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Abstract

Background: An important subfamily of membrane proteins are the transmembrane a-helical proteins, in which the
membrane-spanning regions are made up of a-helices. Given the obvious biological and medical significance of these
proteins, it is of tremendous practical importance to identify the location of transmembrane segments. The difficulty of
inferring the secondary or tertiary structure of transmembrane proteins using experimental techniques has led to a surge
of interest in applying techniques from machine learning and bioinformatics to infer secondary structure from primary
structure in these proteins. We are therefore interested in determining which physicochemical properties are most
useful for discriminating transmembrane segments from non-transmembrane segments in transmembrane proteins, and
for discriminating intrinsically unstructured segments from intrinsically structured segments in transmembrane proteins,
and in using the results of these investigations to develop classifiers to identify transmembrane segments in
transmembrane proteins.

Results: We determined that the most useful properties for discriminating transmembrane segments from non-
transmembrane segments and for discriminating intrinsically unstructured segments from intrinsically structured
segments in transmembrane proteins were hydropathy, polarity, and flexibility, and used the results of this analysis to
construct classifiers to discriminate transmembrane segments from non-transmembrane segments using four
classification techniques: two variants of the Self-Organizing Global Ranking algorithm, a decision tree algorithm, and a
support vector machine algorithm. All four techniques exhibited good performance, with out-of-sample accuracies of
approximately 75%.

Conclusions: Several interesting observations emerged from our study: intrinsically unstructured segments and
transmembrane segments tend to have opposite properties; transmembrane proteins appear to be much richer in
intrinsically unstructured segments than other proteins; and, in approximately 70% of transmembrane proteins that
contain intrinsically unstructured segments, the intrinsically unstructured segments are close to transmembrane
segments.
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Background

Membrane proteins account for roughly one third of all
proteins and play a crucial role in processes such as cell-
to-cell signaling, transport of ions across membranes, and
energy metabolism [1-3], and are a prime target for thera-
peutic drugs [2,4-6]. One important subfamily of mem-
brane proteins are the transmembrane proteins, of which
there are two main types:

e o-helical proteins, in which the membrane-spanning
regions are made up of a-helices, and

e B-barrel proteins, in which the membrane-spanning
regions are made up of B-strands.

B-barrel proteins are found mainly in the outer membrane
of gram-negative bacteria, and possibly in eukaryotic
organelles such as mitochondria, whereas a-helical pro-
teins are found in eukaryotes and the inner membranes of
bacteria [7].

Given the obvious biological and medical significance of
transmembrane proteins, it is of tremendous practical
importance to identify the location of transmembrane
segments. There are difficulties with obtaining the three
dimensional structure of membrane proteins using exper-
imental techniques:

e Membrane proteins have both a hydrophilic part and a
hydrophobic part, and hence are not entirely soluble in
either aqueous or organic solvents; this makes them diffi-
cult to crystallize, and hence difficult to analyze using X-
ray crystallography, which requires crystallization of the
sample.

e Membrane proteins tend to denature upon removal
from the membrane, making their three-dimensional
structure difficult to analyze.

The difficulty of inferring the secondary or tertiary struc-
ture of transmembrane proteins using experimental tech-
niques has led to a surge of interest in applying techniques
from machine learning and bioinformatics to infer sec-
ondary structure from primary structure in these proteins.
These include discriminant analysis [8], decision trees [9],
neural networks [10-13], support vector machines [14-
18], and hidden Markov models [19,20].

Another interesting class of proteins are the intrinsically
unstructured proteins, proteins that need not be folded
into a particular configuration to carry out their function,
existing instead as dynamic ensembles in their native state
[21-24]. Intrinsically unstructured proteins have been
associated with a wide range of functions including

http://www.biomedcentral.com/1471-2164/9/S1/S7

molecular recognition, molecular assembly/disassembly
and protein modification [21,22,25].

We are interested in investigating the physicochemical
properties of various classes of protein segments. In par-
ticular, we are interested in determining which properties
are useful for discriminating transmembrane segments
from non-transmembrane segments in transmembrane
proteins, and for discriminating intrinsically unstructured
segments from intrinsically structured segments in trans-
membrane proteins. We are further interested in any sim-
ilarities or differences in physicochemical properties
across these four classes of segments. We will then apply
the results of this analysis to construct classifiers to dis-
criminate transmembrane from non-transmembrane seg-
ments in transmembrane proteins.

