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Abstract

Background: With the popularity of DNA microarray technology, multiple groups of researchers
have studied the gene expression of similar biological conditions. Different methods have been
developed to integrate the results from various microarray studies, though most of them rely on
distributional assumptions, such as the t-statistic based, mixed-effects model, or Bayesian model
methods. However, often the sample size for each individual microarray experiment is small.
Therefore, in this paper we present a non-parametric meta-analysis approach for combining data
from independent microarray studies, and illustrate its application on two independent Affymetrix
GeneChip studies that compared the gene expression of biopsies from kidney transplant recipients

with chronic allograft nephropathy (CAN) to those with normal functioning allograft.

Results: The simulation study comparing the non-parametric meta-analysis approach to a
commonly used t-statistic based approach shows that the non-parametric approach has better
sensitivity and specificity. For the application on the two CAN studies, we identified 309 distinct
genes that expressed differently in CAN. By applying Fisher's exact test to identify enriched KEGG
pathways among those genes called differentially expressed, we found 6 KEGG pathways to be
over-represented among the identified genes. We used the expression measurements of the
identified genes as predictors to predict the class labels for 6 additional biopsy samples, and the

predicted results all conformed to their pathologist diagnosed class labels.

Conclusion: We present a new approach for combining data from multiple independent
microarray studies. This approach is non-parametric and does not rely on any distributional
assumptions. The rationale behind the approach is logically intuitive and can be easily understood
by researchers not having advanced training in statistics. Some of the identified genes and pathways
have been reported to be relevant to renal diseases. Further study on the identified genes and

pathways may lead to better understanding of CAN at the molecular level.
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Background

DNA microarray technology was launched in the early
90's. With its development and commercialization, it has
been a popular tool for researchers to perform genome-
wide analysis of gene expression profiles[1]. One major
application of the technology is to compare, with simulta-
neous measurements on the expression of thousands of
genes, the gene expression patterns under two or more dif-
ferent biological conditions, and to identify differentially
expressed genes and their biological functions. One direct
result of the popularity of the DNA microarray technology
is the explosion of data generated from independent
experiments that were designed to study similar biological
conditions. Meta-analysis can thus be performed to inte-
grate the results from these various DNA microarray
experiments. Ordinarily, given a random sample, we
assume that we can generalize the results and conclusions
drawn from the sample to the population; however, the
sample size for microarray experiments is usually small.
By performing meta-analysis on data from multiple exper-
iments, we can take advantage of the larger number of
hybridized samples and make the findings more applica-
ble to the full population.

Meta-analysis is the quantitative synthesis of a number of
study results. A few groups of researchers have developed
meta-analytic methods for combining results from multi-
ple DNA microarray experiments [2-6]. The biological
conditions to which such methods have been applied
include prostate cancer [2,4,6], liver cancer 7], leukemia
[8] breast cancer [3], pancreatic cancer [9], the common
transcriptional profiles of neoplastic transformation and
progression of multiple cancer types [5], and others [10].

A statistical challenge in performing a meta-analysis of
microarray studies is that often samples are hybridized to
different microarray platforms, and the technical differ-
ences among platforms lead to fundamental differences in
the nature of the gene expression measurements pro-
duced. For example, the data for a custom spotted cDNA
array are usually expressed as ratios of the intensity values
corresponding to an experimental sample to the intensity
values of a co-hybridized reference sample; while the data
from an Affymetrix high density oligonucleotide micro-
array are absolute intensity values for the single channel.
Therefore, data from different microarray platforms are
not directly comparable, and it is essential to use the orig-
inal values of gene expression from each platform to
derive an "effect size" estimate that is independent of plat-
form, thus rendering the different platforms comparable.
The term "effect size" commonly used in meta-analysis
refers to a standardized index measuring the effect associ-
ated with a treatment or covariate, or the magnitude of
difference in gene expression in microarray studies [6].
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Another challenge is how to integrate the effect size meas-
urements from the individual studies.

To address these challenges, different effect size measure-
ments and models for integrating microarray data have
been proposed. In an early study [2], the authors per-
formed a meta-analysis on two cDNA microarray studies
and two Affymetrix oligonucleotide arrays, all of which
compared the gene expression profiles between clinically
localized prostate cancer and benign prostate tissue speci-
mens. For each gene g (¢=1,U, G) and studyi(i=1,.., =
4), they fit a simple linear regression model with tissue
type as the covariate and expression measurement as the
response. Then the ordinary least square estimate of the
covariate coefficient divided by its standard error was used
as the effect size measurement, which is equivalent to a t-
statistic. Thus these gene-level effect size measurements
are comparable among all the individual studies. To inte-
grate these t-statistics across studies, a weighted average of
t-statistics was calculated to obtain a global statistic for
differential expression of each gene g, whereas the propor-
tions of the sample sizes in study i to the overall sample
size were used as the weights. To identify genes that were
truly differentially expressed between the cancer and
healthy tissues, the authors used permutation method by
fitting linear models with permuted tissue labels to calcu-
late the false discovery rate (FDR). Genes were declared
differentially expressed corresponding to a specified FDR.

