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Abstract
Background: The NCI has undertaken a twenty-year project to characterize compound
sensitivity patterns in a selected set of sixty tumor derived cell lines. Previous studies have explored
the relationship between compound sensitivity patterns to gene expression, protein expression,
and DNA copy number for these same cell lines. A strong correlation between the pattern of
expression of a biomarker and sensitivity to a compound could suggest a clinically interesting
biological relationship between the two.

Results: We isolated RNA's and measured expression of 40000 genes using cDNA microarrays
from the fifty-nine publicly available cell lines. Analysis of this data set in comparison with published
gene expression data sets demonstrates a high degree of reproducibility in expression level
measurements even using completely independent RNA preparations and array technologies. Using
the fifty-nine cell lines for discovery and an additional seven cell lines for which extensive compound
sensitivity data were available as a test set, we determined that gene-compound pairs with a
correlation coefficient above 0.6 had a false discovery rate of approximately 5%. Large scale
features of the gene expression and chemosensitivity data, such as tissue of origin and other
physiological factors, did not seem to explain the majority of correlations between gene and
compound patterns.

Conclusion: A comparison of gene expression and compound sensitivity in panels of cell lines was
demonstrated to have a relatively high validation and low false discovery rate supporting the use of
this approach and datasets for identifying candidate biomarkers and targeted biologically active
compounds.

Background
The ability to predict the sensitivity of tumors to chemo-
therapy is a critical element in the drug discovery process,
yet means of rationally realizing this objective early in the

drug development process are limited. Despite many
recent advances, cancer drug discovery remains an
extremely expensive and failure prone endeavor when
compared to success rates in other areas of drug develop-
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ment [1,2]. The US National Cancer Institute's (NCI)
Developmental Therapeutics Program (DTP) screen for
anticancer drugs has been a systematic attempt to explore
the functional relationship between chemical compounds
and toxicity in cell line cancer models, and was one of the
first large scale public efforts to identify novel drugs for
solid tumors (for review, see [3]). The DTP screen has
made publicly available growth inhibition data on sixty
tumor derived cell lines (the NCI60) for tens of thousands
of compounds. The coupling of this effort with a genom-
ics perspective, in which the basal level of expression of
genes on the NCI60 panel of cells was measured, intro-
duced a novel approach for establishing a link between
new therapies and biomarker candidates assessed by gene
and protein expression patterns [4-8]. This pharmcoge-
nomics approach supposed that genes with patterns of
expression across the cell lines which are highly correlated
with compound sensitivity are candidate clinical biomar-
kers of drug efficacy, potentially even direct effectors of
drug action, or targets for novel drug development with
existing compound leads.

Known relationships between genes and drugs have been
re-identified via this approach using the NCI60 cell lines
and other cell line panels, as well as novel targeting of
drugs based on these studies, are being evaluated (e.g.
[4,5,9-14]). Relationships identified from these screens
have been supported by chemical knowledge about the
compounds, suggesting that a rational relationship may
exist between compound structure, mechanism of action,
and determinants of cell toxicity as assessed by gene
expression pattern [11,15-19]. The first study to compare
a large scale gene expression study with the NCI60 data
found that the antimetabolite 5-FU was negatively corre-
lated with dihydropyrimidine dehydrogenase [4]. As this
is the rate-limiting enzyme in 5-FU catabolism, high
enzyme levels would be expected to reduce exposure of
cells to the active forms of 5-FU. Another study employed
a set of cell lines specifically chosen for resistance or sen-
sitivity to doxorubicin and a multigene model was trained
upon the expression data from these lines to identify gene
expression patterns indicative of resistance to this drug
[9]. This model was shown to significantly classify doxo-
rubicin-treated breast cancer patients into distinct prog-
nostic classes. A more extensive study used NCI60 gene
expression data to identify gene expression signatures that
predict sensitivity to several compounds, and validated
these signatures in an independent set of cell lines [14].
The question still remains as to the overall efficacy of the
approach as a useful early discovery tool in pharmacolog-
ical research.

