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Abstract
Background: Large-scale gene expression analysis of post-mortem brain tissue offers unique opportunities for
investigating genetic mechanisms of psychiatric and neurodegenerative disorders. On the other hand microarray
data analysis associated with these studies is a challenging task. In this publication we address the issue of low
RNA quality data and corresponding data analysis strategies.

Results: A detailed analysis of effects of post chip RNA quality on the measured abundance of transcripts is
presented. Overall Affymetrix GeneChip data (HG-U133_AB and HG-U133_Plus_2.0) derived from ten different
brain regions was investigated. Post chip RNA quality being assessed by 5'/3' ratio of housekeeping genes was
found to introduce a well pronounced systematic noise into the measured transcript expression levels. According
to this study RNA quality effects have: 1) a "random" component which is introduced by the technology and 2) a
systematic component which depends on the features of the transcripts and probes. Random components mainly
account for numerous negative correlations of low-abundant transcripts. These negative correlations are not
reproducible and are mainly introduced by an increased relative level of noise. Three major contributors to the
systematic noise component were identified: the first is the probe set distribution, the second is the length of
mRNA species, and the third is the stability of mRNA species. Positive correlations reflect the 5'-end to 3'-end
direction of mRNA degradation whereas negative correlations result from the compensatory increase in stable
and 3'-end probed transcripts. Systematic components affect the expressed transcripts by introducing irrelevant
gene correlations and can strongly influence the results of the main experiment. A linear model correcting the
effect of RNA quality on measured intensities was introduced.

In addition the contribution of a number of pre-mortem and post-mortem attributes to the overall detected RNA
quality effect was investigated. Brain pH, duration of agonal stage, post-mortem interval before sampling and
donor's age of death within considered limits were found to have no significant contribution.

Conclusion: Basic conclusions for data analysis in expression profiling study are as follows: 1) testing for RNA
quality dependency should be included in the preprocessing of the data; 2) investigating inter-gene correlation
without regard to RNA quality effects could be misleading; 3) data normalization procedures relying on
housekeeping genes either do not influence the correlation structure (if 3'-end intensities are used) or increase
it for negatively correlated transcripts (if 5'-end or median intensities are included in normalization procedure);
4) sample sets should be matched with regard to RNA quality; 5) RMA preprocessing is more sensitive to RNA
quality effect, than MAS 5.0.
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Background
Analysis of microarray gene expression profiles of post-
mortem brain tissues have become an important tool in
studying neurodegenerative and psychiatric disorders [1-
5]. In addition to a number of reported sets of differen-
tially expressed genes specific to schizophrenia, Alzhe-
imer's and Parkinson's diseases, autism, alcoholism etc.
one can find continued discussions concerning quality
and consistency of post-mortem brain analysis by micro-
array technology [6-12]. Main challenges in this area sum-
marized in [13,14] are as follows: 1) limited availability of
post-mortem material resulting in extreme diversity of
subjects with respect to race, age, post-mortem interval,
medication history, lifestyle and other variable factors; 2)
complex character of brain tissues; 3) important expres-
sion changes in brain samples are often modest and con-
cern low abundance genes; 4) the transcriptome is shaped
by the treatment of the disease; 5) it is hard to separate the
effect of disease from the normal progression of aging; 6)
RNA integrity in post-mortem sampling can be influenced
by pre-mortem and post-mortem events.

The limited availability of donor material may be one rea-
son for difficulties in establishing proper experimental
designs with respect to possible confounding factors. In
order to address this issue a number of potential con-
founding factors and their effect on transcript abundances
in the post-mortem brain samples have been intensively
studied [15-22]. It is generally accepted that details of pre-
mortem and post-mortem events effect the transcriptome
[18,19], while real interrelations between expression level
and confounders like donor age of death, pre-mortem
hypoxia, agonal events and duration of agonal stage,
brain pH, post-mortem interval before sampling, and
RNA integrity are still under discussion [6,12,16,17,20].

Recently it has been shown that: 1) an increase of com-
plexity and duration of agonal events causes an increase of
variance of intensities and a decrease of between chip cor-
relation [21], 2) differences in post-mortem interval
before sampling leads to only marginal effects [16,17],
and 3) differences in RNA quality leads to crucial effects
that are much more pronounced than the disease (i.e.
schizophrenia) related effects [22]. The latter point refers
to the fact that the RNA quality of post-mortem brain
samples depends on some difficult-to-control attributes.
This results in a wide range of chip RNA quality in a sam-
ple set and finally in a strong signal reflecting RNA quality
in the expression profiles. Thus, it is crucial to take these
effects into account when analyzing microarray data
derived from post-mortem brain tissues.

In this paper we present detailed analyses of the effects of
RNA quality on measured transcript intensities and corre-
sponding data analysis strategies in the context of post-
mortem brain tissue microarray studies.