The same four prostate cancer microarray datasets were
analyzed using an alternative method by Rhodes et al. [4].
They used the p-value p, ; calculated from the permutation
t-test for each gene g in each study i to serve as the effect
size measurement. To integrate across all the studies,

I
Fisher's method for combining p-values, S, = —22{ P
i=

was calculated for each gene. Under the null hypothesis
that gene g did not have differential expression between
the two groups, S, is chi-square distributed with degrees of
freedom 2-I. Then the p-value for gene g based on the
integral analysis of all the datasets can be calculated using
the y%;_,r-distribution. Controlling the FDR at a certain
level, differentially expressed genes could be identified as
those with p-values less than a threshold determined by
the FDR level.

Choi et al. [6] used a mixed-effects model approach to
estimate the standardized mean expression difference for
each gene g in each study i, and the study effect was treated
as arandom effect. A z-statistic z,, ;,
ment, was calculated to be the ratio of the estimated mean
expression differences to its standard error. To integrate

the effect size measure-
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across studies, the average z-statistic z, =

~|=

I
Zg; Was
“

taken to be the summary z score for each gene. Then they
used permutation technique to control the FDR and deter-
mine the cut-off value of the z scores. Genes with absolute
z scores larger than the cut-off value were declared as sig-
nificantly differentially expressed. These authors also
incorporated a Bayesian method into the mixed-effects
model to estimate the mean expression difference. They
assumed different prior distributions for the standardized
mean difference and the variance of the random study
effect. The estimates of the effect size measurements were
obtained from the corresponding posterior distributions.

Shen et al. [3] also used Bayesian framework to perform
meta-analysis on microarray experiments studying breast
cancer. However, the effect size measurement estimated
using Bayesian hierarchical model was a self-defined
probability: probability of expression, which was calcu-
lated based on a few distributional assumptions and
ranged in [-1, 1]. After the probability of expression was
obtained for each gene g in each study i (i = 1,.., I), they
simply pooled the data from all I studies into one dataset
and used univariate logistic regression technique to quan-
tify genes relevance to breast cancer.

Nevertheless, to some degree, all these methods rely on
the adherence of the data to a specified parametric distri-
bution, such as the Gaussian distribution for the t-statistic
methods and the mixed-effects model, or the different
forms of prior distributions in the Bayesian context. How-
ever, commonly within each individual microarray study,
only a small sample size is available, thus the normality
assumption may not hold well. Further, it may be even
more difficult to test the validity of the assumptions on
the prior distributions and their parameters for Bayesian
models. Some of the aforementioned methods are also
somewhat computationally complicated and might be
difficult to be understood by clinical researchers not hav-
ing advanced training in statistics.

We obtained the data from two independent microarray
experiments that compared the gene expression profiles
between chronic allograft nephropathy (CAN) and nor-
mal functioning kidney allograft. Chronic Allograft Neph-
ropathy is a major cause of graft loss and patient
morbidity after kidney transplantation. The histopathol-
ogy features of CAN are nonspecific and this makes it dif-
ficult to detect CAN before the occurrence of clinical
manifestations. However, it is now well known that CAN
may already be present in protocol biopsies before its clin-
ical appearance [11]. It may be promising to characterize
the gene expression pattern of transplant kidneys with
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CAN to use for prognosis of new kidney transplant recip-
ients. A few studies used DNA microarray technology to
compare, among patients who had kidney transplant,
gene expression of biopsy samples from kidneys with
CAN to those from the normal functioning kidneys. We
obtained the gene expression data from two studies,
which we refer to herein as the Hotchkiss study [12] and
the Mas study [11]. Both used Affymetrix high density oli-
gonucleotide microarrays to compare the gene expression
profiles between CAN and normal functioning allograft,
and identified lists of genes whose differential expression
profiles could describe the molecular difference between
CAN and the normal allograft. However, both of the stud-
ies suffered from the small sample size problem.

In this study, we sought to integrate the results from these
two independent DNA microarray experiments. Herein
we present a non-parametric approach for combining
microarray data from various studies which does not suf-
fer from the aforementioned limitations. This new
method does not require any distributional assumption
on the gene expression measurements, is logically intui-
tive, and is also easy to implement using statistical soft-
ware. We will also report some of the biological findings
from its application to integrate the two microarray stud-
ies.

