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Abstract
Background: Parasites in the genus Theileria cause lymphoproliferative diseases in cattle, resulting in
enormous socio-economic losses. The availability of the genome sequences and annotation for T. parva
and T. annulata has facilitated the study of parasite biology and their relationship with host cell
transformation and tropism. However, the mechanism of transcriptional regulation in this genus, which
may be key to understanding fundamental aspects of its parasitology, remains poorly understood. In this
study, we analyze the evolution of non-coding sequences in the Theileria genome and identify conserved
sequence elements that may be involved in gene regulation of these parasitic species.

Results: Intergenic regions and introns in Theileria are short, and their length distributions are
considerably right-skewed. Intergenic regions flanked by genes in 5'-5' orientation tend to be longer and
slightly more AT-rich than those flanked by two stop codons; intergenic regions flanked by genes in 3'-5'
orientation have intermediate values of length and AT composition. Intron position is negatively correlated
with intron length, and positively correlated with GC content. Using stringent criteria, we identified a set
of high-quality orthologous non-coding sequences between T. parva and T. annulata, and determined the
distribution of selective constraints across regions, which are shown to be higher close to translation start
sites. A positive correlation between constraint and length in both intergenic regions and introns suggests
a tight control over length expansion of non-coding regions. Genome-wide searches for functional
elements revealed several conserved motifs in intergenic regions of Theileria genomes. Two such motifs
are preferentially located within the first 60 base pairs upstream of transcription start sites in T. parva, are
preferentially associated with specific protein functional categories, and have significant similarity to know
regulatory motifs in other species. These results suggest that these two motifs are likely to represent
transcription factor binding sites in Theileria.

Conclusion: Theileria genomes are highly compact, with selection seemingly favoring short introns and
intergenic regions. Three over-represented sequence motifs were independently identified in intergenic
regions of both Theileria species, and the evidence suggests that at least two of them play a role in
transcriptional control in T. parva. These are prime candidates for experimental validation of transcription
factor binding sites in this single-celled eukaryotic parasite. Sequences similar to two of these Theileria
motifs are conserved in Plasmodium hinting at the possibility of common regulatory machinery across the
phylum Apicomplexa.
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Background
Species in the genus Theileria are the causative agents of
lymphoproliferative diseases in cattle. The high mortal-
ity and morbidity in cattle associated with these diseases
cause devastating socio-economic losses [1]. The species
that cause the largest economic burden are T. parva,
which causes East Coast fever, and T. annulata, which
causes tropical theileriosis. Both species are transmitted
by ticks and have complex intracellular life-cycles [2].
Two intracellular stages follow the introduction of spo-
rozoite stage into mammalian hosts, the intra-lym-
phocytic schizont stage and the intra-erythrocytic
piroplasm stage. The schizont stage has a unique ability
to cause infected host cells to proliferate indefinitely,
resulting in a leukemia-like phenotype [3]. Stage differ-
entiation takes place at the time of parasite transmission
to and from hosts, as well as during their establishment
and amplification within the host. It has been shown
that the molecular regulation of stage differentiation
could be targeted for the development of new disease
control strategies [4]. One such target are the regulators
of gene expression, since they may determine the pro-
gression through life-cycle stages. However, little is
known about the extent of, and the elements involved
in, transcriptional regulation in these protozoan para-
sites.

Theileria species are among several thousand unicellular
eukaryotic parasites in the phylum Apicomplexa, whose
members include Plasmodium falciparum, the most deadly
causative agent of malaria, and Toxoplasma gondii, one of
the most successful parasites, infecting more than 30% of
the human population and imposing a severe threat to
immuno-compromised individuals. Apicomplexans are
thought to have reduced transcriptional machinery rela-
tive to multicellular eukaryotes. The highly biased nucle-
otide composition of the apicomplexan genomes
sequenced to date hamper the detection of bona fide regu-
latory elements [5], thus making it difficult to assess the
extent of that reduction. Classical eukaryotic promoter
elements such as the TATA-box and the CAAT-box appear
to be absent in T. gondii and P. falciparum [6]. General
transcription factors such as TFIIA and most of the TATA-
binding protein associated factors are not found in api-
complexan genomes [7]. Instead, non-canonical regula-
tory motifs are correlated with gene expression in T. gondii
[8]. However, recent studies that take into account the
genome composition and/or the timing of gene expres-
sion are uncovering novel conserved sequence motifs,
leading to a considerable expansion of the repertoire of
known and putative transcription regulators in this phy-
lum [9-14]. In T. parva, a massively parallel signature
sequencing (MPSS) study indicates that the majority of
genes are transcriptionally active in the schizont stage, but
their transcription may not be stringently regulated and,