The main aim of our study was the analysis of genes dereg-
ulated in Parkinson's disease. On the basis of data derived
from the GeneLogic database [23] gene expression pro-
files obtained with Affymetrix GeneChip platforms HG-
U133_AB and HG-U133_Plus_2 were investigated. Sam-
ple sets for 10 different brain regions contained approxi-
mately 20–30 samples in each set (Table 1) and were
hybridized to both chip platforms thus allowing high sta-
tistically confident conclusions to be drawn. RNA quality,
which we have chosen to assess by 5'/3' ratios (see section
1 of Results and discussion) of the housekeeping genes
beta actin (ACTB) and GAPDH, was found to introduce
well-pronounced systematic noise into transcript expres-
sion levels. Some components of the noise have a clear

Table 1: Sample set sizes and data dependency structure

Chip platform HG-U133_Plus_2.0 HG-U133_AB Intersection

Controls Parkinson's Controls Parkinson's Controls Parkinson's

Brain tissue Shortcut

Brodmann area 35 BA35 11 12 13 12 10 11
Caudate nucleusP CauNuc 23 12 18 13 16 12
Nucleus ambiguus NucAmb 12 12 13 12 11 11
Nucleus basalis of Meynert NucBas 8 11 14 12 8 11
Pulvinar Pulvinar 13 11 7 12 6 11
PutamenP Putamen 17 11 13 13 10 11
Reticular formation of midbrain RetForm 13 9 10 13 10 9
Septal area of paraterminal body of rhinencephalon SepArea 25 12 12 12 10 12
Substantia nigraP SubNig 11 13 10 12 7 12
Subthalamic nucleusP SubthNuc 12 7 10 12 7 7

Summary of sample sizes per chip platform and brain tissue and data dependency structure with respect to donor subjects are presented. 
Intersection column shows number of samples sharing the same donor material. Brain tissue involved into Parkinson's disease marked by subscript 
P.
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biological basis. An algorithm to correct for the effect of
RNA quality on the detected transcript intensities was
investigated. As a measure of the quality of the correction
procedure the correlation between the HG-U133_AB and
HG-U133_Plus_2 derived expression profiles was used.

In addition the contribution of a number of pre-mortem
and post-mortem attributes to the overall detected RNA
quality was investigated. In particular, the brain pH, dura-
tion of agonal stage, post-mortem interval before sam-
pling and donor's age of death within considered limits
were found to have no well pronounced and significant
contribution.

Results and discussion
1. RNA quality measures
In general the quality of mRNA material can be defined by
the 28s/18s rRNA ratio, RIN or by some other less gener-
ally used indices [24,25]. Theoretically the RNA quality of
brain samples should reflect the influences of clinical, pre-
, and post-mortem events, if any. Basic post chip (after
hybridization) RNA quality parameter commonly used in
Affymetrix U133 chips is 3'/5' ratio of the housekeeping
genes GAPDH (Glyceraldehyde-3-phosphate dehydroge-
nase) and ACTB (beta actin) which actually is RNA degra-
dation index. This index reflects not only the original level
of RNA integrity but also the accuracy of sample process-
ing, namely RNA purification, reverse transcription, in-
vitro amplification and labelling, fragmentation and
hybridization. A low post chip RNA degradation index
(3'/5' ratio < 3) corresponds to high quality material while
high post chip RNA degradation index (3'/5' ratio > 3)
could indicate both low quality material and/or problems

encountered during sample processing. Correlation
between 28s/18s rRNA ratio and 3'/5' ratio reported in
recent publication [26] for post-mortem brain data is -
0.64 for GAPDH and -0.48 for ACTB.

Historically 3'-end and 5'-end located probeset intensities
of housekeeping genes were arranged into 3'/5' ratio and
evaluated as a measure of transcript degradation. However,
3'/5' ratio is not good for computational purposes. First, it
has singularity at zero in denominator which means irrel-
evant growth of values when 5'-end intensity goes down.
Second, it is insensitive to changes in the low to moderate
range of degradation especially if sample set contains
both high and extremely low quality samples. And thirdly
it is an RNA degradation measure while we would like to
consider RNA quality measure (i.e. positively correlated to
the quality itself). For these reasons we used the inverse
ratio which is less popular but can also be used [6,10].

Thus, to characterise post chip RNA quality we use 5'/3'
ratio of beta actin and GAPDH genes. The mean of two 5'/
3' ratios is designated as post chip RNA quality (denoted
further as RNA QC) of Affymetrix GeneChip sample in
GeneLogic database. 5'/3' ratio of housekeeping genes
and RNA quality vary from 0 to 1 with 0 stands for lower
bound of RNA quality and 1 stands for upper bound of
RNA quality. Figure 1 displays post chip RNA quality char-
acteristics of considered post-mortem brain samples col-
lected in Dataset 1. 5'/3' ratios and RNA quality are highly
correlated with each other and also to 5'-end intensity of
housekeeping genes. On the other hand median probeset
intensity shows a rather poor correlation to RNA QC and
3'-end abundances have no correlation to RNA QC at all

Measures of RNA quality of Affymetrix GeneChipFigure 1
Measures of RNA quality of Affymetrix GeneChip. Measures of RNA quality of Affymetrix GeneChip by the example of 
Dataset 1: a) 5'/3' beta actin ratio vs 5'/3' GAPDH ratio; b) 5'/3' beta actin ratio vs RNA QC index; c) beta actin 5'-end abun-
dance vs RNA QC index.
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(data not shown). For further calculation the beta actin 5'/
3' ratio was chosen and is further referred to as (post chip)
RNA quality.

Overall, the RNA quality of the investigated data sets is
rather poor and varies considerably. For this reason the
effect of the RNA quality and methods of how to deal with
it were investigated. Since Affymetrix microarrays tolerate
RNA degradation due to the 3'-end biased probe set posi-
tions [16,27] it is reasonable to investigate even low RNA
quality hybridizations given the value of the used mate-
rial. A ratio of 0.3 for beta actin is recommended as the
least acceptable value for post-mortem brain analysis with
HG-U133_AB chips [6]. Nevertheless we decided to use a
threshold of 0.1 to attempt to address the challenge of low
quality chip data.