To assess the validity and false discovery rate in these
pharmacogenomic associations we measured the expres-
sion of 40,000 genes in the fifty nine publicly available

NCI60 cell lines using spotted cDNA microarrays and
measured the expression of these genes on an additional
seven lines also employed in the DTP screen. Using the
available growth inhibition (GI50) data for 41000 com-
pounds, we calculated Spearman correlations for all pairs
of gene expression and compound sensitivity patterns and
assessed the ability of relationships nominated in the
NCI60 to predict relationships in the test set of seven cell
lines. This allowed us to gauge the likelihood that rela-
tionships found between drugs and genes in this chemical
genomic approach are reproducible and worth pursing
with more targeted studies. This data is available in the
Gene Expression Omnibus, accession number GSE7947.

Methods
Measurements of gene expression
The microarray studies were performed with cDNA spot-
ted arrays produced by collaborators at Stanford Univer-
sity, as previously described [6]. Briefly, forty-thousand
cDNA clones were PCR amplified and the PCR products
printed on treated glass microscope slides. Cell lines were
grown from the publicly available NCI DTP frozen stocks
(see Additional file 1) in RPMI-1640 supplemented with
phenol red, glutamine (2 mM) and 5% fetal calf serum. To
minimize the contribution of variations in culture condi-
tions or cell density to differential gene expression, we
grew each cell line to 80% confluence and isolated mRNA
24 hours after transfer to fresh medium. Cells were lysed
in buffer containing Protein/Rnase Degrader (Invitrogen)
and messenger RNA was purified with the FastTrack 2.0
purification kit (Invitrogen). For each comparative array
hybridization, labeled cDNA was synthesized by reverse
transcription from test cell mRNA in the presence of Cy5-
dUTP, and from the reference mRNA with Cy3-dUTP,
using the Superscript II reverse-transcription kit (Gibco-
BRL), hybridized to microarray at 65°C overnight. The
reference sample was derived from eleven of the fifty nine
cell lines. After hybridization, each microarray was
washed, then scanned using GenePix 4000A microarray
scanner (Axon Instruments, Union City, CA).

Initial data analysis was carried out using GenePix Pro 3.0
(Axon Instruments). The new array data presented here as
well as the previous Stanford arrays were quality control-
led to manually flag and exclude apparent problematic
spots. All non-flagged array elements for which the fluo-
rescent intensity in each channel was at least 300 units
and the regression correlation between the red and green
channels was greater than 0.6 were considered well meas-
ured and included in the study (see Additional file 2).
Inclusion of a gene in correlative studies required that
greater than 80% of measurements across all the cell lines
in the study were present. Other expression data sets used
in these analyses were also subject to this filter. Array
information from Genomics Institute of the Novartis
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Research Foundation (GNF) employed only measure-
ments with a 'present' call when absent/present calls were
available [20,21]. Additionally, the GNF arrays were fil-
tered for the probes that gave a coefficient of variation
(the standard deviation divided by the average) greater
than 0.1.

NCI60 chemosensitivity data
The chemosensitivity assays of the NCI have been previ-
ously described [5,22]. Briefly, the cell lines were grown in
96-well plates and exposed to the test compound for 48
hours. Growth inhibition is expressed in terms of the
GI50, the concentration required to inhibit cell growth by
50% in comparison with untreated controls. The data was
filtered to include only compounds that had data in
greater than 75% of cell lines and which exceeded a min-
imal level of variance across the lines (a standard devia-
tion of the ranked data greater than 0.1 across the
available lines). The August 2004 release of the GI50 data
from the DTP was used for these analyses (see Additional
file 3).

Statistical methods
Both Spearman rank correlation and Pearson correlations
were assessed as a method for comparing the GI50 and
gene expression data. Spearman rank correlation was cho-
sen as it accommodated better the constricted range and
dynamic limits of the GI50 measurements. Correlations
were only measured when drug and gene data were both
present for 75% of all lines. The average number of con-
tributing cell lines to a correlation measurement in the
data sets was 49, and this figure was used in determining
degrees of freedom for other calculations. As the number
of correlate pairs measured was nearly 300 million, only
correlations with an absolute value greater than 0.5 were
included in most analyses (see Additional file 4).