instead, vary stochastically between different host cells or
time points. Active regulation of transcription was
observed only at certain classes of loci [15]. In T. annulata,
mobility shift assays have identified an element upstream
of the TamS1 gene that is a site of DNA-protein interac-
tions during differentiation to the merozoite [16].

The complex life-cycle of Theileria poses a serious chal-
lenge to the development of a workable laboratory sys-
tem, thus making it difficult to study the regulatory
mechanism and developmental biology of this organism.
Recently, the genome sequences of T. parva and T. annu-
lata were published [17,18], enabling the study of the
unique biological characteristics of Theileria parasites
using systematic and global bioinformatics approaches.
The genomes of T. parva and T. annulata are ~8 Mb long,
with approximately 4000 genes each, identified through
both automated and manual annotation. The gene den-
sity in these two genomes is fairly high, with the anno-
tated coding sequences comprising ~70% of the nuclear
DNA, introns ~10% and the remaining 20% consisting of
intergenic regions (IGRs) [17,18]. The short length of
Theileria IGRs, which average ~400 base pairs (bp), again
suggests a different mechanism of transcriptional regula-
tion from those found in multi-cellular eukaryotes. More
importantly, these compact IGRs allow us to assess the
feasibility of finding regulatory sequences with an exhaus-
tive scan of the non-coding segment of the genome, and
in the absence of comprehensive gene expression data.

In the current work, we try to understand the evolutionary
forces that determine the characteristic of non-coding
regions in Theileria, such as length, nucleotide composi-
tion and degree of conservation. Selective constraint is cal-
culated based on alignment of orthologous IGRs and
introns of T. parva and T. annulata. In particular, this study
aimed to test whether sequence conservation in general,
and conserved sequence motifs in particular, are most
common in IGRs flanked by genes in head-to-head orien-
tation, as expected if transcriptional regulation is an
important component in the regulation of gene expres-
sion in Theileria. We apply a de novo motif discovery algo-
rithm to identify putative cis-regulatory elements in IGRs
and compare their conservation in two species. Candidate
motifs are then characterized based on their location rela-
tive to transcription start sites and the function of neigh-
boring genes in T. parva, their similarity to known
transcription factor binding sites, and their distribution
pattern in different non-coding genomic regions. In this
first comprehensive study of non-coding sequence evolu-
tion and motif discovery in Theileria, we have demon-
strated that selection favors short introns and IGRs, and
identified conserved sequence motifs whose role in gene
regulation can now be tested by experimental approaches.
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Results
Characterization of non-coding DNA in T. parva and T. 
annulata
The length and "guanine and cytosine" (GC) content of
introns and IGRs are similarly distributed in T. parva
(intron number = 10408; IGR number = 3982) and T.
annulata (intron number = 10816; IGR number = 3738).

IGR length fits a lognormal distribution with estimated
modal value of 105 bp (Figure 1). The positive skew in the
length distribution suggests that selective pressure main-
tains IGRs small, possibly to minimize genome size. Alter-
natively, such a distribution could result from the
sporadic accumulation of large insertions in IGRs that are
gradually eroded by more frequent deletions. The distri-