Results and discussion

Physicochemical properties

We are interested in determining which physicochemical
properties are most useful for discriminating transmem-
brane segments from non-transmembrane segments in
transmembrane proteins, and for discriminating intrinsi-
cally unstructured segments from intrinsically structured
segments in transmembrane proteins. We are further
interested in any similarities or differences in physico-
chemical properties across these four classes of segments.

Certain properties, such as hydropathy and polarity, can
be measured in different ways; this results in different
scales. We are also interested in determining which scales
are the most effective in discriminating transmembrane
segments from non-transmembrane segments, and in dis-
criminating intrinsically unstructured from intrinsically
structured segments in transmembrane proteins.

Our interest is in properties that can be easily computed
given only a sequence of amino acids; we therefore con-
sidered properties that depend only on the type of each
amino acid in a sequence, including:

¢ Hydropathy, a measure of the relative hydrophobicity of
an amino acid. There are four hydropathy scales in com-
mon use - the Kyte-Doolittle [26], Eisenberg-Schwarz-
Komaromy-Wall [27], Engelman-Steitz-Goldman [28],
and Liu-Deber [29] scales.

¢ Polarity, a measure of how charge is distributed over an
amino acid, affects how amino acids interact, and helps to
determine protein structure. There are two polarity scales
in common use—the Grantham [30] and the Zimmer-
man-Eleizer-Simha [31] scales.

¢ Flexibility, a measure of the amount to which an amino

acid residue contributes to the flexibility of a protein.
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¢ Polarizability, a measure of the extent to which positive
and negative charge can be separated in the presence of an
applied electric field.

e van der Waals volume, a measure of the volume occu-
pied by an amino acid.

e Bulkiness, a measure of the volume occupied by an
amino acid, is correlated with hydrophobicity [32].

e Flectronic effects, a measure that takes into account
steric factors, inductive effects, resonance effects, and field
effects [33].

e Helicity, the propensity of an amino acid to contribute
to the formation of helical structures in proteins [34].

Given a sequence of amino acids, the “pointwise” prop-
erty value associated to a particular position in the
sequence depends only on which of the 20 amino acids
occurs at that position. To increase the robustness of our
results, we work with average property values instead of
pointwise property values. The average of a given property
associated to a particular amino acid A in the sequence is
the average of the pointwise property values associated to
the amino acids contained in a window of length L cen-
tered at A. The effectiveness of each property at discrimi-
nating transmembrane from non-transmembrane
segments and intrinsically unstructured from intrinsically
structured segments was assessed based on two criteria:

(1) For a given property X, the degree to which the class-
conditional distributions for the two classes overlap, that
is, the degree to which py (x|class 1) and pyx (x|class 2)
overlap. The less these two probability distributions over-
lap, the more easily the two classes can be separated.
Knowledge of these probability distributions forms the
basis for a Bayesian classifier, which classifies an instance
having a value x for property X to “class 1” if and only if

px(x| class1)
px(x | class 2)

S P{class 2}
P{class 1}

where P{class 1} is the probability of observing a class 1
instance and P{class 2} is the probability of observing a
class 2 instance. The class-conditional probability distri-
butions for the above properties are plotted in Figures
1,2,3.

(2) The Overlap Ratio, defined in the Methods section, is
a numerical measure of the overlap between the condi-
tional probabilities P{class 1|X = x} and P{class 2|X = x}.
The smaller the Overlap Ratio, the more easily the two
classes can be discriminated.

http://www.biomedcentral.com/1471-2164/9/S1/S7

The Overlap Ratios for discriminating transmembrane
from non-transmembrane segments are shown in Table 1,
while the Overlap Ratios for discriminating intrinsically
unstructured from intrinsically structured segments are
shown in Table 2. It turns out that the discriminating
power of a given property depends on the length L of the
window over which property values are averaged; Overlap
Ratios are given in Tables 1 and 2 for all odd values of the
window length L between 9 and 31.

Our conclusions were as follows:

® Whereas all four hydropathy scales can be used for dis-
criminating transmembrane segments for non-transmem-
brane segments in transmembrane proteins, the Liu-
Deber scale is the best scale for this task.