The false discovery rate for each gene:drug correlate pairs
was estimated as a q value using software created by Alan
Dabney and John Storey [23,24]. The q-value for a partic-
ular correlation estimates the proportion, on average, of
incurred false positives for correlations with a similar level
of significance. The number of correlate pairs measured in
this analysis was too many to readily assess for estimation
of q values, so q values were estimated from ten random
samplings of the gene expression and GI50 data sets. All
gene:drug correlates were measured from these samplings
with all correlate pairs retained (not only those with an
|R| ≥ 0.50 as in the main study), using 155000 correlation
pairs in total.

The identified correlations between gene expression and
compound sensitivity can be due to broad patterns
between the cell lines based on their tissues of origin or
other commonly shared physiological features. Principal

component analysis was used to identify patterns in both
the gene and drug sensitivity datasets using the prin-
comp() function of S-Plus ver. 6.2. These and other higher
level features of the datasets such as tissue of origin gene
expression patterns were compared via Pearson correla-
tions.

Results
Reproducibility
Measurement of gene expression with microarrays is now
an accepted laboratory tool, but the plethora of technolo-
gies, experimental approaches, and other technical details
have continued to raise questions about the reliability of
array based measurements of gene expression [25]. The
existence of four datasets of gene expression, measured
using three independent preparation of RNA from 59 cell
lines provides an opportunity for perhaps the largest study
of the overall reproducibility of both the biologic stability
of gene expression under cell culture conditions as well as
the precision of measurements using gene array technol-
ogy. To assess the reproducibility of the gene expression
data reported here, we compared the results from three
different published NCI60 cell line gene expression data
sets and the new data reported herein. As a metric of the
reproducibility of the data, we compared the patterns of
gene expression across the sixty cell lines from replicate
measurements of individual genes. These replications
were either from independent array elements within
arrays or measurements of the same gene compared across
datasets.

As expected, the comparison of replicates measured on
the same array showed the greatest reproducibility (Fig.
1A); most genes showed a highly conserved pattern of
gene expression across the cell lines. Over half of genes
represented by multiple independent clones showed a
Pearson correlation between array elements of 0.8 or
greater, and over 93% of duplicated genes had a positive
correlation.

This high conservation of expression level was also found
when compared within other expression studies using the
NCI60 cell lines, including both the Stanford spotted
cDNA arrays and the GNF's Affymetrix GeneChip Human
Genome U133A and U95 printed arrays (Fig. 1A). This
suggests that measurements of gene expression are repro-
ducible across array platforms. Comparison of expression
patterns of genes between arrays also showed a high
degree of conservation of expression, despite that these
assays entailed the use of different RNA preparations as
well as different array technologies (Fig. 1B). The expres-
sion measurements of the NCI60 lines when compared to
those of the similar spotted Stanford cDNA array study
showed 99% of duplicate genes have a positive correla-
tion between their patterns of expression across the cell
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lines. Comparison to the printed GNF U133 array study
showed 93% of duplicated genes have a positive correla-
tion.

False discovery rate
One significant utility of these large gene and compound
sensitivity datasets is the potential that the co-variation of
compound sensitivity and gene expression across the sixty
cell lines will reflect either functional relationships or
identify biomarker candidates that are associated with
compound sensitivity. While several other studies have
shown examples of empirically validated gene:drug asso-
ciations nominated in similar analyses, we wanted to
assess our overall confidence in the likelihood that signif-
icant correlations would not be spurious false positives.
This is especially significant when assessing the approxi-
mately 300 million correlations derived from analyses

such as this and assessing whether this approach is a valid
early discovery tool. Applying a standard Bonferroni
alpha correction to this number of multiple hypotheses
generated by calculating correlations between gene
expression and compound sensitivity patterns would sug-
gest that only correlations above ~0.75 are likely to be
valid (df = 47, with 297 million hypotheses). Further-
more, a Bonferroni correction assumes that the associa-
tions are independent of one another, which will not be
the case among all the gene expression and GI50 measure-
ments. A strict correction of this size is far too conserva-
tive, but it remains untested what scale of correction is
needed to address the large number of comparisons being
made. Similarly, it thus also remains untested whether
this approach to identifying associations betweens genes
and prospective drugs produces a useful number of repro-
ducible candidates for further study.

