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Abstract
Structural genomics efforts contribute new protein structures that often lack significant sequence
and fold similarity to known proteins. Traditional sequence and structure-based methods may not
be sufficient to annotate the molecular functions of these structures. Techniques that combine
structural and functional modeling can be valuable for functional annotation. FEATURE is a flexible
framework for modeling and recognition of functional sites in macromolecular structures. Here,
we present an overview of the main components of the FEATURE framework, and describe the
recent developments in its use. These include automating training sets selection to increase
functional coverage, coupling FEATURE to structural diversity generating methods such as
molecular dynamics simulations and loop modeling methods to improve performance, and using
FEATURE in large-scale modeling and structure determination efforts.

Discussion
Introduction: importance and overview
A central goal of molecular biology is to understand the
functions of proteins, including their catalytic properties,
binding sites, cofactors, interaction partners, and subcel-
lular localization. Traditional experimental methods for
function characterization cannot cope with the rate at
which genomics efforts are generating data. Computa-
tional methods for function recognition require far less
time and expense and so can augment experimental meth-

ods. Computational tools make it possible to query many
proteins for many different functions at varying levels of
specificity, from general enzymatic activity to binding
sites.

Usually, computational methods require either the
sequence or structure of the molecule of interest. One
effective approach in sequence-based function prediction
methods is to compare the known sequence to a collec-
tion of sequences whose functions are known, whether on
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a global or a local level. A high level of similarity found by
such a comparison to an annotated sequence may allow
the transfer of this annotation to the sequence of interest,
based on presumed homology. BLAST [1] performs effi-
cient sequence searches to facilitate such analyses.
Searches within databases such as Pfam [2] and PROSITE
[3], which contain models of short sequence motifs
highly correlated with specific functions, may also allow
function assignment based on sequence.

Inherently more important for the function of the mole-
cule is its structure. The emergence of structural genomics
(SG) has led to rapid advances in our knowledge of struc-
ture and structure determination. With the efficiency of
structure determination methods now allowing high
throughput experiments [4,5], the number of structures
available in the Protein Data Bank (PDB) [6] is providing
a wealth of insight into structure-function relationships.
Furthermore, based on structures with known function, it
should be possible to assign putative function to struc-
tures for which there exists no direct functional informa-
tion. Annotation of molecular function by similarity is
possible on the structural level as on the sequence level –
by evaluating the similarity of global folds or local envi-
ronments [7]. Structural similarity methods may employ
chemical, physical, energetic or geometric criteria to rec-
ognize functional environments [8-10].

Many SG projects are targeting novel structures with low
sequence identity to known proteins, in order to increase
the ability to cover all fold families with at least one
solved structure. Precise function can be reliably trans-
ferred only if sequence identity is at least 40% [11]; struc-
ture is significantly less conserved when sequence
similarity is less than 50% [12]. As such, traditional
sequence-based methods will not be enough to annotate
a significant number of the novel protein structures being
solved. Furthermore, with many of the proteins possess-
ing novel folds, traditional global fold-based methods
will be less effective. Consequently, there is a need for
structure-based methods that do not depend on global
fold similarity or exact conservation of residues or residue
geometry.

Our group is actively interested in structure based func-
tion prediction, and has, to this end, developed a robust
function recognition algorithm called FEATURE, which
examines 3D environments of molecules in a way that is
neither strictly sequence nor fold based. FEATURE repre-
sents the local environments of a macromolecule using
descriptors that capture chemical, physical and geometric
features. In this article we provide an overview of the FEA-
TURE framework for predicting protein function. In par-
ticular, we present recent efforts in improving and

enhancing FEATURE's functional coverage and efficiency,
and applying FEATURE in novel ways.

An overview of the FEATURE system
The FEATURE system can be broken down into three
major components. The first is the way in which sites, or
local protein microenvironments, are represented; the sec-
ond part concerns model building and supervised
machine learning methods; and the third involves site
scoring and model evaluation. FEATURE is flexible in the
sense that each of these three components is adaptable to
the specific needs of an application.

Microenvironment representation
One of the most important aspects of any structure-based
protein function modeling system is how information
about a protein is represented and calculated. Protein
structure information can be especially complex, so sim-
plified abstractions are used to capture relevant features in
a way that is computationally tractable. Methods such as
CASTp [13] employ geometric abstractions to describe the
shape, area, and volume of surface pockets and internal
cavities, which are often correlated with functional sites.
Geometry is also used to determine the relative position
of several amino acids to each other as in 3D templates
[14]. Other representations involve calculating values for
physicochemical properties associated with locations or
elements in the structure, such as solvent accessibility,
hydrophobicity, electrostatic potential, the presence of
residues or secondary structure, conservation or the pres-
ence of chemical groups [15-24]. Jambon et al. use a rep-
resentation that combines both geometry and property-
based components [25].

FEATURE models a local protein microenvironment using
a large number of physicochemical properties calculated
at varying distances from the site (see Figure 1a for a sim-
plified example). A site is defined as a 3D location in a
protein structure, and its microenvironment is defined as
a sphere centered on that location. In the typical use of
FEATURE, 80 physicochemical properties (listed in Table
1) are computed in each of six 1.25 Å thick spherical shells
– from 0 to 1.25, 1.25 to 2.5, 2.5 to 3.75, etc, up to 7.5 Å.
A FEATURE vector represents the site as a list of 480 values
(see Figure 1b for a simplified example). The FEATURE
method has also been tested successfully on other seg-
mentations of volume, such as a cubic lattice [26,27].