Results

The Hotchkiss study used Affymetrix HG-U133A human
GeneChip arrays to measure the gene expression of 16
biopsies from patients with CAN and 6 biopsies from
patients with normal functioning allograft [12]. The data-
set was obtained upon request and the probe level data
were already normalized and summarized using RMA
(Robust Multichip Average) [13] method. The Mas study
[11] was performed at Virginia Commonwealth Univer-
sity and the investigators used Affymetrix HG-U133A 2.0
human GeneChip arrays to measure the gene expression
of 10 biopsies from patients with CAN and 4 with normal
functioning allograft. For consistency, we also used RMA
method to obtain probe set expression summaries from
the original *CEL files of this study.

Genes identified to be predictive of CAN

Using our proposed meta-analysis method on the two
microarray datasets, we identified 330 probe sets repre-
senting 309 genes that were significantly relevant to CAN.
Associated with each gene was a score that measured this
gene's ability to discriminate between CAN and normal
allograft. The lower the score value, the better discrimina-
tive ability the gene had. The definition of the score and
the procedure to obtain it are elaborated in the Methods
section. Table 1 lists the first 10 genes that have the most
desirable score values. Figure 1 is the heatmaps of the top
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Heatmaps of the top 50 identified genes (a) Hotchkiss study. (b) Mas study.

50 identified genes in the two studies. The complete list of
the identified genes can be found in Additional File 1.

The gene PVALB (parvalbumin) has the most outstanding
discriminative ability, or in other words, it has very dis-
tinct expression patterns between CAN and normal allo-
graft, as shown in Figure 2a. Although the expression
measurements in the two studies are of different ranges,
5.76-8.93 in the Hotchkiss study and 4.91-9.26 in the
Mas study, the relative pattern is the same: the expression
in CAN is lower than that in normal allograft. This gene
encodes a high affinity calcium ion-binding protein and
has been reported by multiple groups of researchers to be
related to renal cell cancers (RCC) (eg: [14,15]). Wiesel et
al. [16] found that "aggressive tumor growth of RCC
requires close follow up in patients who received a renal

allograft". The finding from this meta-analysis suggests
that parvalbumin might be also relevant to the progres-
sion to CAN and deserves further study.

Comparison between the genes identified by meta-analysis
and SAM analysis in each individual study

The Significant Analysis of Microarray (SAM) method [17]
was applied in both original studies by Hotchkiss and Mas
to detect significantly differentially expressed genes at a
false discovery rate (FDR) of 0.05. We applied SAM to the
two datasets respectively. Controlling the FDR at 0.05, 26
probe sets are declared significant in Hotchkiss study, 10
of which are among the 330 probe sets identified by our
meta-analysis; 2190 probe sets are declared significant in
Mas study, 214 of which are among the 330 probe sets
identified by our meta-analysis. Comparing the SAM anal-
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Table I: 10 identified probe sets with the lowest ranked scores for discriminating CAN vs. Normal allograft

LocusLink AffylD Gene Unigene ID Gene Name Chromosome Map Pathway Classification
Symbol error rate
(Score)
5816 205336_at PVALB Hs.295449 parvalbumin 22 22ql3.1 NA 0.0l
117178 203017_s_at SSX2IP Hs.22587 synovial sarcoma, | 1p22.3  Adherens 0.06
X breakpoint 2 junction
interacting protein
291 202825 _at SLC25A4 Hs.246506 solute carrier 4 4q35 Calcium 0.07
family 25 signaling
(mitochondrial pathway
carrier; adenine
nucleotide
translocator),
member 4
23043 213107_at TNIK Hs.34024 TRAF2 and NCK 3 3926.2-q26.31 NA 0.09
interacting kinase
6651 201086_x_at SON Hs.517262 SON DNA binding 21 21q22.11 NA 0.09
protein
21q22.1-q22.2
55365 218345_at HCAI 12 Hs.438823 NA 7 7q36.1 NA 0.09
8775 208751 _at NAPA Hs.126938 N-ethylmaleimide- 19 19q13.32 NA 0.09
sensitive factor
attachment
protein, alpha
5092 203557 s at PCBDI Hs.3192 pterin-4 alpha- 10 10q22 NA 0.1
carbinolamine
dehydratase/
dimerization
cofactor of
hepatocyte
nuclear factor |
alpha (TCFI)
1672 210397_at DEFBI Hs.32949 defensin, beta | 8 8p23.2-p23.1 NA 0.1
56616 219350_s_at DIABLO Hs.16961 | diablo homolog 12 12q24.31 NA 0.1

(Drosophila)

ysis results of the two studies, only 2 probe sets are found
to be in common.

The discordance among these results demonstrates that
independent microarray experiments, even they use the
same platform and study the same biological condition,
may not be reproducible [18,19]. It also demonstrates the
advantages of meta-analysis: since the overall sample size
is larger than each individual study, it can find "small but
consistent" [20] effect sizes which cannot be detected by
analysis on individual studies. Also, some effect sizes
might be significant in one study but not the other; meta-
analysis can discard these inconsistent effect sizes which
may be caused by the uniqueness of samples in that study.