Distribution of length and GC content of non-coding DNA in T. parvaFigure 1
Distribution of length and GC content of non-coding DNA in T. parva. Histograms of intergenic region length (A) and 
intron length (B), and GC content (%) of intergenic regions (C) and introns (D). The length of intergenic regions fits a lognor-
mal distribution (A), while GC content of both types of non-coding DNA is normally distributed (C, D). The histogram of 
intron length is biomodal, which probably results from the overlay of two independent distributions of small (mode = 55) and 
large (mode = 80) introns, much like what had been documented for other organism [19]. Similar results are found in T. annu-
lata (not shown).
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bution of intron length is also right-skewed, but it is
bimodal, similar to what is observed in other eukaryotes
[19]. This suggests the presence of two distinct classes of
introns: short introns, which make up the majority of the
sample, with a modal value at 55 bp, and long introns,
with a modal value of 80 bp. The distribution of GC con-
tent is approximately normal for both introns and IGRs
(Figure 1). The average GC content across all IGRs is 26.2
± 6.4% and 24.0 ± 6.5% in T. parva and T. annulata,
respectively, while the average in introns is slightly lower
(24.5 ± 6.6% GC in T. parva and 22.4 ± 6.9% GC in T.
annulata). The GC content in non-coding regions is ~10%
lower than the overall genome GC content in these spe-
cies, which is approximately 34.1% in T. parva and 32.5%
in T. annulata [17,18]. This difference suggests a muta-
tional bias towards adenine and thymine (AT) and/or the
accumulation of AT-rich regulatory motifs in non-coding
regions of the genome.

In order to study the evolution of non-coding regions,
homologous sequence segments between species are
required. Establishing homology between non-coding
regions is often difficult due to the lack of conserved land-
marks that results from the accumulation of insertions,
deletions and substitutions. In addition, the exact loca-
tion of IGRs and introns is uncertain due to the probabil-
istic nature of the gene models generated through
automated annotation. For this study, we identified a
high-quality subset of introns and IGRs for which homol-
ogy could be inferred with high probability (see Meth-
ods). The remaining analyses in this section were
performed on this data subset, unless otherwise noted.
The GC content in this subset of IGRs and introns (Table
1) is lower than the overall average, suggesting that coding
regions that have not yet been identified are present in
regions currently identified as non-coding.

IGRs can be classified into three classes based on the ori-
entation of the genes that flank them: 5'-5', 3'-3' or 5'-3',
when surrounded respectively by two start codons, two
termination codons or a start and a stop codon of succes-
sive genes. The length and GC content distributions differ
significantly among IGR classes (p < 0.001, Kruskal-Wallis
test). IGR length increases with increasing number of start

codons (0, 1, or 2) flanking it (Figure 2A). This could be
due to errors in determining the correct start codon, with
the resulting gene models being consistently shorter than
the true genes. This hypothesis seems unlikely, as it would
result in IGRs enriched with coding segments, which in
turn should increase GC content. In fact, the opposite
trend in GC content is observed. In IGRs, GC content
decreases with the number of flanking start codons, such
that 5'-5' IGRs have the lowest %GC, 3'-3' IGRs have the
highest %GC, and %GC of 3'-5' IGRs falls in between
those of the other two classes (Figure 2B). A more likely
explanation for the length trend among the three IGR
classes is the preferential accumulation of functional
motifs upstream of genes, causing 5'-5' IGR to be longest
and 3'-3' IGRs to be the shortest. This hypothesis is sup-
ported by the significant difference in selective constraint
across IGR classes (see below).

Intron length has been shown to be negatively correlated
to intron ordinal number in Arabidopsis and in murids
[20,21], a pattern that can be attributed to the uneven dis-
tribution of functional DNA elements across introns, with
larger fractions present towards the 5' end of genes. A sim-
ilar relationship is observed in Theileria, with the average
length for first introns being 108 bp, and that value grad-
ually decreasing to 94 bp, 92 bp, 87 bp and 84 bp for
intron ordinal number 2, 3, 4 and ≥ 5, respectively (Figure
3A). In addition, GC content is positively related with
intron position (Figure 3B). Both intron length and GC
content differ significantly among different classes of
introns (p < 0.001, Kruskal-Wallis test).

The degree of selective constraint was estimated for each
high-quality, orthologous intron pair (n = 1487) and IGR
pair (n = 990), based on individual global alignments.
Our results show the degree of conservation to be higher
in IGRs than in introns (Table 1). Interestingly, selective
constraint in IGRs of T. parva increases with the number
of start codons that flank it (Figure 2C), and decreases
with intron ordinal number (Figure 3C). The difference is
statistically significant among different classes of IGRs
and among introns (p < 0.001, Kruskal-Wallis test). These
results point to the accumulation of functional motifs
upstream of genes and also in introns that are closer to the

Table 1: Property of orthologous intergenic regions (IGRs) and introns

Count Length (bp) GC (%) Constraint (%)