The concentric spherical shells representation has both
advantages and disadvantages. One disadvantage is that
information about orientation and the relative position of
atoms is discarded. However, discrete shells are favorable
because they allow statistics to be gathered over the rele-
vant volumes and calculation is relatively efficient, which
allows FEATURE to serve as an initial filter for more
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expensive structure-based function prediction methods.
Further advantages of this representation include unam-
biguous definition of a predicted site as a single point (i.e.
Cartesian coordinates in the frame of the protein), accu-
rate capture of properties of a cumulative nature such as
partial charge, and the ability to change or add properties.
The use of a single central point for each site means that
models can be built with minimal prior knowledge of the
geometry of the site – in other words, there is no need to
establish other conserved points with which to define a
non-spherical coordinate system. The use of spherical
symmetry around this point also means that during
search, each putative site center can be rapidly evaluated

without the need to test alternative orientations around
the point. Importantly, it allows identification of the
physical and chemical features that are characteristic of
functional sites, making the resulting models straightfor-
ward to interpret.

Model building by supervised machine learning
FEATURE uses supervised machine learning to combine
significant properties into a model that can classify func-
tional sites. In order to build a model, or description of a
functional site, FEATURE requires two training sets. One
consists of positive sites, which are 3D locations associ-
ated with positive examples of the function to be mod-

Table 1: Physicochemical properties used by the FEATURE algorithm

Atom – based Residue – based Secondary structure – based

ATOM-TYPE-IS-C RESIDUE_NAME_IS_ALA SECONDARY_STRUCTURE1_IS_3HELIX
ATOM-TYPE-IS-CT RESIDUE_NAME_IS_ARG SECONDARY_STRUCTURE1_IS_4HELIX
ATOM-TYPE-IS-Ca RESIDUE_NAME_IS_ASN SECONDARY_STRUCTURE1_IS_5HELIX
ATOM-TYPE-IS-N RESIDUE_NAME_IS_ASP SECONDARY_STRUCTURE1_IS_BRIDGE
ATOM-TYPE-IS-N2 RESIDUE_NAME_IS_CYS SECONDARY_STRUCTURE1_IS_STRAND
ATOM-TYPE-IS-N3 RESIDUE_NAME_IS_GLN SECONDARY_STRUCTURE1_IS_TURN
ATOM-TYPE-IS-Na RESIDUE_NAME_IS_GLU SECONDARY_STRUCTURE1_IS_BEND
ATOM-TYPE-IS-O RESIDUE_NAME_IS_GLY SECONDARY_STRUCTURE1_IS_COIL
ATOM-TYPE-IS-O2 RESIDUE_NAME_IS_HIS SECONDARY_STRUCTURE1_IS_HET
ATOM-TYPE-IS-OH RESIDUE_NAME_IS_ILE SECONDARY_STRUCTURE1_IS_UNKNOWN
ATOM-TYPE-IS-S RESIDUE_NAME_IS_LEU SECONDARY_STRUCTURE2_IS_HELIX
ATOM-TYPE-IS-SH RESIDUE_NAME_IS_LYS SECONDARY_STRUCTURE2_IS_BETA
ATOM-TYPE-IS-OTHER RESIDUE_NAME_IS_MET SECONDARY_STRUCTURE2_IS_COIL
ATOM-NAME-IS-ANY RESIDUE_NAME_IS_PHE SECONDARY_STRUCTURE2_IS_HET
ATOM-NAME-IS-C RESIDUE_NAME_IS_PRO SECONDARY_STRUCTURE2_IS_UNKNOWN
ATOM-NAME-IS-N RESIDUE_NAME_IS_SER
ATOM-NAME-IS-O RESIDUE_NAME_IS_THR
ATOM-NAME-IS-S RESIDUE_NAME_IS_TRP
ATOM-NAME-IS-OTHER RESIDUE_NAME_IS_TYR
HYDROXYL RESIDUE_NAME_IS_VAL
AMIDE RESIDUE_NAME_IS_HOH
AMINE RESIDUE_NAME_IS_OTHER
CARBONYL CLASS1_IS_HYDROPHOBIC
RING-SYSTEM CLASS1_IS_CHARGED
PEPTIDE CLASS1_IS_POLAR

CLASS1_IS_UNKNOWN
CLASS2_IS_NONPOLAR
CLASS2_IS_POLAR
CLASS2_IS_BASIC
CLASS2_IS_ACIDIC
CLASS2_IS_UNKNOWN
PARTIAL-CHARGE
VDW-VOLUME
CHARGE
CHARGE-WITH-HIS
NEG-CHARGE
POS-CHARGE
HYDROPHOBICITY
MOBILITY
SOLVENT-ACCESSIBILITY

In order to represent a local microenvironment, FEATURE determines the value of physicochemical properties in each of six concentric, spherical 
shells centered on the site of interest. Properties include those at the atom level, residue level, and secondary structure level.
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eled; the other consists of negative sites, which are 3D
locations not known to be associated with the function
(see Figure 1a). Negative sites can be chosen manually or
automatically by randomly sampling 3D locations of
structures in the PDB with a similar range of atom densi-
ties compared to the positive sites. FEATURE vectors are
calculated for each site in the training set.