2. Correlation between transcript expression profiles and 
5'/3' beta actin ratios
Correlation between the intensities of all transcripts and
the corresponding beta actin ratios was investigated
(Spearman rank correlation coefficient was used to avoid
outlier effects). Figure 2 shows a typical distribution of
correlation coefficients to beta actin ratio together with
smoothed correlation coefficient density for randomised
data. The bell-shaped density for randomized data indi-
cates no correlation structure related to the beta actin
ratio. As shown in Figure 2 two shapes differ dramatically.
The real distribution displays significant asymmetry
(mode = -0.2) and "heavy" tails.

Figure 3 shows the number of transcripts exhibiting
expression profiles significantly (p ≤ 0.05) correlated to
the beta actin ratio in all sample sets under consideration.
In all considered cases the number of RNA quality
dependent transcripts is higher than expected by chance
(horizontal line in Figure 3 corresponds to 5% of all tran-
scripts represented on the chip). The fact that up to 30%
of all transcripts display expression profiles correlated to
the beta actin ratio implies that RNA quality can act as a
major source for the previously reported correlation struc-
ture in microarray data [28]. refRMA normalized data
seems to be more sensitive to the RNA quality effect com-
pared to MAS 5.0 data (Figure 3).

Two observations are striking: 1) number of RNA quality
dependent transcripts differ significantly within tissue sets
and chip platforms; 2) all distributions of correlation
coefficient (similar to one shown in Figure 2) display sig-
nificant asymmetry: transcripts which correlate negatively
to RNA quality are predominant.

Differences in the distributions and hence the number of
RNA-quality dependent transcripts may originate from a
number of sources. Among others it could be the sample

Number of significant correlations to beta actin ratio within chip setFigure 3
Number of significant correlations to beta actin ratio 
within chip set. Number of transcripts that show significant 
(<0.05) correlation to beta actin ratio in all considered sam-
ple sets for two chip platforms and two normalizations: a) 
HG-U133_plus2.0 chip, b) HG-U133_AB chip. Horizontal 
line indicates a number of significant hits expected by chance. 
They are: 5% of 54613 ≅ 2731 for HG-U133_Plus2.0 chip and 
5% of 44792 ≅ 2240 for HG-U133_AB chip.
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size or the range of beta actin ratios in the investigated
sample sets (Figure 4). However, there was no clear
dependency found among sample size, beta actin ratio
distribution, and the number of RNA-quality dependent
transcripts within a sample set.

Another interesting feature of the distributions of correla-
tion coefficients identified in this study is the significant
predominance and strength of negative correlations
between transcript intensity and post chip RNA quality. In
order to investigate the reason for this finding the overall
intensity of transcripts with pronounced positive or nega-
tive correlation was examined. As an example, a barchart
containing the top 2000 negatively (-0.97 < r < -0.66) and
top 2000 positively (0.6 < r < 0.97) correlating transcripts
out of 7035 significant (p ≤ 0.05) ones for subthalamic
nucleus sample set is shown in Figure 5. A clear separation
of the two distributions occurs. Negative correlations are
shifted to low intensity transcripts whereas positive corre-
lations are mainly exhibited by high abundance tran-
scripts.

Transcripts which show a low-intensity signal (<5–6 in
log2 scale) are either not expressed or low expressed ones.
Negative correlation to RNA quality means that the worse
the quality the stronger the signal becomes. One possible
reason for this effect in the case of unexpressed transcripts
is the enrichment of low RNA quality material with frag-
ments of degraded mRNA. Fragments of degraded RNA
could subsequently increase low intensity signals of unex-
pressed transcripts on low quality chips by nonspecific

hybridization. Another possible reason is related to the
commonly used normalization strategies. In the case of a
decrease in the abundance of actual expressed transcripts
due to the decrease of RNA quality the relative level of low
signals increases. This also holds true for MAS 5.0 preproc-
essing due to the scaling step as RMA (or refRMA) due to
the quantile normalization.

Taking advantage of the availability of the two chip plat-
forms and numerous sample sets we could check the sta-
bility of the observed correlations i.e. their consistency

Positive and negative correlation to RNA quality and tran-script abundancesFigure 5
Positive and negative correlation to RNA quality and 
transcript abundances. Distribution of abundances of the 
top 2000 positively and top 2000 negatively correlated to 
beta actin ratio transcripts out of 7035 significant (p ≤ 0.05) 
ones for subthalamic nucleus sample set chip HG-
U133_Plus_2. Other sample sets show similar behavior.
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and reproducibility in different experiments. The number
of consistently (the same positive or negative sign) and
inconsistently (opposite sign) correlated to RNA quality
transcripts among ones found to be significant in two
hybridizations are shown on Figure 6. In general between
5% and 20% of RNA quality dependent transcripts
showed significant correlation (p < 0.05) of the same sign
for both chips. Hence the majority of correlations are
dependent on the current hybridization.

Basic conclusions to be made from this data are 1) a cor-
relation structure in microarray data exist which is deter-
mined by post chip RNA quality; 2) within a sample set
significantly different levels of dependency to RNA quality
may occur; 3) the majority of transcripts show negative
correlation to RNA quality. Since from 10% to 30% of all
transcripts present on the chip may correlate to RNA qual-
ity the second point is explicitly stressed here. RNA quality
can strongly affect the results of the experiment as
described previously [22] but this is not necessarily the
case. As an example from our current study, Septal area
(not involved into Parkinson's disease) seemed to show
strong deregulation related to Parkinson's disease which
appeared to result from high levels of noise introduced by
RNA quality. In contrast Caudate nucleus (involved into
the disease) showed moderate dependency on RNA qual-
ity and strong deregulation related to Parkinson's disease.