® Whereas all four hydropathy scales can be used for dis-
criminating intrinsically unstructured segments from
intrinsically structured segments in transmembrane pro-
teins, the Eisenberg-Schwarz-Komaromy-Wall scale is the
best scale for this task.

® Whereas both polarity scales can be used for discrimi-
nating transmembrane from non-transmembrane seg-
ments and for discriminating intrinsically unstructured
from intrinsically structured segments in transmembrane
proteins, the Grantham scale is slightly better for these
tasks.

e For both classification problems (discriminating trans-
membrane from non-transmembrane segments and dis-
criminating intrinsically unstructured from intrinsically
structured segments), flexibility provided some degree of
discriminating power, and bulkiness provided still less;
neither property was as effective as hydropathy or polarity
at discriminating between the two classes.

e For both classification problems, polarizability, van der
Waals volume, electronic effects, and helicity did not dis-
criminate well between the two classes.

Transmembrane segment classifiers

We tested four classification techniques on the problem of
discriminating transmembrane segments from non-trans-
membrane segments in transmembrane proteins:

e C4.5 [35], a decision tree algorithm.

e SVMlight version 6.01 (linear kernel function) [36], a
support vector machine algorithm.

e Two variants of the Self-Organizing Global Ranking
(SOGR) algorithm [37], SOGR-I [38,39] and SOGR-IB
[38,39], which are described in detail in the Methods sec-
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Figure |

Conditional probability distributions p(x|TM), p(x|Non-TM) (on the left), and p(x|IU), p(x|Non-IU) (on the right), where x is
hydropathy, as determined by the Kyte-Doolittle, Eisenberg-Schwarz- Komaromy-Wall, Engelman-Steitz-Goldman, and Liu-
Deber scales. TM = transmembrane, IU = intrinsi-cally unstructured. The plots on the left were reproduced with permission
from [38].
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Figure 2

Conditional probability distributions p(x| TM), p(x|Non-TM) (on the left), and p(x|IU), p(x|Non-IU) (on the right), where x is,
from top to bottom, polarity, as determined by the Grantham and Zimmerman-Eleizer-Simha scales, bulkiness, and flexibility.
TM = transmembrane, U = intrinsically unstructured. The plots on the left were reproduced with permission from [38].
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Figure 3

Conditional probability distributions p(x| TM), p(x|Non-TM) (on the left), and p(x|IU), p(x|Non-IU) (on the right), where x is,
from top to bottom, van der Waals volume, polarizability, elec-tronic effects, and helicity. TM = transmembrane, U = intrinsi-
cally unstructured. The plots on the left were reproduced with permission from [38].
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Table I: Overlap Ratios for discriminating transmembrane segments from non-transmembrane segments in membrane proteins as a

function of window length (W.L.).

HKD HEi HEn HLD

Pz

W.L. Pg Bulk. Flex. Elec.

31 0.249 0.221 0.260 0.198 0.249 0211 0.423 0.294 0.504
29 0.232 0.197 0.241 0.183 0.223 0.223 0.397 0.278 0.499
27 0.231 0.203 0213 0.194 0232 0232 0412 0.266 0.462
25 0.238 0.198 0.227 0.178 0215 0.269 0.393 0.269 0411
23 0217 0.204 0219 0.177 0.208 0.233 0.385 0.258 0.434
21 0.209 0.204 0215 0.166 0216 0.197 0.370 0.252 0.379
19 0214 0222 0.220 0.199 0.224 0.235 0415 0.259 0.389
17 0.201 0.252 0218 0.199 0219 0.206 0.393 0.259 0.442
5 0.191 0.195 0.201 0214 0.224 0.193 0.356 0.283 0.456
13 0216 0.203 0217 0.178 0.203 0.189 0.325 0.283 0.500
I 0210 0.199 0.228 0.185 0.204 0.168 0.346 0.277 0.493
9 0.231 0.205 0222 0.200 0232 0.280 0.396 0.299 0.562

Here Hyp, Hg, He, Hp indicate the Kyte-Doolittle, Eisenberg-Schwarz-Komaromy-Wall, Engelman-Steitz-Goldman, and Liu-Deber hydropathy
scales, respectively, P, P, indicate the Grantham and Zimmerman-Eliezer-Simha polarity scales, respectively, Bulk. = bulkiness, Flex. = flexibility, and

Elec. = electronic effects.