Given a set of FEATURE vectors, a distribution of values
can then be collected for each property in each shell (see
Figure 1b). We determine whether a property is signifi-
cantly overrepresented, significantly underrepresented, or

not significantly different in positive sites relative to neg-
ative sites in a given shell by comparing the positive and
negative training set distributions for the property in that
shell. The significance of a property for distinguishing
sites from non-sites is calculated over all properties in all
shells, and naïve Bayes [28] is used to weight the proper-
ties most informative for distinguishing the positive and
negative sites. FEATURE models are visualized using "fin-
gerprints", which are color-coded grids that depict the sig-
nificance of each property in each shell (see Figure 1c). It
is critical to stress that the choice of negative sites defines
the background distribution for all features and thus

Simplified example for FEATURE model buildingFigure 1
Simplified example for FEATURE model building. A. An example of a positive site (left) and negative site (right), and 
their respective microenvironments. Properties are calculated in concentric spherical shells centered on each site (star sym-
bol). B. FEATURE vectors calculated from the images in A, with oxygen atom count being the first property, and carbon atom 
count the second. The vectors are divided by shell for clarity. C. An example of a visualized FEATURE model is shown, based 
on the FEATURE vectors in B, and images in A. In Shell 2, oxygen atoms are more abundant in the positive site (5 counts) than 
in the negative site (1 count) and so oxygen atom count is considered a significantly enriched property in Shell 2 of the model. 
In contrast, carbon atom count is less abundant in the positive site (0 counts) compared to the negative site (8 counts), so car-
bon atom count is considered a significantly depleted property in Shell 2 of the model. In Shell 3, both the positive and the neg-
ative sites have 1 oxygen atom, so the model contains no significant difference for oxygen atom count in Shell 3.

A.

0, 0        5, 0        1, 4 0, 0        1, 8        1, 6B.

No statistical significance

Statistically significant enrichment

Statistically significant depletion

Properties Shell 1 Shell 2 Shell 3

Atom is O

Atom is C

C.
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determines which features will be considered useful in
identifying sites. Different models can result based on dif-
ferent strategies for defining the negative sites.

Site scoring and internal model evaluation
In order to determine performance statistics and score cut-
offs for classification, the training sets are scored with the
model, and sensitivity and specificity are estimated
through k-fold cross-validation. Scores are calculated
using a naïve Bayes scoring function, which operates on
the assumption that the probability of a site belonging to
a particular class is conditioned on the individual proba-
bilities of observed, independent features. In the case of
FEATURE, the features correspond to the physicochemical
properties calculated in each shell, and their probabilities
are derived from the training set distributions. A site's
score is then the sum of the probabilities of obtaining an
observed feature value given that the site is a positive site,
taken over all significant features in the model. Score cut-
offs are usually based on desired performance, and, as a
default, are set to achieve 99% specificity on the training
sets, as determined by cross-validation. In k-fold cross-val-
idation, the training data is divided into k groups, and a
model is trained on all but one of the groups and tested
on the left out group.

Once a model is built and score cutoffs defined, potential
sites can be scored using that model. FEATURE vectors are
calculated for candidate sites in the same way as was done
for training sites during model building, and scored using
the same naïve Bayes scoring function. The resulting
scores indicate the likelihood that the potential site is a
positive site, depending on the score cutoff for that model.
When available, the validity of every new model is
assessed with an independent test set [18-20].

FEATURE in practice: workflow, training set selection, and manually-
curated models
Creating a new model involves a typical workflow (see
Figure 2) that begins by choosing a function of interest
and defining a biologically reasonable definition of the
Cartesian center point for that function (e.g. the central
position in a binding site or the position of a key atom in
an active site). Positive and negative training sets are then
created and used to train the model. Cross-validation of
the model on the training sets allows definition of score
cutoffs based on desired performance, and whenever an
independent test set is available, model performance can
be further assessed. Once a model is built and a score cut-
off has been defined, FEATURE can predict functional
sites in structures of interest.

An especially important step in model training is the
selection of sites for the positive training set, and, in order
to tune performance, the negative training set. The first

FEATURE models were manually curated in that the posi-
tive and negative training sets were built and verified by
hand using published literature. These include calcium-
binding [18] and ATP-binding [19] site models. The cal-
cium-binding model has especially good performance,

FEATURE framework overviewFigure 2
FEATURE framework overview. The outline of the 
steps necessary to predict a possible function for a protein is 
illustrated. In order to build a FEATURE model, one must 
first define the function of interest and create positive and 
negative training sets from the appropriate data sources. 
Then, the model is trained and evaluated on the training sets. 
The validated model can be used for function prediction. 
Certain steps in the outline, such as extracting training sets 
and model building are straightforward, as described in sec-
tion "An overview of the FEATURE system". Other steps, 
such as determination of data sources for training sites and 
application of models, are more flexible. For example, train-
ing sites may be derived manually or automatically selected 
using annotated hetero-groups or sequence motifs. In addi-
tion, the resulting models can be applied towards static 
structures from the PDB or structure prediction decoys, or 
for dynamic function prediction over ensembles of structures 
generated using molecular dynamics simulation.