A unique advantage of our meta-analysis method is that it
can discern the differential gene expression patterns
between CAN and normal allograft that cannot easily be
described by some measurement of standardized mean

difference in expression values, such as the t-statistic,
which is the basis of the SAM method. An example is illus-
trated using the expression values of probe set
"205055_at" in both studies. This is gene ITGAE, the fifty
third in the identified gene list. In Figure 2b, plots of the
distributions of ITGAE expression values in the two stud-
ies are presented. It is clear in both plots that the expres-
sion patterns are different between the two groups, with
the expression of normal allograft samples generally being
lower than that of CAN samples. However, because of the
presence of several normal samples that have relatively
high expression, the standardized means are not signifi-
cantly different between the two groups. As in reality, even
if a gene has been biologically validated to be up-regu-
lated (or down-regulated) in a disease, relatively low (or
high) expression may still be observed in a few samples.
The two-sided t-test for ITGAE in the Hotchkiss study
yields a p-value 0.20, and 0.14 in the Mas study. There-
fore, models based on t-statistic will not recognize this
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The differential expression pattern of gene (a) PVALB (Affy ID "205336_at") and gene (b) ITGAE (Affy ID "205055_at").

gene as having differential patterns between the two
groups, although the expression patterns are indeed dif-
ferent enough to differentiate the samples.

Comparison between the genes identified by our non-
parametric meta-analysis and a t-statistic based meta-
analysis

We also performed a meta-analysis on the two CAN stud-
ies using a commonly used parametric approach that is
based on t-statistic, and compared the result to that from
our non-parametric meta-analysis approach. The t-statis-
tic based method is derived from [4] and is described as in
the Background section. To control for the FDR, Ben-
jamini and Yekutieli's method [21] of adjusting the p-val-
ues was used. At an FDR level of ¢ =0.01, 2026 probe sets
are identified to have significantly differential expression
between the normal allograft and CAN samples. The
majority of the 330 probe sets identified by our non-par-
ametric meta-analysis are also identified by this paramet-
ric meta-analysis; however 73 out of the 330 probe sets are
not identified by the parametric analysis, including the
above mentioned probe set "205055_at", which has an

adjusted p-value 0.41. Most of the 73 probe sets indeed
have the similar differential expression pattern as seen in
Figure 2b, which cannot be depicted by the t-statistic
based model, yet is a reflection of what might be observed
in reality.

Biological pathways associated with the identified genes
The meta-analysis was performed on the individual gene
level and assigned a score for each gene that quantified its
difference in expression between CAN and normal allo-
graft. However, genes do not express independently, espe-
cially when they are components of the same biological
pathway. Therefore, we also examined the identified
genes at the pathway level.

Among the 330 identified genes using our non-parametric
approach, 129 have been annotated in KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway database,
and they are components of 114 pathways. For each path-
way we used Fisher's exact test with & = 0.01 to test the
null hypothesis of no difference against the alternative
that significantly more genes were represented in the list
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of the identified genes of that pathway than would be
expected by chance. Six pathways were found to be signif-
icantly over-represented. Table 2 lists the pathway names
and the number of identified genes in the pathways.

As an illustration, we examined the most significantly
over-represented pathway in the literature. Oxidative
phosphorylation is a process of cellular respiration and
consisted of five complexes located in the inner mito-
chondrial membrane. ATP synthesis is the final protein
complex in the metabolic pathway. It has been reported
that mitochondrial disorders can sometimes give rise to
kidney dysfunction [22]. The finding from this meta-anal-
ysis indicates that the abnormal activities in the process of
oxidative phosphorylation might be related to the devel-
opment of interstitial fibrosis and tubular atrophy, which
are specific features of CAN.

Allograft status prediction on 6 unpublished samples
Predictions were performed on 6 additional transplant
kidney biopsies that were procured and hybridized to
Affymetrix HG-U133A 2.0 GeneChip arrays from Mas et
al. after their previous study. These 6 samples were all
diagnosed as CAN by experienced pathologists based on
the histological observations. Each identified gene was
used as the single predictor to predict the class labels of
the 6 samples, using classifiers derived from the Hotchkiss
data and Mas data respectively. The weighted average of
the error rates associated with each identified gene is
recorded in the last column of Additional File 1, where the
weight corresponding to each study was taken to be the
proportion of its sample size in the total combined sam-
ple size.

When using the classifiers derived from Hotchkiss data
and Mas data respectively with all the 330 identified genes
expression measurements as predictors, the predicted
classes all conformed to their true diagnostic classes.