T. parva IGRs 990 356.6 ± 9.8 23.3 ± 0.17 35.6 ± 0.59
T. annulata IGRs 990 336.2 ± 9.1 21.9 ± 0.19 36.8 ± 0.57

T. parva Introns 1487 75.6 ± 1.83 21.9 ± 0.16 28.4 ± 0.52
T. annulata Introns 1487 63.8 ± 1.21 21.1 ± 0.16 30.3 ± 0.52

Each value of length, GC content and selective constraint is the mean ± SEM.
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Length, GC content and selective constraint distributions in three classes of intergenic regions in T. parvaFigure 2
Length, GC content and selective constraint distributions in three classes of intergenic regions in T. parva. Dis-
tribution of length (A), GC content (B) and selective constraint (C) per class of intergenic region (IGR) are depicted by box-
plots. The three IGR classes (5'-5', 3'-5', 3'-3') are named according to the orientation of the flanking genes. Each box 
(interquartile range, IQR) contains the sample's 25% to 75% range (quartiles Q1 to Q3, respectively), with the bottleneck 
placed at the sample median. Horizontal tick marks show the range of all elements within Q1-1.5*IQR and Q3+1.5*IQR. Open 
circles mark data points outside this range, which are considered outliers. The width of the bottleneck (i.e the length of the V-
shaped notch) is an indication of the confidence of the median; a lack of overlap of the bottleneck between samples implies that 
the medians are significantly different at ~95% confidence level. Similar results are found in T. annulata (not shown).
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Length, GC content and selective constraint distributions across intron positions in T. parvaFigure 3
Length, GC content and selective constraint distributions across intron positions in T. parva. Distribution of 
length (A), GC content (B) and selective constraint (C) in introns of different ordinal numbers are depicted by boxplots. The 
last class averages across introns of position equal to or larger than 5. Graph description as in legend of Figure 2. In the boxplot 
of length distribution, a log scale is used for the vertical axis since intron lengths span a large range. Similar results are found in 
T. annulata (not shown).
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5' end of genes, and are consistent with the assertion of a
direct relationship between the length of non-coding
regions and the frequency of functional motifs.

Conserved Sequence Motifs and their Biological Relevance
Using MEME, we mined the 300 nucleotides proximal to
the 5' end of all genes in either T. parva or T. annulata for
enriched motifs. Given the average IGR length of ~400 bp,
this length restriction used in the initial motif search
should adequately capture relevant regulatory regions,
while at the same time minimizing the probability of
motifs affecting neighboring genes. Table 2 lists the top
five statistically significant motifs found in each species.
Motifs 1, 2, 3 in T. parva and motifs 1, 2, 4 in T. annulata
are found in hundreds of copies per genome in the
upstream region of genes, while the frequency of other
two motifs is an order of magnitude lower (Table 2).
Motif comparison indicates that top three motifs in T.
parva are almost identical to motifs 1, 2 and 4 in T. annu-
lata (Figure 4). We further investigated the biological rele-
vance of these three conserved motifs using transcription
start site (TSS) and gene functional annotation informa-
tion.

First, we looked for an association between putative
motifs and the transcriptional process by determining
whether they had a fixed position relative to the TSS [22].
Putative TSSs have been determined for 650 T. parva genes
based on EST mapping, and on average map 138 nucle-
otides upstream of the start codon. T. parva motifs 1, 2
and 3 were present in IGRs next to, respectively, 132, 168
and 67 of the 650 genes with a defined UTR. Figure 5
shows the distribution of three motifs relative to the TSS.
The distribution of motif 1 is remarkably restricted, with
motifs almost exclusively located within 60 bases
upstream of the TSS. Motif 3 is also enriched in this
region, with more than 50% of the sequences located

within this 60 bp range. However, the distribution of
motif 2 is relatively flat, with ~70% of the sequences
located upstream of the TSS and the remaining 30%
located between the TSS and the initiation codon (Figure
5).