It is important to note that the third point concerns data
normalization procedures relying on housekeeping genes.
The 3'-end intensities of housekeeping genes show poor
correlation to the RNA quality in considered datasets.
Hence, this normalization does not influence the overall
correlation structure introduced by RNA quality. It might
be a reason why normalization on housekeeping genes
did not eliminate the correlation structure mentioned pre-
viously in [28] as an open point. Including median or 5'-
end intensities into normalization procedure will increase
the systematic noise for those transcripts exhibiting nega-
tive correlation to RNA quality.

3. Principal components, explained variance and the 
source of RNA quality dependencies
Since the majority of expressed transcripts are brain spe-
cific it is reasonable to investigate between tissue consist-
ency of the RNA quality effect. Consider all 10 brain
sample sets and their correlation profiles to RNA quality.
Let each transcript be characterized by a 10-dimensional
vector of correlation coefficients between its intensity and
the 5'/3' beta actin ratio. Summary of principal compo-
nent analysis of these vectors is presented in Table 2. The
first principal component is prevailing for both chip plat-
forms. Moreover, transcripts with high first principal com-
ponent score are correlated to RNA quality with the same
sign in all considered brain tissues. Figure 7 shows consist-
ency of the first principal component scores of two chip
platform data (the sign of the scores correspond to the
sign of correlation to RNA quality).

Table 2: Summary of principal component analysis

HG-U133_AB chip HG-U133_Plus2.0 chip

PC_1 PC_2 PC_3 PC_4 PC_1 PC_2 PC_3 PC_4

Proportion of variance, % 46 12 8 6 54 7 7 5
Eigenvalue 4.55 1.24 0.80 0.62 5.37 0.73 0.69 0.60

Summary of principal component analysis of 10-dimensional vectors of correlation coefficients between transcript intensity and the 5'/3' beta actin 
ratio. The first four principal components out of 10 possible are shown. The first principal component is prevailing for both chip platform data.

Inter-platform consistency of RNA quality dependencyFigure 6
Inter-platform consistency of RNA quality depend-
ency. Number of consistently (the same positive or negative 
sign) and inconsistently (opposite sign) correlated to RNA 
quality transcripts among ones found to be significant in two 
hybridizations. Comparison with Figure 3 shows that in gen-
eral, between 5% and 20% of RNA quality dependent tran-
scripts have significant correlation (p < 0.05) of the same sign 
on both chips. Hence the majority of correlations appeared 
to be dependent on current hybridization.
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Consistent dependencies of transcripts on RNA quality
among a number of experiments imply the presence of
transcript specific components of the effect. More detailed
investigations revealed that the sign of correlation to RNA
quality is partially determined by distribution of the
probes in the mRNA (median of relative probe positions
and their standard deviation), the length of the mRNA,
and probably overall stability of mRNA species (Figure 8,
9). Figure 8 displays the distribution of medians of rela-
tive probe positions in the mRNA for 1000 top positive
score transcripts and 1000 top negative score ones. Nega-
tively correlated transcripts are overrepresented in the very
3'-end of relative probe positions, whereas positively cor-
related transcripts have a shift in relative probe positions
towards the 5'-end direction. This finding corresponds to
the fact that RNA degradation predominantly starts at the
5'-end. The better the RNA quality, the higher the meas-
ured signal of the 5'-end located probe set. Correspond-
ingly, the worse the RNA quality, the lower the level of 5'-
end transcripts, the higher the relative level of 3'-end tran-

scripts, since the overall amount of RNA in the experiment
is always the same.

The mixture of positively and negatively correlated tran-
scripts in the range of 0.1–0.8 of the median of relative
probe positions (see Figure 8) was considered separately.
Figure 9 shows a scatter plot of the standard deviation of
relative probe positions versus the length of the corre-
sponding mRNA together with their marginal distribu-
tions. A difference in marginal distributions between
positively and negatively correlated transcripts is clear.
The observed difference in standard deviation again
reflects the conception of 5'-end to 3'-end RNA degrada-
tion. High standard deviations of relative probe positions
such as displayed in Figure 9 usually correspond to probe
sets containing at least some probes close to the 3'-end.
The presence of probe(s) at the 3'-end can be a reason for
observing negative correlation to RNA quality.

Stability of mRNA species can also play an important role
in this context. Profiles of relatively unstable transcripts
should be positively correlated to RNA quality since their
overall signal intensity is higher for chips with good RNA
quality. Stable transcripts should exhibit negative correla-
tion to RNA quality because they are enriched in poor
RNA quality samples.

However there exist no mRNA stability index and the
whole conclusion cannot be verified. There is some evi-
dence that short mRNA species are more stable [29]. As

Positive and negative correlation to RNA quality and median of relative probe positionsFigure 8
Positive and negative correlation to RNA quality and 
median of relative probe positions. Distribution of the 
median of relative probe positions for 1000 top positive 
score transcripts and 1000 top negative score ones. The first 
principal component scores were summarised for two chips. 
Positively correlated to RNA quality transcripts are under-
represented in the very 3' end of probes position distribu-
tion, whereas negatively correlated transcripts are 
overrepresented in the 0.8–1 interval.
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displayed in Figure 9 short transcripts are overrepresented
among transcripts exhibiting negative correlation to RNA
quality.