Simulation Study

We conducted a simulation study to investigate the gener-
alizability of our non-parametric meta-analysis approach.
Two datasets were generated independently to simulate
the RMA expression summary data observed from the two

http://www.biomedcentral.com/1471-2164/9/98

Affymetrix GeneChip experiments in which CAN was
studied. We simulated expression values for G = 2000
genes in each of two studies, with a percent p = 10% of
genes to be truly differentially expressed between the dis-
ease group and normal group. The sample sizes were n, ,
=4 018, 1y, oy = 6 o1 10 in study I for the disease and nor-
mal groups respectively; similarly, the samples sizes were
n, 4= 6 or 10, ny ..., = 15 or 15 in study II for the two
groups respectively. These small samples sizes were used
to mimic the CAN meta-analysis. To identify differentially
expressed genes, the non-parametric meta-analysis
approach and permutation t-test based approach were
then applied on the simulated datasets. We note that
because of the small sample sizes in the disease group,
mixture-effects model based meta-analysis approach is
not likely to be appropriate to use. The performance of the
applied two approaches was evaluated by two statistics:
sensitivity (percentage of correctly identified differentially
expressed genes in the pool of truly differentially
expressed genes); and specificity (percentage of identified
non-differentially expressed genes in the pool of truly
non-differentially expressed genes).

Simulation model and algorithm
The intensity of a gene was generated using the following
model:

Vo,ij= Hg+ 10 = 2) Brog + 10 = 2) " g + €igig

wherey, ; ;is the intensity for gene g(g = 1,..., G = 2000) in
studyi=1, 2 and group j = 1 (normal) and 2 (disease); I()
is the indicator function; y, is the overall gene g effect; A,
is the study effect; y;,, is the group effect; and ¢, is the
random error term nested within group, allowing differ-
ent variability in different groups. The procedure used in
the generation of the datasets is outlined in the following
steps:

1). Generate the gene effects vector g = (z,..., fi)' ~ mul-
tivariate N(g, X), where g, = (45 to--» Hy), Where
HovUniform (4.5,9) with probability 0.9 and Uni-
form(6,12) with probability 0.1; and Z~[(n; - 1)-Z, + (1,
-1)-%,]/(ny + n, - 2), where X, and X, are the sample vari-
ance-covariance matrices of 2000 randomly selected

Table 2: Over-represented KEGG pathways by Fisher exact test, at significance level 0.01

Pathway Name

No. of Identified Probe Sets

Total No. of Probe Sets Fisher Exact Test

Relevant to CAN in the Pathway in the Pathway p-value
Oxidative phosphorylation 14 158 0
ATP synthesis 7 59 0
Citrate cycle (TCA cycle) 5 42 0
Reductive carboxylate cycle (CO?2 fixation) 3 15 0
Cholera — Infection 6 84 0.01
Methionine metabolism 3 23 0.01
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genes in the Hotchkiss study and Mas study, respectively.
Thus the correlation structure in the genes is preserved in
the simulated data.

2). For samples in Study II, generate the study effect for
each gene: ;) ,~N(uy 04), where ugvUniform (0,2) and
o~Uniform(0,0.5).

3). Randomly select p = 10% of the genes to be truly dif-
ferentially expressed genes. Additionally randomly select
some samples to represent the diseased group. Generate
the group effect for each of these genes in these disease
samples: y;,~N(u,, 0,2), where pUniform(0.2,1) with
probability 0.4, Uniform(1, 2.2) with probability 0.1,
Uniform(-1,-0.2) with probability 0.4, and Uniform(-
2.3,-1) with probability 0.1; o,2~Uniform(0.4,0.5).

4). Generate the random error for each gene in each sam-
ple: &(;vN(0,0.1).

Simulation result

We ran 30 simulations and the means and standard devi-
ations (SD) of the sensitivity and specificity statistics using
the two approaches are reported in Table 3. The small SDs
indicate that both our KNN based non-parametric
approach and the t-statistic based parametric approach
have stable performance over the 30 simulation runs.
Using either approach, the sensitivity is increased in sce-
nario II where a larger sample size is available compared
to scenario I. Under both scenarios, our approach outper-
forms the t-statistic based approach, either in terms of sen-
sitivity or specificity. The specificity statistic is always high
(>95%), as is expected since 90% of the G = 2000 genes
truly have non-differential expression.

Discussion

The two microarray experiments analyzed in this meta-
analysis were both performed using Affymetrix platform,
whereas the Hotchkiss study utilized the HG-U133A
arrays and Mas et al. used HG-U133A 2.0 (version 2)
arrays. Other than some differences in the control probe
sets, the probe set IDs are identical between the two ver-
sions of HG-U133A arrays. Therefore, gene mapping
between datasets was not a challenging step.

http://www.biomedcentral.com/1471-2164/9/98

Hu et al. [23] developed a gene hybridization quality
measure for Affymetrix DNA microarray platform and
incorporated it as a quality weighing strategy into the
effect size estimation in Choi et al.'s mixture-effect model.
We also considered using a hybridization quality meas-
urement as a weighing system when deriving for each gene
the score that described the gene's ability in discerning
CAN vs. normal allograft. However, the dataset obtained
from the Hotchkiss study is already probe set level data
summarized by RMA method; therefore, we were unable
to implement a quality measure in the analysis.