Next, we investigated the biological relevance for each
motif in the context of the function of adjacent genes. A
hypergeometric test demonstrated that certain functional
categories are significantly enriched among genes down-
stream of motifs 1 and 3 (p < 0.01), but not of motif 2.
Motif 1 is associated with genes involved in protein syn-
thesis, with telomeric ORFs, and with proteins containing
signal peptides, while motif 3 is associated with genes
related to protein fate (Additional file 1). Using STAMP
[23], we identified known motifs that are most similar to
each of the three Theileria motifs. Motif 1 has similarity to
a DNA consensus binding site for myeloid zinc finger pro-
tein 1 (MZF1), a C2H2 zinc finger transcription factor
involved in granulopoiesis, cellular proliferation and
oncogenesis [24] (Figure 4). In addition, motif 1 is identi-
cal to the motif ATGGGGC, which has been identified
independently in different studies in Plasmodium
[11,14,25] and which may be preferentially associated
with metabolic genes that are highly expressed during the
trophozoite stage [14]. For motif 2, STAMP detected a
highly similar sequence element that is known to interact
with a nuclear protein in a plant species [26] (Figure 4). It
is also nearly identical with a P. falciparum conserved
motif TGTGT(G/A)(A/T) which, much like motif 2, has a
widespread genome distribution [14]. Motif 3 has signifi-
cant similarity to the binding site for NF-κB, a family of
transcription factors whose activation has been shown to
be associated with host invasion in various pathogens,
including T. parva [27] (Figure 4).

Table 2: Top five motifs in 5' intergenic regions of T. parva and T. annulata

Consensus Width Bits E-value Sites

T. parva Motif 1 HDWTYCCCCATVVR 14 16.0 5.7e-472 639
2 WAATGTGTARR 11 13.6 5.2e-414 1199
3 BDRGATTCCAY 11 16.0 8.5e-108 298
4 CCBCBRSARGGAGCY 15 24.2 3.7e-048 39
5 GCTCCCKCYWGGSG 14 26.2 1.2e-019 19

T. annulata Motif 1 WTTCCCCATNND 12 15.5 4.1e-388 615
2 WAATGTGTAAW 11 13.3 1.1e-348 1173
3 TGTTTGTTCTGATGG 15 27.2 7.1e-140 56
4 BDRGATTCCAY 11 15.8 8.8e-103 302
5 GTAATATTTCTGTAA 15 23.7 5.0e-096 62

Motifs are identified by MEME and their consensus sequences are shown here using IUPAC (International union of pure and applied chemistry) 
nucleic acid codes. Information content in bits is calculated based on the first-order Markov background model. The E-value estimates the number 
of motifs with the same width and number of occurrence that would have equal or higher likelihood in the same number of random sequences 
generated by the background model. Sites refer to the number of sequences that MEME used to build each motif model.
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Finally, we investigated the distribution pattern of three
motifs across the entire T. parva genome. MAST was used
to detect occurrence of each motif in coding regions
(CDS), introns, and the three types of IGRs, at different
probability thresholds. All three motifs were found more
often in 5'-5' and 5'-3' IGRs than in the other regions (Fig-
ure 6). Together with the higher selective constraints
observed in IGRs bordered by 5' ends of genes, these
results are consistent with the presence of regulatory
motifs in the upstream region of genes. Although the aver-
age length of CDS (1407 bp) is much longer than that of
IGRs (407 bp), the frequency of the three motifs is higher
in 5'-5' and 3'-5' IGRs than in CDS (Figure 6). This distri-
bution pattern provides an additional evidence for the
biological significance of our putative motifs. In addition
to its presence in IGRs flanked by at least one start codon,
motif 2 is also found in 3'-3' IGRs and in introns, reveal-
ing a widespread distribution throughout non-coding
regions of the T. parva genome.

Discussion
The fraction of non-coding DNA in the majority of bacte-
rial and archaeal genomes is between 6% and 14%, but
close to 90% in multicellular eukaryotes [28]. Single-
celled eukaryotes have a higher proportion of non-coding
DNA than prokaryotes, but a much more compact
genome than multicellular eukaryotes. The smallest
known nuclear genome, that of a chlorarachniophyte
nucleomorph, contains 22% intergenic DNA [29], and
the single-celled model organism Saccharomyces cerevisiae,
the budding yeast, contains 30% intergenic DNA [30].
Intron length and number varies among taxa, and dra-
matic difference can be seen across related species.
Approximately 40% of genes contain introns in the fission
yeast, Schizosaccharomyces pombe, while only 4% of genes

have introns in S. cerevisiae [30]. The non-protein coding
regions of multi-cellular eukaryotes include the remnants
of transposable elements that have lost functionality,
ribosomal genes, motifs involved in gene regulation and
chromosomal structure and possibly other unknown
functions. Only a few eukaryotic unicellular parasites
have so far been shown to contain transposable elements
[31-34], and many of these organisms are known to lack
transposable elements all together [17,35,36], which
probably explains much of the observed difference in the
amount of non-coding DNA between these organisms
and other eukaryotes. However, non-coding regions of
these small parasitic genomes remain remarkably under-
studied, and little is known about the forces that shape
them.