Using predicted mRNA stability data from a T lymphocyte
study [30] (obtained with HG-U95A GeneChip) and the
set of predicted list of mRNAs with AU-rich elements in 3'-
or 5'-end UTRs [31] which are supposed to be unstable
[12,17] we were not successful in obtaining a clear picture
supporting the conclusion. The reason for this difficulty is
mainly related to the high level of noise and irrelevance in
considered mRNA lists. Although some trends could be
observed their significance could hardly be proved.

In summary, the consistent transcript-dependent compo-
nents of expression profile dependency on post chip RNA
quality can be explained by the distribution of relative
probe positions, the length of the mRNA, and probably
the stability of the mRNA species.

It should be noted that the beta actin ratio as a measure of
RNA quality definitely focuses on transcripts subjected to
a certain type of degradation. Apparently other measures

can be determined which show other sets of "RNA quality
dependent" transcripts. However, using the beta actin
ratio measure, we revealed a strong correlation structure
within the Affymetrix GeneChip gene expression data. As
a consequence more reliable data analysis strategies could
be applied.

4. Data correction procedure based on a linear model
In general confounding factors are dealt with by including
them in a linear model. In cases where the confounder
correlates to a feature of interest, removing the con-
founder would result in elimination of, or at least reduc-
tion in, the signal obtained. Some of the sample sets
under consideration in the current study are unbalanced
with respect to RNA quality. Therefore it becomes impos-
sible to separate the effect of RNA quality from the effect
of the disease. In order to avoid reducing the Parkinson's
signal a linear model on the basis of the control group was
introduced. Finally this model was utilized to correct the
RNA quality effect of both Parkinson's and control data
(see Methods).

Since expression profiles are available for two chip plat-
forms and probe sets detected by these platforms largely
overlap we used the inter-platform correlation as a quality
measure for the applied correction procedures. Expression
profiles generated by using material stemming from the
same set of donors should correlate if they are related to
actually present transcripts and should show no correla-
tion in the case of actually absent transcripts. On the other
hand systematic noise is introduced by the RNA quality.
Between 5000 and 16000 transcripts were found to be
RNA quality dependent on HG-U133_Plus_2.0 chip and
up to 20% of them showed the same behavior on HG-
U133_AB chip while others did not. Thus RNA quality
could inflate irrelevant correlations and suppress relevant
ones.

Post chip RNA quality profiles themselves should display
inter-chip set correlation if the input of original sample
quality is constitutive and sample processing introduces
modest random fluctuations. Therefore an appropriate
correction procedure should reconstitute the perturbed
real inter-chip set correlations of expression profiles and
eliminate the irrelevant ones.

A summary of correcting procedures applied to all 10 con-
sidered sample sets is presented in Table 3. Correlations of
post chip RNA quality profiles are also shown. Small sam-
ple size and low overall RNA quality have led to an
absence of inter-platform correlation of RNA quality pro-
files for some sample sets. However, the obtained results
are comprehensible (see Table 3): 1) for sample sets hav-
ing not correlated RNA quality profiles the inter-platform
correlations increase on average; 2) for samples contain-

Positive and negative correlation to RNA quality and the length of mRNAFigure 9
Positive and negative correlation to RNA quality and 
the length of mRNA. Scatter plot and marginal distribu-
tions of the standard deviation of relative probe positions 
versus mRNA length for positively and negatively correlated 
transcripts exhibiting a median of relative probe positions in 
the range of 0.1–0.8. 400 positively and 600 negatively corre-
lated transcripts out of 2000 presented in Figure 8 are 
shown.

0.0 0.1 0.2 0.3 0.4

6
8

10
12

SD of relative probe positions

lo
g2

 (L
en

gt
h 

of
 m

R
N

A
)

positive
negative
Page 8 of 14
(page number not for citation purposes)



BMC Genomics 2008, 9:91 http://www.biomedcentral.com/1471-2164/9/91
ing coherent profiles inter-platform correlations decrease
on average. This can be taken as evidence for a real elimi-
nation of noise by the procedure. However, it only holds
true for the set of transcripts that are consistently depend-
ent on RNA quality. Application of the correction proce-
dure to two chip platforms independently shows an
average decrease of between platform correlations for all
sample sets. Low generalization ability of the linear model
based on control groups appears most probably due to the
small sample sizes. Thus, one should cautiously apply the
data correction procedure in analogous settings. Never-
theless, taking into consideration RNA quality depend-
ency of transcripts can help in reducing the number of
false positive hits in analysing gene deregulation.

One of the major tasks when analyzing brain tissue using
microarrays is detecting changes in low-abundant genes
[6]. Inter-chip set correlation can be utilized as a criterion
to distinguish low signals from the noise. In order to elim-
inate false correlations and reveal true ones correction for
RNA-quality effects becomes extremely important.

5. Details of pre-mortem and post-mortem events and 
RNA quality
Donor age of death, pre-mortem hypoxia, other agonal
events, duration of agonal stage, brain pH, post-mortem
interval before sampling, and RNA integrity were previ-
ously described as important factors related to data con-
sistency in the context of microarray analysis of post-
mortem brain samples [18,19,21]. Biological and compu-
tational experiments showed some particular and general
effects of these parameters on RNA integrity and microar-
ray gene expression data. However, a deeper understand-
ing of the details is still missing. Since a strong effect of

RNA quality was revealed in our study the next task con-
sisted of investigating the contribution of pre-mortem and
post-mortem details to the post chip RNA quality.