The meta-analysis method we proposed is applicable to
situations where multiple microarry platforms are
involved. However, if the data are from the same plat-
form, the same normalization method should be used.
The Tumor Analysis Best Practices Working Group com-
pared different probe set expression summary algorithms
for Affymetrix GeneChip arrays and claimed "different
probe set interpretation algorithms lead to different
results" [24]. They often observed only "~50% concord-
ance in general data output in their own work between
comparisons of two different algorithms". Therefore, a
good expression summary algorithm is essential for per-
forming down-stream analysis. Shippy et al. [25] used
RNA sample titrations to assess microarray platform per-
formance and normalization techniques [26-30]. It is not
the research focus in this paper, and we suggest applying
the same algorithm on datasets from the same platform.

It is well known that genes, especially genes in a common
pathway, are correlated. We considered starting the meta-
analysis from a pathway level, i.e. first identifying path-
ways that might be relevant to the progress of CAN; and
then focusing on the individual genes in those pathways
and finding out genes whose expression patterns were dif-
ferential between CAN and normal allograft. However,
since only less than 30% of the genes measured on the
Affymetrix HG-U133A chips have been annotated with
known KEGG pathway information, we decided to per-
form the analysis at the gene level. This may help research-
ers understand gene functions that are still unknown and
avoid throwing away 70% of the available data.

Table 3: Mean sensitivity and specificity using the non-parametric approach and t-statistic based approach from the 30 simulations,
under two scenarios of different sample sizes. (SD: standard deviation)

Meta-analysis approach Scenario I:
nl,d= 4' nl,normz

M4 =6, M2, norm

6
I5

Scenario II:
nl,d= 8' nl,norm
ny,4 = IO' N2, norm

10
15

Sensitivity (%) (SD)

Specificity (%) (SD)

Sensitivity (%) (SD) Specificity (%) (SD)

KNN based non-parametric 78.15 (2.90) 99.83 (0.10) 84.83 (2.68) 99.96 (0.06)
t-statistic based parametric 75.77 (3.19) 96.02 (0.78) 77.00 (3.01) 96.00 (0.55)
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Chronic allograft nephropathy is a complex entity at both
histological and molecular level. We identified 330
sequences whose differential expression patterns could
distinguish between CAN and normal allograft. The func-
tions of most of the identified genes are not well under-
stood yet. More studies on these genes, especially on those
at the top of the list, may lead to a better understanding of
the progression of CAN at the molecular level. Further-
more, each gene is associated with a score that measures
its degree of differential expression between the two
groups. All the identified genes have scores below the pre-
determined threshold 0.1737. By adjusting the threshold
based on prior expertise knowledge about CAN, more or
less genes can be identified for further study. To utilize a
smaller set of genes for prognosis on kidney transplant
recipients, the genes with the lowest score values can be
selected, such as the 10 listed in Table 1. Further study on
the expression of these identified genes in the kidney
transplant recipients might be very informative in terms of
prognosticating the development of CAN.

Conclusion

In this paper, we present a new meta-analysis technique
for combining DNA microarray studies by analyzing two
independent microarray studies comparing the gene
expression of CAN and normal allograft. This is a non-par-
ametric approach that is statistically easy to understand,
and can discern differential expression pattern that may
not be detected by t-statistic based models and mixture-
effects model. Although the new method is applied to
combine two microarray studies of the same platform, its'
use is by no means limited to a single platform and can be
used to different platforms without difficulty.

Methods

The probe level data from the two independent Affymetrix
microarray studies were normalized and summarized
using RMA method. To assess the sample quality, we cal-
culated the 3' :5' ratios for three Affymetrix control probe
sets corresponding to human genes GAPDH, ISGF and S
actin. For both studies, all the ratios were less than 3, the
threshold recommended by Affymetrix. Therefore, sample
degradation did not seem to be a problem in both studies,
and thus we regarded all samples as useful. Before com-
bining the data across the two independent studies, all
Affymetrix control probe sets were excluded, leaving
22,215 probe sets that were common to both studies.

Definition and calculation of effect size measurement in
individual studies

We considered finding in each individual study for each
gene an effect size measure that could quantify the gene's
ability in discriminating CAN from normal allograft. This
was essentially determined by the degree of difference in
the gene's expression between the two groups, and
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reflected as how well its expression measurements could
classify the samples. Conceptually, if a gene is irrelevant to
CAN, using its expression to determine class membership
would appear as random guessing. On the other hand, if
a gene is an important predictor in distinguishing class,
i.e. it has different expression patterns between CAN and
normal allograft, we will expect to correctly classify most
of the samples using its expression, and the misclassifica-
tion error rate will be close to 0.