Reproduced with permission from [38]

tion. These algorithms depend on a number of parame-
ters: the length L of the window used to extract features,
the number of neurons m, the learning rate n, and the
neighborhood size R. The performance of these algo-
rithms depends on the choice of these parameters: For
example, the performance of the SOGR-I algorithm as a
function of the length of the window used to extract fea-
tures is shown in Figure 4. Based on a series of experi-
ments, we settled on feature window length L of 10, a
network size m of 16 neurons, a fixed learning rate n, of
.05, and a neighborhood size R of 2. Since the length of
the window used to extract features was chosen to maxi-
mize the performance of the SOGR-I algorithm, the

results will be slightly biased in favor of the SOGR-I and
SOGR-IB algorithms.

Designing a classifier also involves selecting the features
that are most useful for the problem of interest. Based on
our investigations of physicochemical properties, we
based the classification on three features:

¢ Hydropathy (Liu-Deber scale)

¢ Polarity (Grantham scale)

« Flexibility

Table 2: Overlap Ratios for discriminating intrinsically unstructured segments from intrinsically structured segments in membrane

proteins as a function of window length (W.L.).

W.L. Hio He; He, Hip Pe Pz Bulk. Flex.

31 0318 0.163 0.170 0.243 0.220 0.134 0.349 0.227
29 0.221 0.229 0.167 0.249 0.138 0.161 0.351 0.238
27 0.222 0.150 0.164 0.230 0.170 0.142 0.221 0.263
25 0.216 0.234 0.162 0.241 0.175 0.142 0.364 0.272
23 0.253 0.143 0.160 0.253 0.163 0.157 0.238 0.254
21 0.182 0.139 0.144 0.267 0.176 0.159 0.323 0.271
19 0.285 0.142 0.149 0.257 0.172 0.251 0.337 0.291
17 0.290 0.199 0.148 0.266 0.183 0.307 0.353 0.279
15 0.320 0.170 0.155 0.274 0.182 0.183 0.338 0.361
13 0.264 0.180 0.165 0.284 0.194 0.254 0.358 0.340
I 0310 0.228 0.195 0.281 0.220 0.446 0.345 0.358
9 0.372 0.230 0.226 0.325 0.269 0.251 0416 0.401

Here Hyp, Hg, He, H,p indicate the Kyte-Doolittle, Eisenberg-Schwarz-Komaromy-Wall, Engelman-Steitz-Goldman, and Liu-Deber hydropathy
scales, respectively, P, P, indicate the Grantham and Zimmerman-Eliezer-Simha polarity scales, respectively, Bulk. = bulkiness, and Flex. = flexibility.

Reproduced with permission from [38]
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Figure 4
Performance of the SOGR-I classifier as a function of the length of the window used to extract features, based on threefold
cross-validation (fixed learning rate 1, = .05, neighborhood size R = 2, number of neurons = 16). Reproduced with permission

from [38].

The performance of the above four classification tech-
niques under ten-fold cross-validation when hydropathy
(Liu-Deber scale), polarity (Grantham scale), and flexibil-
ity are used as features is shown in Table 3, while the per-
formance when only polarity (Grantham scale) and
flexibility are used as features is shown in Table 4. It is
interesting that performance drops only slightly when two
features are used instead of three. All four classifiers exhib-
ited good performance, with out-of-sample accuracies of
approximately 75%. While this may seem low, the sub-
stantial overlap of the transmembrane and non-trans-
membrane classes seen in Figures 1,2,3 makes this a
nontrivial classification problem. Filtering strategies can

be used to improve the performance of these classifiers
[38,39].