Replication of gene expression studiesFigure 1
Replication of gene expression studies. A) Distribution of correlations between duplicates within studies. Array spots contain-
ing duplicate genes (identical Unigene ID's) within the different microarray assays were compared by Pearson correlations. The 
four array experiments shown have comparable levels of reproducibility. For the AGI expression data, over half of duplicated 
array spots showed a Pearson correlation of 0.8 or greater, and over 93% of duplicates had a positive correlation. B) Distribu-
tion of correlations between duplicates between studies. Array spots containing duplicate genes between the different micro-
array assays were compared by Pearson correlations. The expression measurements showed 99% of duplicate genes have a 
positive correlation between the AGI arrays and the similarly spotted-cDNA Stanford arrays between their patterns of expres-
sion across the cell lines. Comparison to the GNF U133 printed array study showed 93% of duplicated genes have a positive 
correlation.
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In order to quantitatively assess the reproducibility of the
gene:drug correlates, we measured gene expression on
seven additional cell lines (termed herein the 'NCI7', see
Additional file 1) for which compound sensitivity data
was available for several thousand compounds from the
DTP. We then determined whether candidate correlate
pairs nominated in the NCI60 would predict relation-
ships between genes and compounds in this test set of cell
lines. As these seven cell lines do not originate from the
full panel of tumor types found in the NCI60 cell lines, we
used only those thirty-nine cell lines whose tissue type
were represented in the additional seven cell lines (the
'NCI39'). Figure 2A depicts the percent of candidate corre-
lates from the NCI39 that also showed significant correla-
tions (two sided p < 0.05) across the NCI7. Although an
analysis of only seven cell lines is underpowered, only
15% of gene:drug pairs with a correlation of 0.6 or greater
have a significant but incorrectly signed result in the NCI7
analysis. Defining validation as a significant correlation
between gene and compound patterns, the percent vali-
dated increased with the increasing correlation coefficient
of the nominated gene-drug relationship in the NCI39
training set. When the degree that the analysis was under-
powered is addressed it becomes apparent that a majority
of gene:drug correlate pairs with correlations greater than
0.7 would likely be reproducible in a study similar to the
original analysis using 60 cell lines. This estimate was
accomplished by dividing the percentage of validated
pairs within a range of measured correlations by the
power of the study assuming a single-sided p value of 0.05
is considered significant (assuming that, on average, six
cell lines contributed to the correlations in the NCI7
study). This degree of expected validation far exceeds that
which would be expected if a Bonferroni correction were
appropriate, which would suggest that only correlations
greater than 0.84 (df = 32) are likely to be significant. A
corresponding degree of significance using the full NCI60
panel suggests that correlations greater than 0.6 are likely
to be reproducible (Table 1).

Novel approaches to estimating the false discovery rate
have been recently employed in large genomic studies
[23,26,27]. As a second estimate of the error rate of the
gene-compound correlates, we determined a false discov-
ery rate, as estimated by a q-value, for each correlate. The
q-value measures the predicted false discovery rate associ-
ated with a significant test when multiple hypotheses are
tested, i.e. a q-value of 0.05 implies that for every 100 sig-
nificant correlates, five false correlates are expected. A
comparison of multiple false discovery estimations on
several gene expression data sets suggests that the q-value
method has a high apparent power and strong control of
the FDR [28,29]. Analysis of this predicted false discovery
rate is consistent in this experiment with the NCI7 valida-
tion of the NCI39 analysis. To estimate the q value in

these very large data sets, random subsets of the gene
expression and GI50 data were iteratively compared and
the distribution of p values were measured for ~150000
correlations in total for both the NCI60 study (Fig. 2B)
and the NCI39 study (data not shown). In the NCI39
dataset a p value of 5.74 × 10-6 has a corresponding q
value of 0.05, which on average was associated with a cor-
relation of 0.7. This estimation of the false discovery rate
roughly corresponds to the distribution of NCI39 corre-
lates found to be significant yet incorrectly signed in the