In these analyses dataset 2 was introduced which con-
tained donors with known age of death, duration of ago-
nal stage, brain pH, and post-mortem interval before
sampling. Since pre-mortem hypoxia was difficult to
determine it was not considered here. In any case, all sam-
ples were taken post-mortem and thus tissues are assumed
to have suffered from hypoxia. Due to the lack of variety
in agonal events in the given sample set this feature was
also not considered.

A scatter plot of paired beta actin ratios for HG-U133_AB
and HG-U133_Plus_2 data sets is shown in Figure 10. An
obvious linear trend in the 0.3 – 1 interval of HG-
U133_AB beta actin ratio (r = 0.53) can be seen. This is an
indication of the existence of a systematic component of
RNA quality that is independent of the actual chip type.

Dataset 2 contains from 3 to 19 brain tissue samples
related to each of 63 donors with known pre- and post-
mortem history. The medians of beta actin ratios related
to the same donor were calculated and considered as a
function of known pre-mortem and post-mortem details.
Results are shown in Figure 11. No evidences for the
dependence of chip RNA quality on brain pH, donor age
of death, duration of agony stage, and post-mortem inter-
val before sampling was found. There is no pronounced
bias in the trend lines displayed in Figure 11. Also no joint
effect of mentioned parameters was found. Hence, it can
be concluded that the investigated details of pre-mortem
and post-mortem history do not contribute primarily and

Table 3: Outcome of linear correction procedure for RNA quality

Brain tissues Correcting consistent transcripts only Correcting HG-U133_AB and HG-U133_Plus2.0 data 
independently

Inter-chip coherence of 
RNA quality profiles

Increased Decreased Increased Decreased

Brodmann area 35 684 715 1355 2467 0,67
Caudate nucleus 544 688 1062 2164 0,48
Nucleus ambiguus 849 1367 754 2924 0,79
Nucleus basalis * 1013 526 1690 3089 0,01 *
Pulvinar * 675 442 1301 2401 -0,11 *
Putamen 962 1331 729 3390 0,74
Reticular formation 385 389 865 2329 0,37
Septal area 1185 2698 1175 6587 0,80
Substantia nigra * 685 257 808 1935 -0,13 *
Subthalamic nucleus 588 704 1454 3771 0,43

Number of transcripts with corrected expression profiles exhibiting increase and decrease in inter-platform correlation after linear correction for 
RNA quality. Linear correction was performed in two variants: 1) correcting profiles which show significant (p < 0.05) RNA quality dependency of 
the same sign on both chips (consistent transcripts), and 2) correcting all significantly correlated (p < 0.05) to RNA quality profiles in two chips 
independently. The last column shows coherency of RNA quality profiles for two chip datasets. Sample sets with not correlated RNA quality 
profiles are marked by asterisk.
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(page number not for citation purposes)



BMC Genomics 2008, 9:91 http://www.biomedcentral.com/1471-2164/9/91
significantly to the post chip RNA quality in the described
setup (see Conclusions).

Brain pH is mentioned as a factor of importance for RNA
quality in some publications [20]. Even though a slow
decrease of the beta actin ratio trend line with decreasing
brain pH can be detected in the case of the HG-
U133_Plus_2 chip dataset (Figure 11b; r = 0.26) this can-
not be accept as a strong evidence. As displayed in the
same figure the HG-U133_AB chip data does not follow
the same trend.

Some bias of trend lines for post-mortem intervals more
than 9 hours can also be observed. In general one should
expect expression levels of at least some transcripts to
depend on post-mortem interval before sampling. For
example, some mRNA species in brain tissues were
reported to have short half lives, degrading within the first
2–3 hours after death [17,18]. However, beta actin ratio
does not reflect these changes.

Direct influences of post-mortem intervals on the signal
values can be examined by the same strategy as in section
3. One would expect predisposed mRNA species to be
affected in the same way during the time before sampling
through all brain tissues. However, the first principal com-
ponents of the correlation coefficients between signal val-

ues and post-mortem intervals exhibited only marginal
inter-tissue consistencies (data not shown). An important
fact in this regard maybe a bias in the sample sets. Only
very few samples in Dataset 1 show a post-mortem inter-
val of 2–3 hours or less while others were sampled more
than 5 hours after death (m ± σ is 8 ± 6 hours). Probably
all mRNA species with a short half-life period are already
degraded at the moment of sampling whereas stable
mRNAs stay constant within this time interval. This may
be the reason why no systematic component in the
dependency of transcript intensity on post-mortem inter-
val before sampling was found.

Conclusion
We performed a detailed analysis of effects of post chip
RNA quality on the measured abundance of transcripts in
post-mortem brain samples. The contribution of a
number of pre-mortem and post-mortem attributes to the
overall detected RNA quality effect was investigated. Such
parameters as brain pH, duration of agonal stage, post-
mortem interval before sampling and donor's age of death
within considered limits were found to have no well-pro-
nounced and significant contributions to post chip RNA
quality.