Conclusions
We determined that the most useful properties for dis-

criminating transmembrane segments from non-trans-
membrane segments and for discriminating intrinsically
unstructured segments from intrinsically structured seg-
ments in transmembrane proteins were hydropathy,
polarity, and flexibility, and based on these properties,
constructed a number of classifiers to identify transmem-
brane segments with an out-of-sample accuracy of
approximately 75%. Several interesting observations

emerged from our study:

Page 8 of 13

(page number not for citation purposes)



BMC Genomics 2008, 9(Suppl 1):S7

http://www.biomedcentral.com/1471-2164/9/S1/S7

Table 3: Accuracy of discriminating transmembrane segments from non-transmembrane segments in trans-membrane proteins using
the SOGR-I and SOGR-IB classifiers, a decision tree classifier (C4.5), and a support vector machine classifier (SVM!ight version 6.01),
based on ten-fold cross-validation. Three features were used, namely hydropathy (Liu-Deber scale), polarity (Grantham scale), and

flexibility.
C4.5

Fold SOGR-I SOGR-IB Before Pruning After Pruning SVM

| 72.2311 72.2311 72.4960 72.5490 72.9730
2 69.0476 67.1733 67.8318 67.6798 67.3252
3 77.1277 76.9149 77.5532 77.6596 77.7660
4 81.8913 84.5875 83.7827 83.7827 83.4608
5 79.3146 78.4889 78.3237 78.4476 78.1586
6 81.4600 83.6230 82.8119 83.1595 82.0780
7 75.9410 76.8266 75.6458 75.9410 76.3100
8 78.3488 79.2783 79.8797 79.9891 79.2783
9 64.1365 65.0418 64.5543 64.5543 64.7632
10 67.2325 65.6089 66.8635 67.0111 67.6753
Mean 74.7 75.0 75.0 75.1 75.0
Std. dev. 6.2 72 6.8 6.8 6.5

Reproduced with permission from [38]

e Intrinsically unstructured segments and transmembrane
segments tend to have opposite properties, as summa-
rized in Table 5. For example, unstructured segments
tended to have a low hydropathy value, whereas trans-
membrane segments tended to have a high hydropathy
value. These results are in agreement with previous work
that found that transmembrane segments tend to be more
hydrophobic than non-transmembrane segments, due to
the fact that transmembrane a-helices require a stretch of
12-35 hydrophobic amino acids to span the hydrophobic
region inside the membrane [26].

e Transmembrane proteins appear to be much richer in
intrinsically unstructured segments than other proteins;

about 70% of transmembrane proteins contain intrinsi-
cally unstructured regions, as compared to about 35% of
other proteins.

¢ In approximately 70% of transmembrane proteins that
contain intrinsically unstructured segments, the intrinsi-
cally unstructured segments are close to transmembrane
segments.

These observations may provide insight into the structural
and functional roles that intrinsically unstructured seg-
ments play in membrane proteins, and may also aid in the
identification of intrinsically unstructured and transmem-
brane segments from primary protein structure.

Table 4: Accuracy of discriminating transmembrane segments from non-transmembrane segments in trans-membrane proteins using
the SOGR-I and SOGR-IB classifiers, a decision tree classifier (C4.5), and a support vector machine classifier (SVM!ight version 6.01),
based on ten-fold cross-validation. Two features were used, namely polarity (Grantham scale) and flexibility.

C4.5
Fold SOGR-I SOGR-IB Before Pruning After Pruning SVM
| 71.7541 72.0721 72.3900 72.6020 72.6550
2 65.1469 65.8561 66.1601 66.1601 67.0719
3 77.1277 78.4043 76.3830 77.5532 77.4468
4 83.0986 85.0302 83.7827 83.7827 83.018I
5 77.2502 77.6631 76.4244 76.4244 79.1082
6 81.9235 83.2368 82.8505 828119 82.1166
7 75.5720 76.6052 75.7934 75.8672 75.9410
8 79.4423 79.4423 79.7704 79.4970 79.4423
9 64.1365 64.3454 64.2061 64.2061 64.4150
10 67.4539 67.5277 67.0849 67.0849 67.0849
Mean 743 75.0 745 74.6 748
Std. dev. 6.8 72 6.9 6.9 6.7
Reproduced with permission from [38]
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Table 5: Tendencies of various properties for tranmembrane
(TM) and intrinsically unstructured (IU) segments.

Segment Type
Property ™ U
Hydropathy High Low
Polarity Low High
Bulkiness High Low
Flexibility Low High
Electronic effects High Low

Reproduced with permission from [38]

Methods

Physicochemical properties

The Overlap Ratio, a quantitative measure of how well
two classes (referred to generically as “class 1” and “class
2") can be discriminated based on a property X, was cal-
culated as follows.