Function of Interest

Function Prediction

Training
Sources

Training
Sets

Models

Applications
of models

Manual Curation

SeqFEATURE: 1D Motifs

Hetero-groups

NMR ensembles

MD ensembles

LoopTK ensembles

3D structures

PDB

TargetDB

Decoys

Model
Validation
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and is currently being used in multiple ongoing projects
to expand FEATURE's capabilities and applicability,
described later in this overview. Our recently published
zinc-binding model [29] is the best performing zinc bind-
ing predictor currently available. We have also applied
FEATURE to function prediction in RNA structures with
two magnesium binding models, one for diffuse binding
and one for site-specific binding [30].

From its manually-curated beginnings, FEATURE has
expanded to include automatic generation of training sets
using sequence motifs, PDB annotations, and even a clus-
tering of FEATURE vectors encompassing a non-redun-
dant subset of the entire PDB. Functional coverage by the
FEATURE system is enhanced when we employ multiple
and diverse strategies for site selection. We describe our
current work in the area of site selection in more detail
below.

Increasing functional coverage
While having a highly specialized and performance-tuned
model for recognizing a particular function is extremely
valuable, it is becoming increasingly important to have
wide coverage of protein function space. SG initiatives are
causing a rapid expansion in the numbers of uncharacter-
ized protein structures, many with very low sequence or
even structural similarity to known proteins [31]. In order
to expedite the annotation of structurally novel proteins,
we need good and varied structure-based models of func-
tion. Structure-based models may also highlight hereto-
fore unappreciated but interesting regions in partially
characterized poly-functional proteins. Within the FEA-
TURE framework, we have developed several strategies for
expanding functional coverage.

SeqFEATURE – transforming 1D motifs into 3D models
Protein sequence data is extremely useful for deducing
information about a protein's structure, interactions and
function. Given its ubiquity, it comes as no surprise that
there are numerous tools for recognizing function based
on sequence. Pfam, Panther [32], PROSITE, and Super-
family [33] are just a few of the publicly available data-
bases and methods for characterizing protein families or
functions; many of them are conglomerated into single
integrated tools like InterProScan [34] and ProFunc
[8,10].

Most of the tools perform very well under most circum-
stances, but pattern matching tools such as PROSITE can
be prone to false predictions and even the best tools, usu-
ally employing Hidden Markov Models, can be rendered
less effective when sequence identity to known proteins is
less than 30% [35]. 3D models have the potential to over-
come this limitation, and can support a broader range of

applications such as loop modeling and folding (see sec-
tions "Loop modeling" and "Decoy filtering").

In order to enhance both FEATURE's functional coverage
and the performance of 1D motifs, we developed an
extension to FEATURE, called SeqFEATURE, that trans-
forms sequence-based models into structure-based ones
[20,35]. Given a 1D motif, SeqFEATURE algorithm auto-
matically extracts structures from the PDB that contain the
motif to form a positive training set. One parameter that
must be determined is the site center for each model. In
the case of a 1D pattern, the center might be a functional
atom on a functional residue contained in the pattern.
SeqFEATURE finds all such 3D examples in a non-redun-
dant subset of the PDB to be used as a positive training set.
When a pattern contains more than one functional atom,
multiple models are built centered on each one. The over-
lapping models can be used singly or in concert to predict
the functional site.

Recently, we have applied SeqFEATURE to 44 regular
expression patterns from the PROSITE database of func-
tional motifs to produce a library of 136 automatically
derived and trained models [35] (see section "Availabil-
ity"). The models exhibit a wide range of performance,
however, over three-quarters of them have an area under
the curve (AUC) greater than 0.8 based on cross-valida-
tion. Further analysis using a test set derived from manu-
ally curated true positives, false positives, and false
negatives for each PROSITE pattern showed that the mod-
els did not always detect all of the true positives, but they
almost always made fewer false positive and false negative
predictions than PROSITE.

In a comparison against some of the leading sequence and
structure-based function prediction methods, the SeqFEA-
TURE library performed competitively. When the
sequence identity and structural similarity of the test set
proteins to the training set proteins was reduced, however,
the SeqFEATURE library demonstrated a marked robust-
ness that was not matched by any of the other methods.
FEATURE's independence from specific sequence and
structure elements allows it to perform with greater sensi-
tivity on novel or unique proteins than other methods
that rely on conservation.

In principle, SeqFEATURE can be applied to build models
for other sequence-oriented motif databases, such as Pfam
or PRINTS [36], to generate many more functional site
models quickly and automatically, greatly increasing FEA-
TURE's coverage of protein function space. In addition,
the enhanced performance at low sequence identity
makes FEATURE a particularly relevant method for aiding
the annotation of novel protein structures.
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Hetero-groups-based functional site models
Many proteins and nucleic acid molecules require small
molecular ligands or cofactors such as ATP or NAD in
order to function properly. Ligands and cofactors, gener-
ally referred to as 'hetero-groups', are diverse. There are
currently 7,642 types of hetero-groups in the PDB. These
hetero-groups appear in as many as 76.6% of structures in
this database. The prevalence of these hetero-groups
among biological macromolecules makes them good can-
didates for automatic training of functional models using
FEATURE.