In a recent publication [26] a number of quality parame-
ters related to microarray studies of post-mortem brains
were considered on the basis of 90 brain samples. This
data supports our conclusions and gives some additional
insights into the problem. For example, sample RNA qual-
ity measured by 28s/18s rRNA ratio is correlated (1) to
post chip RNA quality measured by 3'/5' ratio of GAPDH
and ACTB and (2) to integral Affymetrix chip characteris-
tics as percent of present calls and scaling factor (MAS
5.0). On the other hand pre- and post-mortem parame-
ters, namely, agony factor score, brain pH and post-mor-
tem interval, do correlate to percent of present calls and
scaling factor but do not correlate to RNA quality measures.

These findings suggest that the input of pre- and post-
mortem parameters in the post chip RNA quality signal is
rather weak. On the other hand post chip RNA quality
input in expression profile is very strong because the 3'/5'
ratio is directly related to measured intensities. Therefore
our data suggests that in microarray analysis of post-mor-
tem brains one should 1) collect all pre- and post-mortem
parameters together with microarray sample; 2) check pre-
and post-mortem parameters influence directly by consid-
ering expression profiles; 3) use this information in anal-
ysis of relevance of found deregulated gene set.

In current study we revealed the detailed profile of post
chip RNA quality effect and investigated its technological
and biological origin. RNA quality was found to introduce
well pronounced systematic noise into signals obtained

Consistency of chip RNA quality for two chip hybridizationsFigure 10
Consistency of chip RNA quality for two chip hybridi-
zations. Scatter plot of the beta actin ratios of paired sam-
ples hybridized to two Affymetrix chip platforms (a mixture 
of brain tissues). Line shows the linear trend (r = 0.6) calcu-
lated on the basis of data points in the interval 0.3 – 1 of HG-
U133_AB beta actin ratio.
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from microarray analysis of post-mortem brains. Between
10% and 30% of all transcripts in a chip correlate to RNA
quality. According to this study RNA quality effects have:
1) a "random" component which is introduced by the
technology and 2) a systematic component which
depends on the features of the transcripts and probes.
Random components mainly account for numerous neg-
ative correlations of low-abundant transcripts. These neg-
ative correlations emerge from non-specific hybridization
and the biased data-normalization technology. They are
not reproducible and are mainly introduced by an
increased relative level of noise. RMA (or refRMA) pre-
processing seems to be more sensitive to the effect than
MAS 5.0 preprocessing. This finding can be explained by
the quantile normalization step.

Three major contributors to the systematic noise compo-
nent were identified: the first is the probe set distribution,
the second is the length of mRNA species, and the third is

the stability of mRNA species. Positive correlations reflect
the 5'-end to 3'-end direction of mRNA degradation
whereas negative correlations result from the compensa-
tory increase in stable and 3'-end probed transcripts. Sys-
tematic components affect the expressed transcripts by
introducing irrelevant gene correlations and can strongly
influence the results of the main experiment.

A linear model correcting the effect of RNA quality on
measured intensities was investigated. If the set of consist-
ently dependent on RNA quality transcripts is corrected,
subtraction of linear RNA quality effects results in an aver-
age increase of inter-platform correlation. This is the evi-
dence of real elimination of noise by the procedure.
Application of the correcting procedure to two chip plat-
forms independently shows an average decrease of
between platform correlations. So, one should cautiously
apply the data correction procedure. Nevertheless, taking
into consideration RNA quality dependency of transcripts

Chip RNA quality versus some pre-mortem and post-mortem attributesFigure 11
Chip RNA quality versus some pre-mortem and post-mortem attributes. Median of beta actin ratios in a sample set 
related to the same donor versus donor pre-mortem and post-mortem attributes. Each point represents a single donor. Each 
sample set contains samples derived from various brain areas of one donor. Donors (x-axis labels) are ordered by correspond-
ing parameter, 5 point moving average trend lines are shown. A barely perceptible decrease in trend line is present with 
decreasing brain pH (r = 0.26), but only for HG-U133_Plus_2.0 chip data.
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can help in reducing the number of false positive hits in
analysing gene deregulation.

Using the 5'/3' beta actin ratio, we revealed a strong corre-
lation structure within the Affymetrix GeneChip gene
expression data. As a consequence more reliable data
analysis strategies could be applied. The following points
are worth mentioning in cases with a wide range of post
chip RNA quality in considered sample set: 1) testing for
RNA quality dependency should be included in the pre-
processing of the data; 2) investigating inter-gene correla-
tion without regard to RNA quality effects could be
misleading; 3) data normalization procedures relying on
housekeeping genes either do not influence the correla-
tion structure (if 3'-end intensities are used) or increase it
for negatively correlated transcripts (if 5'-end or median
intensities are included in normalization procedure); 4)
sample sets should be balanced with regard to RNA qual-
ity.

Methods
Datasets
GeneLogic has collected gene expression profiles stem-
ming from various different tissues and cells accompanied
by an exhaustive number of clinical parameters. These
data cover key therapeutic areas such as oncology, inflam-
mation, cardiovascular disease, disorders of the central
nervous system and metabolic disorders [23].

Dataset 1
Since Parkinson's disease was the main subject of the cur-
rent study sample sets representing ten different brain
regions were included. Four of them are primarily
involved in Parkinson's disease whereas six regions are
located spatially close to the former ones and act as a con-
trol to detect non specific deregulation (see Table 1).

The main criteria for donor selection were: 1) presence of
Parkinson's disease and absence of other neurodegenera-
tive disorders for experimental groups; 2) absence of neu-
rodegenerative and psychiatric disorders and an age of
death greater than 50 years for the control groups.