1. We construct a graph such that:

(a) The horizontal axis corresponds to the property X. We
divide this axis into bins.

(b) The y-value associated with the bin corresponding to
X values between x and x + € is the fraction of all instances
in the training set that belong to class 1 and have a value
for the feature X in the range [x, x + €), where € > 0 is
small.

The graph represents an approximation to the function
P{class 1|X = x}. We define the complementary function
P{class 2|X = x}using

P{class 2| X =x} =1-P{class 1| X = x}

2. Let
fi(x)=P{class 1| X =x}

fo(x)=P{class 2| X = x}
Then the Overlap Ratio is then defined as:

Area under both f; (x) and f, (x)
Area under f;(x)+ Area under f, (x)

overlap Ratio =

The smaller the Overlap Ratio, the more easily the two
classes can be discriminated.

The SOGR-I and SOGR-IB classification algorithms
Overview

The Self-Organizing Global Ranking (SOGR) algorithm
[37] was inspired by Kohonen's Self-Organizing Map
(SOM) algorithm [40]. In the SOM algorithm, each neu-
ron has associated with it a topological neighborhood,

http://www.biomedcentral.com/1471-2164/9/S1/S7

and the algorithm is such that neighboring neurons in the
topological space tend to arrange themselves over time
into a grid in feature space that mimics the neighborhood
structure in the topological space. The SOGR algorithm
differs from the SOM algorithm by dropping the topolog-
ical neighborhood and replacing it with the concept of a
global neighborhood generated by ranking. We consider
two variants of the SOGR algorithm:

¢ The first variant, SOGR-I [38,39], modifies the initializa-
tion scheme of SOGR.

¢ The second variant, SOGR-IB [38,39] (“B” stands for
“Batch update”), removes the dependence on the order in
which instances are presented by only updating the
weights after each cycle, where a cycle involves presenting
the entire training set to the network, one instance at a
time. This variant also uses the modified initialization
procedure described above.

Before we describe the above modifications in detail, we
describe the SOGR algorithm itself.

The SOGR dlassification algorithm
We assume that m neurons are used; each neuron j has a

weight vector W]. (t), where t represents time. Let the ini-

tial position of neuron j at time ¢t = 0 be W]. (0), and

assume that the training set consists of instances (?ci Vi)
i=1,..,n where the X; are feature vectors, and y;

denotes the class of an instance.

1. Initialization: Choose initial positions W]. (0) in fea-
ture space for the m neurons by assigning the neurons ran-

dom positions in feature space.

2. Present the instances in the training set to the network,
one at a time. As each instance is presented to the net-
work, the time index t is increased by 1. For each instance
(?ci , ¥;) in the training set, the positions of one or more

neurons are adjusted as follows:

¢ Identifying Winning Neurons: Find the R closest neu-
rons to the feature vector Tci , that is, find the R neurons

with the smallest value of || 551. - W] (t) |l These R neurons

constitute the “neighborhood” of the input vector. Let I’
be the set of indices of the R winning neurons.
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¢ Updating Weights: Adjust the positions of each of the R
winning neurons using the update rule

W].(t +1)= Wj(t) +1, (% — Wj(t))

where j € I' and n, is the learning rate. The learning rate is
chosen to decrease with time in order to force convergence
of the algorithm. In [37] it is suggested that the learning
rate be decreased at an exponential rate, and that it should
be smaller for larger neighborhood sizes R.

3. Assigning Classes to Neurons: Associated with each
neuron j is a count of the number of instances belonging
to each class that are closer to neuron j than any other neu-
ron. This count is calculated as follows:

e For each neuron, initialize the counts to zero.

* For each instance (X;, y;) in the training set, find the
closest neuron to the feature vector ?cl. , that is, find the

neuron with the index j*, where

j* = arg min || % - W.(0)|
j J

and increment the count in neuron j* corresponding to
class y; by 1.

o After all instances in the training set have been consid-
ered, each neuron is assigned to the class corresponding to
the largest count for that neuron.

After the training process has been completed, a test
instance can be classified by assigning it the class label of
the nearest neuron.