The process of building a hetero-group-based model fol-
lows the guidelines described in section "An overview of
the FEATURE system". A positive training set for a given
hetero-group begins with collection of protein structures
containing this hetero-group, namely holo structures.
There are many databases of ligand-binding structures,
including PDBSum [37], Relibase [38], Hic-Up [39], PLD
[40], and PDB-Ligand [41]. The proteins that a given lig-
and binds are often homologous and present the same
binding structure to the ligand. However, there are also
many instances wherein a given ligand binds to the same
or homologous protein in different binding environ-
ments. Therefore, representative structure selection
among homologous proteins should be carefully exe-
cuted. Some of the databases allow automatic superimpo-
sition of binding sites and sequence identity filtering
which is necessary for representative selection. Once a
non-redundant set of holo proteins is composed it may
not have a sufficient number of structures. A minimum of
five representative structures is required for a positive
training set for FEATURE. Since larger datasets are more
favorable, apo structures, determined without a hetero
group, can supplement the datasets.

Automatic training of hetero-group based models
presents us with many challenges. One major challenge is
choosing the model center. An obvious strategy is to use
the centroid as a center; however, this choice sometimes
results in poor performance. Another option is to center
on active atoms, but these need to be manually curated for
the most part. The larger hetero-groups – containing as
many as 390 atoms (e.g. RNA) – present another chal-
lenge, as they cannot be fully described within FEATURE's
'traditional' shell size of 7.5 Angstroms. The shell size can
be enlarged only to some extent without altering the sig-
nal derived from accumulating properties of atoms within
shells.

A better strategy is to build several 'sub-models' for differ-
ent parts of the hetero-group and to combine them into a
single model using a range of distances between model
centers (see Figure 3). This approach increases the com-
plexity of model building significantly because sub-mod-

els can be applied jointly in a combinatory fashion.
Preliminary results for ATP-binding site prediction using a
two-center approach suggest, however, that performance
does improve with the addition of even one more center.

Clustering the PDB to discover and annotate new structural motifs
One limitation of the site selection strategies described in
sections "SeqFEATURE – transforming 1D motifs into 3D
models" and "Hetero-groups-based functional site mod-
els") is that they depend on existing annotation and can-
not be used to discover new functions or potentially
interesting structural motifs. To overcome this, we calcu-
lated FEATURE vectors for all residues in a non-redundant
subset of the PDB – over 2 million vectors in all – and
clustered them to reveal groups of residues sharing similar
microenvironments [42]. In order to make calculation on
this scale feasible, features were converted to binary values
with minimal reduction in clustering accuracy. A number
of the clusters corroborate with known PROSITE motifs,
indicating that this strategy can reveal truly interesting
groups of sites that may be used to construct new FEA-
TURE models.

Although the capability to discover new motifs is impor-
tant, its value is diminished unless there is a description of
the possible biological or functional roles a new motif
may have. One way to alleviate this problem is by gener-
ating descriptive text for each cluster automatically. Meth-
ods that address similar problems [43-45] rely, for the
most part, on standard vocabularies such as the Gene
Ontology [46], which are organized at a higher level of
conceptual granularity than raw text. While the use of con-
trolled terminologies can resolve many of the challenges
surrounding text mining, processing the raw text itself in
a way that expressly focuses on the distribution of words
across documents and sets of documents may reveal less
obvious connections. Such an approach could prove use-
ful not only for characterizing clusters of similar protein
microenvironments, but also for clusters or lists of any
biological entities that have an associated literature, such
as genes, drugs, or diseases.

Preliminary studies on test clusters of proteins derived
from PROSITE motifs using a simple entropy-based scor-
ing function demonstrate that this approach is able to
detect the fundamental molecular function shared by the
members of the cluster (i.e. the PROSITE motif) in addi-
tion to more detailed information, such as active site resi-
dues (see Table 2).

Improving FEATURE's performance
Extended functional coverage improves the FEATURE
framework with respect to the functional space that can be
explored. Additionally, it is possible to improve the ability
of FEATURE to recognize functional sites, for example, by
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Illustration of the potential value of combining FEATURE modelsFigure 3
Illustration of the potential value of combining FEATURE models. A. An ATP binding pocket in PDB structure 
1CSN. Enlarged are N6 (blue) and PG (yellow) atoms in ATP. B. Parts of the molecule considered by a putative FEATURE 
model based at N6 with shells out to 7.5 Å. Such a model might have poor ability to separate positive sites and negative sites, 
as shown in the histogram on the right with substantial overlap of (red) positive sites and (blue) negative sites. C. Parts of the 
molecule considered by a putative FEATURE model based at PG with shells out to 7.5 Å. Again, such a model might have poor 
discriminating ability, as shown in the score distributions on the right for (red) positive sites and (blue) negative sites. D. Parts 
of the molecule considered by an analysis which combines the two marginal models in B and C. With such an analysis it is pos-
sible to look for hits at both the N6 and PG and filter by appropriate distance separation between them, and thus achieve com-
bined performance that is much better, as shown in the putative plot on the right.

B.

C.

A.

D.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1CSN
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exploring the conformational space of the molecules in
question. In order to perform their function, most pro-
teins undergo dynamic changes within the active site.
Methods that use static structures to predict function do
not take structural dynamics into account. However, as
the number of solved static structures increases in the PDB
and the performance of static methods does not reach
desirable levels, the importance of sampling the confor-
mational space of the molecules becomes more apparent.