Estimation of the false discovery rateFigure 2
Estimation of the false discovery rate. A) Validation of NCI39 
derived gene:drug correlate pairs in the NCI7 cell lines. The 
percent of pairs which validated increased with the increasing 
correlation coefficient of the nominated gene-drug relation-
ship in the NCI39 training set, and very few candidates were 
found to have significant but oppositely signed correlations in 
the NCI7 data. When the percentage of validated correlates 
is adjusted by the power of a correlation, assuming a single-
sided p value of 0.5 is considered significant with a sample 
size of six, it becomes apparent that a majority of the 
gene:drug correlate pairs with correlations greater than 0.7 
would have validated in a replication of the original experi-
ment. B) Comparison of q-values and p-values for the 
gene:drug correlates. To estimate the q value in these very 
large data sets, random subsets of the gene expression and 
GI50 data were iteratively compared and the distribution of 
p values were measured for ~150000 correlations in total. A 
q value of 0.05 (i.e., that for every 100 significant correlates, 
five false correlates are expected.) is associated with a p 
value of approximately 1 × 10-5.
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NCI7 test. For a screen employing the full sixty cell lines
this analysis would indicate that a q-value of 0.05 corre-
lates with a correlation coefficient of at least 0.57, far
lower than the correlation cutoff of 0.75 suggested by a
standard alpha correction (Table 1). The NCI7 validation
study and the q value estimation of the false discovery rate
both suggest that correlations with an absolute value
greater than 0.6 are very likely to be reproducible.

Identification of large-scale features in the gene 
expression and compound sensitivity data
A potential limitation in the cross correlation of data sets,
especially in regards to the hope that gene:drug correlates
may indicate functional relationships, is that large scale
features of the gene expression and or chemosensitivity
data- such as tissue of origin and other physiological fac-
tors, may drive many of the identified correlations. The
comparison of the data sets only establishes correlation,
not causation, and if many of the correlations are the
result of relatively non-specific factors, or the causative
gene(s) co-varies with many others in the dataset, large
gene expression patterns reflecting physiology unresolved
by the sampling of cell lines in the NCI60 may obscure
causative gene:drug correlations. If so, this could greatly
decrease the likelihood that identified genes could be
potential novel and specific effectors of drug action, and
also diminish the chance that identified associations
would translate into clinically useful aids in directing ther-
apies to susceptible tumors.

Major features in the gene expression and growth inhibi-
tion data sets can be identified through principal compo-
nents analysis. The first principal component in each data
set primarily reflected the strong pattern associated with
the leukemia cell lines (possibly due to their suspended,
rather than adherent, state) which was also present in the
first component of the GI50 data. The second component
was largely defined by a panel of cell lines identified pre-
viously from gene expression studies as sharing a molecu-

lar physiology related to mesenchymal differentiation [6],
and contained 8.4% of the variance of the gene expression
data, thus explaining a minor yet significant amount of
the variation in the expression patterns. The third compo-
nent of the expression data was dominated by the
melanoma and leukemia lines' expression, explaining
5.2% of the variance. The leukemia and 'mesenchymal'
components of the data sets also appear to be the most
significant features that explain the variance of the GI50
data, though the second 'mesenchymal' component
explained only 0.9% of the variance. The two 'mesenchy-
mal' components of the gene expression and drug data
correlate with each other with an R of 0.62, and therefore
represent a strong but readily identifiable correlation (Fig.
3). Thus identified, correlations with similarities to these
patterns can be noted and subtracted or filtered from anal-
yses, if desired [30]. As might be expected given the now
readily apparent diversity that exists within tumors arising
in single organs, efforts to assess whether tissue-of-origin
contributed towards correlations between genes and
drugs failed to identify a strong driver of identified associ-
ations (data not shown).