Therefore, within study i (i = 1, 2) we used the expression
for each gene g (g = 1,..., 22215) as the single predictor
variable and applied the K-Nearest-Neighbor (KNN) clas-
sification method to develop a classifier for the n; samples
in study i. Thereafter, the KNN classifier was used to pre-
dict class label for each sample. The predicted labels were
compared with their corresponding true class labels and
an unbiased estimate of the misclassification error rate,
denoted as err, ;, was calculated. This error rate estimate
measured this gene's discriminative ability and is defined
as our effect size statistic.

Using KNN, we estimate directly at each observation the
posterior probability of each class, given the observed pre-
dictor (gene expression), as the proportion of that class
among the k nearest "neighbors" of the target observation.
Then the classification for the target observation is the
class which had the largest estimated posterior probabil-
ity. The advantages of KNN include that it does not
require any distributional assumptions, and it has reason-
able performance comparing to other classification meth-
ods. A property of the large-sample behavior of KNN is
described in the following theorem [31]:

THEOREM: Let E* denote the error rate of the Bayes rule
in a C-class problem, i.e. the best possible error rate for the
classification problem. Then the error rate of KNN con-
verges in L, as the size of the training set increases to a

value E;, bounded below by E* and above by

* C *
E'x(2-5E).

For a two-class problem, E* = E(min(P(class I|x), P(class
ITx))) < 0.5, where x is the vector of predictors. Thus the
asymptotic upper bound of the error rate of KNN is E* x
(2 - 2E*) < 0.5, which means that KNN has asymptotic
performance as good as the performance of the Bayes rule.
When the sample size is small, as is often the case in
microarray studies, KNN is also suitable to use as Ripley
[32] indicates that most other non-parametric classifica-
tion methods, such as kernel density estimation based
methods, aim to model the class-conditional densities
and thus need a very large training set to be successful.
Therefore, due to the non-parametric nature of directly
modeling the posterior probabilities and the good per-
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formance of KNN, it is applied to appropriately quantify
the true discriminative ability of each gene.

We used an odd value of k& (the number of neighbors) to
avoid ties, and chose k& = 3 considering in the Mas study,
only 4 samples were available in the normal allograft
group. For microarray studies with larger sample sizes, k
can be determined using cross-validation and can be dif-
ferent for the individual studies. Since the data from both
studies were summarized using RMA method and thus the
scales of the data are similar, the Euclidean distance was
used to quantify the similarity in the predictor gene's
expression profile between samples and determine the
"nearest neighbors" for each sample.

The apparent misclassification error rate, which is the
number of misclassified observations in the training data-
set divided by the total number of samples in the training
dataset, tends to under-estimate the true misclassification
error rate [32]. Therefore, we used the refined bootstrap
estimate to obtain an unbiased estimate for the misclassi-
fication error rate [33]. The refined bootstrap estimate cor-
rects the apparent error rate estimate by adding the
optimism due to estimating the error rate using the same
observations that are also used in deriving the classifier.
For each gene g in each individual study i, we generated B
= 100 bootstrap resamples. For each bootstrap resample,
we used the bootstrap sampled gene's expression meas-
urements as predictor values and applied the KNN to
develop the classifier. The classifier was used to predict the
class labels for the bootstrap samples, as well as the origi-
nal samples, respectively. If Ry, ;) 5, ; denotes the misclas-

sification error rate in the b bootstrap samples, and
R denotes the misclassification rate in the original

samples using the classifier built from the b bootstrap

ori,(b), & i

B
) _1 :
samples; then Ropiei =5 Z(ROTi,(b),g,i - Rbomr(b),g'i) is the
b=1

optimism estimate. Therefore, the unbiased estimate of
misclassification error rate err, ; is the apparent error rate

in the original samples, which uses the classifier built
from the original samples themselves, plus the optimism
estimate from bootstrap samplings, i.e., err, ;= R, ;+ R,

o i» Where R, ; denotes the apparent error rate and g = 1,

2,...,22215;i=1, 2.

It is noteworthy to notice that this step can be carried out
on microarray datasets from any platforms. Although dif-
ferent platforms may yield distinct scales of numerical
measurements of gene expression, as long as there exists a
relative different expression pattern between the two

http://www.biomedcentral.com/1471-2164/9/98

classes, the discrimination method can be applied to
quantify each gene's association with the class label.