Dynamics improves efficiency of function annotation methods based 
on structure
The methods we have reviewed above generally rely on
analysis of static structures solved by X-ray crystallography
and Nuclear Magnetic Resonance (NMR) techniques.
Both techniques, however, have characteristics that may
preclude structure-based function prediction methods
from performing at the highest levels of sensitivity. In X-
ray crystallography, crystal packing may effectively rigidify
proteins into compact conformations, which may not rep-
resent good averages of the conformational space of the
molecules in solution. In order to overcome this limita-
tion, time-resolved X-ray crystallography allows determi-
nation of many conformations at 1 picosecond intervals.
Using this technique, Schotte et al. observed nuances of
the inner workings of a myoglobin mutant as it progressed
from a carboxy to a deoxy state [47]. However, time-
resolved X-ray crystallography is not currently amenable
to application in a high-throughput manner, since it
requires molecules to be photosensitive, and data inter-
pretation can be nontrivial [48]. These experiments illus-
trate that it is necessary to take into account the dynamic
nature of molecules in order to understand its functional
space better.

Although NMR structures do not generally achieve the res-
olution of structures solved by X-ray crystallography, they
better represent the conformational space of the mole-
cules because they typically produce an ensemble of struc-
tures. Since the molecules are all in solution during the
NMR procedure, this ensemble of structures provides an
opportunity to understand the dynamic behavior of mol-
ecules. Recent studies highlight the value of the structural
diversity contained in the NMR ensembles. We examined
several such ensembles (see Table 3) with a FEATURE Ca2+

binding model [19]. A subset of structures from most
ensembles revealed Ca2+ binding sites (see Figure 4). The
fact that all the structures did not exhibit Ca2+ binding
behavior is noteworthy, because it demonstrates that the
dynamics may influence our ability to recognize function.

Computational methods allow us to explore the dynamics
of molecules on the scales that are not experimentally
accessible while assessing their potential functions [49].
In particular, molecular dynamics (MD) simulations pro-
vide large ensembles of structures. Recent work demon-
strates that MD simulations generate structural diversity
useful for the assignment of function. Eyrisch et al. used
MD simulations to improve efficiency of predicting func-
tional surface pockets, which may be obscured in static
PDB structures [50]. In the pharmaceutical industry,
improvement in the prediction of functional pockets may
assist in the development of more efficient drugs. Fremb-
gen-Kesner et al. showed that cryptic drug binding sites,
which appear only when the target has bound a ligand

Table 2: A text mining approach using an entropy-based scoring 
function rediscovers the molecular function of proteins sharing 
PROSITE motifs

Motif # of proteins # of documents Terms

EF_HAND ef-hand
36 calcium-bind
183 calcium

ca 2+
calcium-bind protein
ca
2+ bind
2+
ef-hand motif
calmodulin

TRYSIN_SER serin proteinas
11 proteinas
108 chymotrypsin

serin
serin proteas
elastase
ser-195
his-57
proteinas especially
proteolyt

PROTEIN KINASE_ST protein kinas
15 catalyt domain
107 phosphoryl

substrat
autophosphoryl
phosphoryl site
kinas
threonin
catalyt
constitutively active

The method extracts text from the abstracts of references annotated 
in each protein's Swiss-Prot record, pre-processes the text 
(tokenization into terms, removal of non-content words, and basic 
stemming to normalize word forms), and scores terms based on their 
distribution across proteins and their relative significance in the entire 
corpus of Swiss-Prot referenced documents. With no additional 
normalization, concept and word redundancy may be observed. 
Although still very preliminary, the method is able to capture the 
molecular function for each cluster of proteins shown: "ef-hand" and 
"calcium binding" for EF_HAND; "serine proteinase", "proteolysis", 
and the active site residues "ser-195" and "his-57" for TRYPSIN_SER; 
and "protein kinase", "phosphorylation", "catalytic domain" and the 
substrate residue "threonine" for PROTEIN_KINASE_ST.
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already, become more apparent over the course of MD
simulations than in the original PDB structures [51].

We demonstrated the value of examining structural diver-
sity generated by MD simulations with FEATURE to iden-
tify Ca2+ binding sites [52]. In the case of parvalbumin β,
results of FEATURE coupled with dynamics recapitulated
the behavior of the protein's Ca2+ binding sites with and
without synthetic mutations (PDB IDs 1B8C and 1B9A,
respectively). Further experiments are underway to estab-
lish the extent to which sampling conformational diver-
sity with MD simulations improves efficiency of
functional predictions made by FEATURE. Functions
other than Ca2+ binding may be explored with various
FEATURE models or alternative structure-based function
prediction methods by evaluating MD ensembles of struc-
tures.

Loop modeling
Although SG initiatives are accelerating biological struc-
ture determination, it still lags behind the production of
new genomic sequences. Roughly a third of all protein
sequences can be modeled based on similarity to a known
three-dimensional structure, but one of the major limiting
factors is the ability to model structurally variable loop
regions [53]. Loops participate in many active and bind-
ing sites in proteins. A priori knowledge of a loop's func-
tion can potentially be used to limit its conformational
space, thereby assisting in achieving a more accurate

ensemble. Such knowledge can result from sequence-
based or structure-based predictions or from experiments.