Confirmation of known gene:drug associations
Another measure of the reproducibility of the assay is the
ability to repeat outcomes of similar analyses or associa-
tions between genes and drugs already established in the
literature. As an assessment of the global validity of the
analysis such examples have limited utility, but do serve
as an important confirmation that anticipated findings are
observed. For example, in this analysis expression of epi-
dermal growth factor receptor (EGFR) correlated with sen-
sitivity (R = 0.77) to TP4EK (NSC 676497), a recombinant
exotoxin targeted to the EGFR through TGFα as previously
noted by K. Wosikowski, et al. using RTPCR expression
measurements on the NCI60 cell lines [31]. ErbB2 expres-
sion correlated with sensitivity (R = 0.60) to an anti-ErbB2
antibody fragments with endotoxin payload (NSC
683039). MDR is associated with resistance to 38 com-

Table 1: Comparison of q and p values for the NCI60 and NCI39 studies. The NCI7 study suggested that the majority of correlates 
pairs identified in the NCI39 study with a correlation greater than 0.7 were reproducible. This correlation is associated with a q value 
of 0.05. A similar q value in the NCI60 study is associated with a correlation of just under 0.60. This assessment of acceptable 
correlations for gene:drug correlates worthy of potential further study is far lower than a conventional correction for multiple 
hypotheses would suggest.

p value Bonferroni corrected p-value q value Correlation

'NCI39' 2.4 × 10-4 1 0.2 0.59
2 × 10-5 1 0.1 0.66

5.7 × 10-6 1 0.05 0.7
1.1 × 10-10 0.05 nd 0.84

NCI60 ~2 × 10-4 1 0.1 0.5
1.2 × 10-5 1 0.05 0.57
5.7 × 10-6 1 0.05 0.59
1.1 × 10-10 0.05 nd 0.75
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pounds with an R<-0.5, and MRP1 is associated with
resistance to 279 compounds with an R<-0.5. Members of
the MDR and MRP subfamilies are involved in multidrug
resistance; the proteins encoded by these genes are ATP-
dependent drug pumps for xenobiotic compounds with
broad substrate specificity, and it has been previously
observed that the NCI60 lines expressing MDR have resist-
ance to a large panel of drugs [32]. On average in the set
of genes employed in this analysis there are four com-
pounds negatively correlated per gene, so the high
number of compounds negatively correlated with MDR1
and MRP1 are in accord with the well-established role of
these proteins in providing resistance to a variety of com-
pounds.

Discussion and Conclusion
Drug discovery in the field of oncology has proven to be
an expensive and arduous task, with one of the lowest suc-
cess rates at the clinical trial level of validation (5%, from
phase I through registration, compared to an average of
11% in all therapeutic areas) [1,2]. A better means of iden-
tifying robust candidates early in the drug discovery proc-
ess is clearly needed. A promising genomic approach to
this problem uses gene expression patterns measured
across the genome for dozens of cell lines compared to
patterns of chemosensitivity drug panels measured across
the same cell lines. A comparison of the tens of thousands
of compound sensitivity profiles from the Developmental
Therapeutics Program of the NCI with genomic scale
measurements of gene expression across the NCI60 cell

lines creates the potential for a novel systematic approach
for the early identification of compound specific biomar-
ker candidates and potential targeted lead candidates for
the treatment of solid tumors.

Though a number of studies have employed this approach
to identify candidate gene:drug pairs for further study, it
has yet to be established the overall efficacy of this
method. While there is a growing number of reports
which suggest that association of gene expression patterns
in cell line studies can identify candidate gene:drug pairs
of potential clinical importance, it hasn't been established
how efficient is this analytical approach. Herein we show
that gene and drug correlates identified in the NCI60 data
validate at a much higher rate on a set of seven independ-
ent cell lines than a standard Bonferroni alpha correction
would predict. The rate of validation empirically meas-
ured with the NCI7 lines was consistent with the q-value
analysis, used as an estimate of the false discover rate,
which suggested that Spearman correlates with an abso-
lute value above a threshold of 0.57 have false discovery
frequency of less than 0.05 in this study. Other cell line
studies looking at relationships between gene expression
and compound sensitivity have suggested arbitrarily strin-
gent criteria for identifying correlations that warrant fur-
ther study or have used a standard measurement of
significance with no alpha correction (e.g., [12,18]. This
study would suggest that both approaches may be
improved upon, generating an optimum number of
results with a high confidence of reproducibility. A corre-