Integration of the effect sizes across studies

After we obtained the study-specific effect size measure-
ments (er7, ;) for each gene g, we calculated the weighted
average across studies as the combined effect size (or
score) of this gene. The weight corresponding to each
study was taken to be the proportion of its sample size in
the total combined sample size. The combined effect size

2
S = nj
for gene g across studies is ETTg' = E il errg{i .

i=1 z nj
i=1
Identification of genes relevant to CAN
To identify genes capable of distinguishing between CAN

and normal allograft, we wanted to identify the err, esti-

mates that are "equivalent" to 0. To do so, we determined
a threshold T such that if the probability of a score being
less than the threshold was less than & = 0.01, the score
was considered to be equivalent to 0, i.e., P(err, -0 <T |

8) < a. The Q-Q plot of err, for the 22,215 probe sets

(not shown here) demonstrates that err, are approxi-

mately normally distributed. Therefore, assuming err, ~

N(u, o2), the threshold T is the quantile such that P(x - 0
<T|x ~N(& 0?)) = «, and estimating T by plugging in the
moment-based estimates for x and o2. This is illustrated
graphically in Figure 3. The genes whose scores are less
than the threshold are identified as being relevant to CAN.
The analyst can adjust « to identify either a larger or
smaller number of genes.

The entire meta-analysis method is summarized in Figure
4.

The analysis was conducted in the R 2.4.0 environment on
a PC with Intel Core Duo CPU@2.0G x 2 and 2.0G RAM.
The average calculation time needed for each gene is
about 0.9 second. More efficient and faster performance
of the algorithm can be realized when the implementa-
tion in the C language is available. Our R code for analyz-
ing the two CAN studies can be found in Additional File 2.

Identification of over-represented KEGG pathways

To identify the over-represented pathways associated with
the identified genes, we first filtered the whole gene list by
excluding probe sets that had not been annotated in
KEGG pathway database, and denoted the number of
remained probe sets as G,. Among the remaining probe
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Figure 3

Normal density plot to illustrate the selection of the thresh-
old for the scores.

sets, we let G, denote the number of probe sets that were
identified to be relevant to CAN, and let Gy, p denote the
number of probe sets that were components of a pathway
p(p =1, 2,.., P). Among the G, identified probe sets, G,
, brobe sets were in the pathway p. Then we performed a
Fisher's exact test [34] on the 2 x 2 table as in Table 4 to
test whether this pathway p was over-represented in the
identified genes at a significant level 0.01.

Prediction on 6 unpublished samples

To predict the class labels of the 6 additional samples, we
first normalized and summarized the *.CEL files using
RMA method. It was noticed that although a gene's differ-
ential expression pattern might be similar in both studies,
the numerical values between the studies took on differ-
ent ranges. As can be seen in Figure 1, the gene PVALB was
significantly differentially expressed between CAN and
normal allograft in both studies; however, the measure-
ments on CAN samples in the Hotchkiss study were in the

http://www.biomedcentral.com/1471-2164/9/98

For each gene g:

DNA Microarray
Dataset | Apply KNN and calculate —»
misclassification error rate

N/

Score=
weighted average
of error rate

DNA Microarray
Dataset Il

<« Determine a threshold T

Scores<=T7? Genes irrelevant

to the disease

Pathway Genes relevant Class prediction
Analysis to the di on new
etc. Report samples
Figure 4

Flowchart illustrating our non-parametric meta-analysis
approach.

range of (5.76, 7.61), while in the Mas study they were in
the range of (4.90,5.50). Therefore, a global shift on the
RMA normalized measurements existed between the two
independent studies. Because the six unpublished sam-
ples may have been processed by different technicians, the
shift on the measurements may also be present between
these samples and the earlier two studies.

In order to diminish the impact of the global shift and
make the classifier derived from the previous two studies
applicable to these unpublished samples, we centered the
measurements of each identified gene by subtracting its
median in each individual dataset. Next the KNN algo-
rithm was run to build classifiers respectively with the cen-
tered data in the Hotchkiss study and Mas study. Then the
two classifiers were applied respectively to classify the 6

Table 4: 2 x 2 Table for testing whether pathway j was over-represented in the identified genes (To test Hy: the number of genes in

pathway p is independent of the number of identified genes relevant to CAN. Vs. H,: the number of genes in pathway p is over-

represented in the identified genes relevant to CAN, since all the marginal values are given, Fisher's exact test is used. The p-value

Gip Y Go-GID
. t CO,p -t
from the test is P(GID,p > ng,p) = 2 , where g, ,denotes the observed value of G5 ,)

G
281 0
Golp
No. of Genes in Pathway p No. of Genes Not in Pathway p Total
No. of Identified Genes Relevant to CAN Gp, p Gip-Gpp, Gp
No. of Genes Irrelevant to CAN Go, - Gpp,p Go- Go,p- (Gip- Gpp, ) G- Gp
Total Go, » Go- Go Gy
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samples and the predicted results were compared to their
true classes.
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