In order to explore FEATURE's utility in loop modeling,
loop conformations were generated by two methods: seed
sampling and deformation sampling [54]. Both methods
satisfy constraints on kinematic closure and clash avoid-
ance. Seed sampling generates structurally diverse loops,
whereas deformation sampling explores a more limited
region close to the provided starting conformation. We
examined the ability of these methods to generate 'func-
tional' loops conformations that are similar to the native
structure and could be recognized by FEATURE. Calcium
binding loops of parvalbumin (1B8C, Ala51-Ile58) and
grancalcin (1K94, Ala62-Asp69) were modeled with seed
sampling and deformation sampling respectively. Both
routines were able to build at least one functional loop, as
evaluated by FEATURE, within a ~100,000 conformation
ensemble.

Increasing the accuracy of loop conformation prediction
using FEATURE as a filter for functionally plausible con-
formations can be applied not only to homology mode-
ling but also to the task of modeling missing loops in
experimentally-derived structures. Since loops tend to
participate in ligand binding, dimer formation and enzy-
matic activity, they are an essential part of the structure
and may hold clues to the elusive structure-function rela-
tionship. We are currently validating this method on a

Table 3: Results of NMR ensembles scanned with FEATURE Ca2+ binding site model

Protein Name PDB ID Number of Models Number of Models Characterized as Calcium 
Binding

Lipoprotein receptor-related protein repeat 8 1CR8 20 20
Lipoprotein receptor-related protein repeat 3 1D2L 20 20
RALBP1-intercating protein 1IQ3 18 18
Rous Sarcoma virus receptor 1JRF 20 20
Tyrosine-protein kinase SRC 1KSW 20 20
Calerythrin 1NYA 20 20
Human Notch1 1PB5 16 16
Porcine pancreas phospholipase A2 1SFW 18 1
Rational design of a calcium-binding adhesion protein 1T6W 20 3
Human beta parvalbumin 1TTX 20 20
Cytochrome c peroxidase * 2B10 10 4
Matrilysin 2DDY 25 24
Calcium-binding protein p22 2E+30 20 17
Sodium/calcium exchanger 1 domain 1 2FWS 20 18
Sodium/calcium exchanger 1 domain 2 2FWU 20 18
Rat megalin 2I1P 20 19
Relaxin receptor 1 2JM4 24 22
Yeast frequenin 2JU0 15 15

Scanning of the 18 NMR ensembles with the Ca2+ binding model revealed structural heterogeneity among the structures in the ensembles. In 
several, most of the models exhibited Ca2+ binding conformations, while in others, only a few. The first and the second columns contain names and 
PDB IDs of the examined proteins, respectively. The third and fourth columns show the total number of models and how many of those were 
identified by FEATURE as Ca2+ binding in the NMR ensemble, respectively. * – Results of this scan are shown in Figure 4.
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dataset of existing loops in order to predict missing func-
tional loops reliably.

Extending FEATURE to new applications
The flexibility of the FEATURE framework has proven to
be extremely useful for increasing FEATURE's functional
coverage and improving not only individual FEATURE
models, but also the performance of methods solving
slightly different problems, such as loop modeling. Here,
we describe some novel applications of FEATURE that
have broadened its utility.

Structural genomics and scanning for function in high-throughput
High-throughput projects such as structural genomics are
producing greater numbers of uncharacterized and novel
proteins than ever before. Often, these proteins bear little
resemblance to known proteins in either sequence or
structure, making annotation especially challenging. Pre-
viously, we showed that the sensitivity of the SeqFEA-
TURE library of automatically derived functional site
models (described in section "Increasing functional cover-
age") is more robust than that of some of the leading
sequence and structure-based function prediction meth-
ods when sequence identity and structural similarity to

known proteins are low [35]. As a result, the SeqFEATURE
models should be valuable for suggesting potential func-
tions for novel SG targets.

With this in mind, we scanned all of the SG targets in Tar-
getDB [55] associated with unknown function through
October 2007 using the SeqFEATURE library, filtered for
the highest confidence predictions (based on model-
dependent score cutoffs), and compared them to predic-
tions made by a number of popular sequence and struc-
ture-based methods [35]. For a substantial fraction of
these targets, the sequence-based methods made no sig-
nificant predictions; for a smaller fraction, the structure-
based methods had no or low confidence predictions as
well. Those targets for which SeqFEATURE made a high
confidence prediction but other methods did not are com-
pelling candidates for further study (see section "Availa-
bility").