The main criteria for sample selection concerning data
quality were: 1) minimum value of between chip correla-
tion within a single tissue sample set should be greater
than 0.8; 2) mean beta actin and GAPDH 5'/3' ratio
should be greater than 0.1 (see details in Results and dis-
cussion, section 1). Due to low between chip correlation
less than 2 outlying chips were filtered out from each
group. Filtered chips are real outliers as they have low cor-
relation with all other chips. Due to the second criterion
3–4 chips with extremely low RNA quality were excluded
from the whole dataset.

Expression profiles obtained with two different Affymetrix
GeneChips platforms, HG-U133_AB and HG-
U133_Plus_2.0, were available for analysis. Comparison
of the measured expression intensities of the two chip
platforms was performed on the basis of 44792 common
probesets. Due to intersecting sets of donors (see Table 1
for an overview) the sample sets are partially dependent.
This dependence mainly concerns the Parkinson's groups
which contain samples obtained from 18 different sub-
jects only. Control groups are more independent consist-
ing of material stemming from 65 different donors.

GeneLogic's database contains pre-calculated MAS 5.0
and refRMA [32] normalized expression values. refRMA is
a generalization of the RMA normalization method that
utilizes the set of reference samples as an independent
basis for quantile normalization. MAS 5.0 normalized
data were used by default and refRMA data were used for
comparison. Beta actin and GAPDH 5'/3' ratios were cal-
culated from initial data, all further calculations were per-
formed with log2 transformed intensities.

In this paper we describe the effects of RNA quality on the
measured RNA abundances and whether the RNA quality
itself resulted from pre-mortem and post-mortem events
in the donor's history. The effects of donor gender and
donor age in microarray analysis of human brains were
found to be much less pronounced than the effects of
RNA quality [16] and are not considered here in detail.
Material used in our analyses was taken from approxi-
mately equal numbers of male and female donors. We
focussed on subjects with an age of death in the range of
51 – 90 years.

Each expression profile was characterised by the following
set of parameters:

1. binary variable for disease that equals 1 for donors suf-
fering from Parkinson's disease and 0 for donors not suf-
fering from Parkinson's disease,

2. beta actin levels (AFFX-HSAC07/X00351_5_at, _M_at
and _3_at probe set intensities) and beta actin ratio, calcu-
lated as ratio of _5_at and _3_at probe sets intensities,

3. GAPDH levels (AFFX-HUMGAPDH/M33197_5_at,
_M_at and _3_at probe set intensities) and GAPDH ratio
calculated as ratio of _5_at and _3_at probe sets intensi-
ties,

4. RNA quality index (RNA QC) that is mean 5'/3' ratio of
beta actin and GAPDH,

5. post-mortem interval before sampling,
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6. brain pH,

7. duration of agony stage.

Since information about brain pH and duration of agony
stage is not available for the majority of donors in Dataset
1, an additional dataset (Dataset 2) was compiled.

Dataset 2
Dataset 2 consists of all brain tissue samples with known
donor brain pH and duration of agony stage contained in
the database. These samples belong to various brain
regions (19 in total). Donor's age of death was restricted
to be in the same range as in Dataset 1 (from 51 to 90
years). Overall, Dataset 2 includes data derived from 63
donors with 3–19 Affymetrix GeneChip expression pro-
files each.

Linear model
The observed normalised (MAS5 or RMA) log2 intensity
Yijk of ith sample and jth probe-set corresponding to chip
platform k is modelled by the following linear equation:

Yijk = αjk + βjkRijk + εijk, i = 1,..., Mk, j = 1,..., Nk, k = 1, 2

where αjk represents an interception, βjk is a slope, Rijk
stands for corresponding RNA quality measure namely,
5'/3' beta actin ratio, εijk is an error assumed to be nor-
mally distributed with zero mean, Nk is a number of tran-
scripts on GeneChip (N1 = 44792 corresponds to HG-
U133_AB platform and N2 = 54613 corresponds to HG-
U133_Plus_2.0), and Mk is number of chip samples. The
model is fitted independently for two chip platforms
based on observations related to Control group.

Having estimated interception  and slope  on the

basis of control group, the whole dataset is corrected as
follows:

Here subtraction of RNA quality effect is equivalent to
consideration of model errors instead of initial values.

5'/3' beta actin ratio close to 1 correspond to ideal quality
chip data. Using linear model one can calculate estima-
tion of baseline transcript intensity obtained on ideal
quality chip:

Thus corrected data of baseline intensity level YI
jk can be

obtained:

Linear model correction is performed for those transcripts
that are considered to be RNA quality dependent (with
significant correlation to RNA quality) either for one chip
platform or for both.

Assessment of quality of correcting procedure
Correlation between corrected expression profiles {YC

ij1}i

= 1,..., M and {YC
ij2}i = 1,..., M (where M is the number of

paired samples) was compared to correlation between ini-
tial expression profiles {Yij1}i = 1,..., M and {Yij2}i = 1,..., M on
the basis of sample sets completed by the same donors
and for those transcripts j which are common for two chip
platforms. The shift in correlation was taken into account
if either correlation after correction or correlation before
correction were not less than 0.3 (in order to ignore not
expressed and noisy profiles). Correcting HG-U133_AB
and HG-U133_Plus2.0 data independently means that
each profile correlated to RNA quality with <0.05 signifi-
cance level was corrected. Correcting consistent transcripts
means correcting only those profiles that show RNA qual-
ity dependency of the same sign with significance <0.1 on
both chips.
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