Comparison of mesenchymal-like components between the compound sensitivity and gene expression data setsFigure 3
Comparison of mesenchymal-like components between the compound sensitivity and gene expression data sets. Principle 
component analysis revealed a shared feature in each data set. The second component of the gene expression data, containing 
8.4% of the variance, was largely defined by a panel of cell lines identified previously as potentially related to mesenchymal dif-
ferentiation. The 'mesenchymal' component also appeared to be a significant features of the GI50 data, the cell lines ordered 
here as in the plot of the gene expression data, though this component explained only 0.9% of the variance. The two 'mesen-
chymal' components of the gene expression and drug data correlate with each other with an R of 0.62, and therefore represent 
a strong but readily identifiable correlation. Thus identified, correlations with similarities to these patterns can be noted and 
subtracted or filtered from analyses.
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lation of approximately 0.6 in the studies presented here
results in over 99.9% of correlate pairs being discarded,
but still allows for thousands of candidates for further
studies.

One potential caveat for this type of discovery tool con-
cerns the reproducibility of gene expression measure-
ments. Array based measurements of gene expression are
now commonplace, but in studies resulting in hundreds
of millions of candidate relationships the precision of the
data becomes especially critical. A comparison of gene
expression studies of the NCI60 cell lines highlighted this
issue by revealing a surprisingly low level of correspond-
ence in expression measurements [25]. However, we show
here that a novel gene expression data set across the
NCI60 cell lines measured using spotted cDNA arrays is
very reproducible in comparison to three publicly availa-
ble datasets from independent labs using independent
RNA preps. This is one of the largest available datasets
measuring the overall reproducibility of gene expression
data measured by gene arrays and demonstrates sufficient
reproducibility. The higher degree of reproducibility
shown here between datasets than other comparison stud-
ies likely results from a different metric of similarity being
employed, and likely of greater importance, greater filter-
ing of the datasets to remove genes apt to be poorly meas-
ured.

A comparison of compound sensitivity and gene expres-
sion profiles for the identification of candidate targeted
lead compounds presupposes that the biological associa-
tion between the compound and gene is strong. However
gene expression studies on cell lines have been used to
identify and explore broad physiological features of cell
growth and responses for which multiple genes share sim-
ilar expression patterns. For example, an earlier expression
study using a smaller gene set on the NCI60 cell lines
revealed a novel classification of the lines based on the tis-
sue characteristics of the lines, into melanoma, leukemia,
epithelial-like and mesenchymal-like categories [6]. The
cell lines of this study were very similarly classified using
a much larger gene set (data not shown). Therefore a cor-
relation between a gene and a drug may indicate that the
drug's metabolism or action is directly affected by the
gene is question, or the effect may be secondary, the gene
may be only weakly associated to the true critical bio-
chemical pathways. Such secondary associations between
drug and gene would not invalidate the screen as a tool for
finding genes that might predict response to a specific, but
do decrease the likelihood that the identified associations
would remain tightly linked in systems beyond the cell
lines in question. It would also decrease the likelihood
that one could experimentally validate in cell line models
the link between a drug to the expression of a specific
gene. However, broad gene expression patterns as identi-

fied by principle component analysis contribute only
moderately to gene-compound relationships in this study.
The sole physiological feature that could be identified as
contributing to some linkage of genes and drugs, the mes-
enchymal-like nature of some cell lines, is easily identifia-
ble and these correlations ignored, if desired.

The gene expression and compound sensitivity data from
the NCI60 cell lines represent a rich source of hypotheses
that have still much to offer. However, the attempt to
associate these two types of information is based on sev-
eral assumptions, including that the molecular physiol-
ogy of the cells determines their chemosensitivity, that
mRNA levels are a robust means of characterizing the
cell's molecular physiology, and that tumor cells lines are
a valid model for solid tumors. Obviously these assump-
tions will not always be valid, the question remains the
degree to which they are, and how readily does this
screening approach produce candidates that validate in
the clinic. That the approach can yield valuable leads has
been shown by many anecdotal reports. We have estab-
lished in this study that, on a global scale, the identified
associations are reproducible and likely to be relatively
specific. More work is needed to truly prove the worth of
this type of analysis to the cancer patient.
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