The SOGR-I classification algorithm

The first variant, SOGR-I [38,39], modifies the initializa-
tion scheme of SOGR. Specifically, assume that the feature
space is d dimensional, so that the feature vectors Fci

belong to Rd . For each feature k, we find the largest and
smallest value of that feature over the entire training set,
which are respectively L, and U,

Lk = ml_m xik
- rnl_m X,

u

where x;, is the k" element of the feature vector X; . Then

the initial positions of the m neurons are chosen as:

http://www.biomedcentral.com/1471-2164/9/S1/S7

w, (0)=L, +1 @, ~1,) 17

jk kim-1"k "k k= 1,..d
Thus the m neurons are evenly distributed along the line
connecting (L, L,, ... L;) to (U,, U,, ... U,). This approach
has several advantages over other initialization methods:

e It guarantees that the neurons will be in some sense
evenly distributed throughout the feature space. Random
initialization, on the other hand, does not guarantee this.
If one has a large feature space, say of 60 dimensions, and
comparatively few neurons, say 50, then with random ini-
tialization those neurons will with high probability not be
evenly distributed throughout the feature space.

¢ Even a small number of neurons can be used to populate
the feature space. If we consider an alternate initialization
procedure in which one populates the feature space with
a d-dimensional grid of neurons, and there are ¢ grid
points along each feature space axis, then the total
number of neurons required to populate this grid is ¢¢. For
example, if ¢ = 3 and the feature space has 60 dimensions,
then the number of neurons required is

d _ 460 028

q ~4.239x1

which is clearly infeasible.

The SOGR-IB classification algorithm
The second variant, SOGR-IB [38,39], addresses two prob-
lems with the original SOGR algorithm:

¢ The SOGR algorithm updates the weights after each new
instance is presented to the network; as a result, the neu-
ron trajectories can oscillate wildly.

¢ The SOGR algorithm specifies that the learning rate
should be decreased during the course of training, for
example at an exponential rate. The problem is that if the
learning rate is decreased too rapidly, then the neurons
may get stuck before they have reached their optimal posi-
tions.

SOGR-IB (“B” stands for “Batch update”) addresses these
problems in two ways:

e [t uses a “batch update” strategy for updating the posi-
tions of the neurons in feature space. This eliminates the
dependence of the results on the order in which instances
are presented to the network, and also stabilizes the trajec-
tories of the neurons.

¢ The batch update strategy allows the use of a fixed, but
small, learning rate n, which eliminates the problem of
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the weights getting stuck because the learning rate n, was
decreased too quickly.

The SOGR-IB algorithm is described below:

1. Initialization: Choose initial positions W]. (0) in fea-

ture space for the m neurons using the SOGR-I initializa-
tion strategy. Set t = 0.

2. Repeat the following until the “energy” defined by

Qy=-- % s

R 2
me. || X, =W (o)l
2nR instances i neuronsj J ! J

does not reach a new minimum over a number of itera-
tions through the training set, where n is the number of
training instances, R is the number of neurons neighbor-
ing a given training instance that will be updated, and for
each instance (Tcl. , ;) in the training set, m; = 1 for neu-

rons j that are one of the R closest neurons to the feature
vector X;, and my = 0 for all other neurons j. After each

pass through the training set, the time index t is incre-
mented by 1.

(a) Let Z i be the “accumulator” corresponding to neuron

j. Initialize Zj to 0 for all neurons j.

(b) Present the instances ( fci , ;) in the training set to the
network, one at a time. After each instance is presented,

the “accumulators” are updated as follows:

¢ Identifying Winning Neurons: Find the R closest neu-

rons to the feature vector a"ci , that is, find the R neurons
with the smallest value of || 5c'l. - Wj (t)]| - These R neurons

constitute the “neighborhood” of the input vector. Let T
be the set of indices of the R winning neurons.

¢ Updating Accumulators: Adjust the accumulators corre-
sponding to each of the R closest neurons using the
update rule

- 1 I
Z.=7Z.+— = W(t
(=2 (= W0)

where j € I" and n, is the learning rate.

http://www.biomedcentral.com/1471-2164/9/S1/S7

(c). Updating Neurons: After all instances in the training
set have been presented to the network, update the
weights for each neuron j using the rule:

N

W (t+1) =W, (t)+Z;

where 7 is the number of instances in the training set.

3. Assigning Classes to Neurons: Same as Step 3 in the
SOGR algorithm above.
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