In keeping with the need for high throughput, we have
also scanned the entire PDB (up to February 2006, about
35,000 proteins) with the entire SeqFEATURE library (see
section "Availability"). The scan took about one day to
complete on 13 parallel processors, suggesting that a

NMR ensemble scanning results for PDB structure 2B1OFigure 4
NMR ensemble scanning results for PDB structure 2B1O. 2B1O is a structure of a protein which is known to bind cal-
cium (Ca2+). The NMR ensemble for 2B1O contains different conformations of the structure, some of which show different 
proclivities for binding Ca2+. A shows 10 NMR generated structures for one of the known Ca2+ binding loops, superimposed 
to minimize RMSD; B shows loops that FEATURE does not identify as Ca2+ binding, corresponding to NMR models 1, 3, 4, 5, 
6, and 10; and C shows loops that FEATURE does identify as Ca2+ binding, corresponding to NMR models 2, 7, 8, and 9. In B 
and C, sidechains in the vicinity of the FEATURE hits are shown for the highest scoring NMR model (score ~39 for B and ~64 
for C). In C, one of the hits that scored over the model threshold of 50 is shown as a yellow ball. Notice the differences in the 
conformations between side chains in B and C: the entire loop is wider in C, and coordinating oxygens form a ring around the 
hit, while in B they are more scattered. There is also a difference in the conformation of phenylalanine ring, which essentially 
blocks the Ca2+ binding spot in B but is rotated away from the site to allow possible Ca2+ binding in C.

B. C.A.
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large-scale scan of many structures with many functional
site models is actually quite efficient. With the structure
determination pipeline improving and novel protein
structures increasing every year, scanning for function in a
high-throughput fashion will become a necessary enter-
prise.

Decoy filtering
One of the major goals of three-dimensional (3D) struc-
ture prediction methods, such as comparative modeling,
threading and ab initio folding, is to elucidate function
from a 3D structure. Determining the occurrence and
location of active and binding sites within a structure
helps achieve this goal. In 1999, Wei et al. predicted two
calcium-binding sites in model structures, or decoys, of a
vitamin D-dependent protein [56]. These decoys, gener-
ated by Park and coworkers [57,58], include near native
structures. Root mean squared deviation (RMSD), which
measures pairwise structural similarity, ranged from 0.95
Å to 9.39 Å between the decoys and the native structure.

Despite the existence of near native decoys, the quality of
the calcium-binding microenvironments had only a very
weak correlation with the overall RMSD. Moreover, the
correlation between 'local RMSD' and FEATURE scores
was also weak. Only when the quality of the local struc-
tural neighborhood around the calcium site is high does
the modeling of the binding sites become reliable. Pertur-
bation of atoms' positions within the native structure gen-
erated 100 decoys with a local RMSD of 0 to 1.7 Å [56].
The RMSD of these structures correlated with FEATURE's
ability to recognize the functional site.

Recently we re-examined decoy selection with FEATURE.
Current improved methodologies for ab initio folding are
able to generate decoys similar in quality to the previously
used perturbed structures. Some small proteins (under
100 amino acids) can be refined up to a near-atomic res-
olution level [59]. Using FEATURE, we scanned five hun-
dred low scoring decoys for twelve calcium-binding
proteins generated with Rosetta [60]. FEATURE scores
were able to reduce the number of decoys while enriching
for near-native conformations, sometimes with improve-
ments of the average RMSD to known crystal structure
moving from 9 to 5 Angstroms (Das Rhiju and Halperin
Inbal, unpublished results).

These preliminary results support the potential value of
incorporating FEATURE into the ab initio folding scheme.
Much of the calculation time in ab initio folding is spent
on the side chain packing of the different main chain con-
formations generated in the main chain optimization
stage. The ability to reduce the number of main chain con-
formations after this stage while keeping most of the cor-

rect conformations would be highly valuable for lowering
the computational cost.

Availability
FEATURE models, data, and source code are available
online for public use. The WebFEATURE website [61,62]
allows functional scans of PDB structures using any of the
manually curated models or the models in the SeqFEA-
TURE library, as well as the option to scan using the entire
SeqFEATURE library. The improved zinc binding model is
also available for scanning [63]. Single SeqFEATURE
model scans require only a few seconds to run, scanning
with the entire SeqFEATURE library may take about a
minute, and manually curated models may take varying
lengths of time depending on the size of the input struc-
ture. Job status notification can occur either interactively
on the website or through email notifications and results
can be interactively viewed in a web browser.

Data from the PDB scan and high-confidence predictions
for TargetDB structures can be downloaded from the
"Data" section of the WebFEATURE site [64]. Source code
for FEATURE is accessible from SimTK [65], a repository
for biological structure software maintained by the Sim-
BIOS Center for Biomedical Computation [66,67]. FEA-
TURE has been downloaded about 150 times since being
made available on SimTK. In addition, WebFEATURE is
currently seeing almost 2,500 unique visitors a month.

Conclusion
FEATURE is a powerful function recognition framework
that has been adapted to new paradigms in function
annotation and structure modeling. Importantly for the
annotation of structural genomics targets, FEATURE
robustly models molecular functions without relying on
significant sequence or fold similarity. Creating training
sets automatically from many different sources and dis-
covering new functions through unsupervised clustering
of microenvironments improves functional coverage.
Function annotation approaches that recognize and treat
dynamic nature of molecules as essential are proving to be
more successful than their static counterparts, and FEA-
TURE can be easily coupled to simulations to enhance
function recognition. Structure determination and loop
modeling efforts also benefit from the addition of FEA-
TURE as a filter. As structural genomics and structure
determination efforts advance and evolve, structure-based
modeling will become more important. FEATURE is
uniquely poised to take advantage of and assist in these
efforts.

Abbreviations
SG = Structural Genomics. PDB = Protein Data Bank. AUC
= Area Under the Curve. NMR = Nuclear Magnetic Reso-
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