcription factors and microRNAs
whose GEC scores are larger than mean + 3 × standard
deviation are considered as functional regulators. All the
programs are written using R 2.6.0 http://www.r-
project.org.

Correlation of predicted transcription factors to clinical 
gene expression profiles in prostate cancer
In order to investigate the clinical impact of predicted
transcription factors in prostate cancer development,
Oncomine database is used to examine the expression
profiles of all the transcription factors that bind on the

predicted binding sites in normal prostate, primary pros-
tate cancer and metastatic prostate cancer.

Correlation of predicted microRNAs to microRNA 
expression profiles in cancer samples
We download the microRNA microarray data associated
with six tumors from ArrayExpress database [19] (acces-
sion number E-TABM-23 for breast cancer, E-TABM-46 for
colon cancer, E-TABM-47 for lung cancer, E-TABM-48 for
pancreatic cancer, E-TABM-49 for prostate cancer, and E-
TABM-50 for gastric cancer). MicroRNAs are defined as
present if they are expressed in at least 90% of the sam-
ples. The microRNA microarray analysis is conducted fol-
lowing the procedure described in ref [19].
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