The genome of Theileria species is highly compact. Non-
coding sequences make up ~30% of the genome, as the
average length of both introns and IGRs is smaller than
that of many eukaryote genomes, and no transposable
elements have so far been found. Our results show that a
large fraction of non-coding DNA is kept constant due to
purifying selection (Table 1). This high conservation rate
confirms the functional importance of non-coding
sequences in Theileria, which goes beyond a role as passive
intergenic spacers. This assertion is further supported by
the higher degree of sequence conservation in IGRs that
border the 5' end of genes relative to what is observed in
IGRs flanked by termination codons, since IGR sequence
conservation between species in regions upstream of
genes is associated with the presence of regulatory ele-
ments [37]. The presence of functionally important motifs
at higher frequencies in 5'-5' IGRs relative to 3'-3' IGRs
limits the fixation of deletion events in the former regions,
which in turn remain longer.

Conserved motifs and their best matches in databases of known motifsFigure 4
Conserved motifs and their best matches in databases of known motifs. Pictogram representation of the top three 
MEME-derived motifs in T. parva and their most similar motifs in T. annulata (two left columns). The best matches to conserved 
motifs in T. parva among known motifs are shown (center), including name, database source, sequence logo, and STAMP E-
value, which is a relative measure of similarity between two motifs based on simulated position specific score matrix models. 
Functional and structural annotations enriched in downstream genes of each T. parva motif are shown on the right.

T.parva Motifs
Similar  Motifs 
in T.annulata

     Best Matching Known Motifs 
Name (Source)                       Logo                         E-value 

Functional 
Enr ichment

MZF1_1-4 
(JASPAR)

3.4e-04 
Telomeric ORF 
Signal Peptide 

Protein Synthesis 

NAPINMOTIF 
(PLACE)

7.1e-10 /

NF-kappaB 
M00051 

(TRANSFAC)
4.2e-05 Protein Fate 
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Introns play an important role in gene transcription regu-
lation and mRNA processing, and functional elements are
often found in first introns [38,39]. First introns tend to
be longer and more conserved than introns of higher ordi-
nal number, a pattern observed both in mammals [21]
and in invertebrates [40]. Our analyses yielded a similar
result in Theileria, extending this pattern to unicellular
eukaryotes for the first time. These results also suggest the
accumulation of functional elements towards the 5' end
of Theileria genes.

The study of transcriptional regulation in apicomplexan
parasites has identified some unique features of this large
group of protists. Canonical elements seem to be absent
from promoter regions, while non-canonical regulatory
elements in upstream regions have been found to be
involved in the regulation of gene expression. Transcrip-
tome analysis has demonstrated active regulation of tran-
scription in T. parva [15], but no regulatory elements or
transcription factors have been identified so far.

In this study, we found three putative motifs that are
present in hundreds of copies throughout the genome.
Two of them, motifs 1 and 3 in T. parva, are preferentially
located in the 60 nucleotides upstream of TSS, suggesting
that they may be transcription factor binding sites in this
species. Motif 1 appears to be enriched near telomere-
associated ORFs and signal peptide-containing proteins.
While the function of telomeric ORFs in Theileria, so
called due to their extreme proximity to telomeres,
remains unknown they encode hyper-polymorphic gene
families [41]. In Plasmodium, gene families with these
characteristics are known to be important to pathogenesis
and antigenic variation [42,43]. In fact, a large fraction of
T. parva's telomeric ORFs expressed in the schizont stage
contain predicted signal sequences, consistent with their
involvement in host-parasite interaction [15]. The current
discovery of a putative regulatory element preferentially
located in upstream regions of telomeric ORFs may help
the functional study and design of molecular tools to
manipulate this important group of proteins in Theileria.
Based on a MIPS classification of T. parva proteins [15], we

Distribution of conserved sequence motifs with respect to putative transcription start sites in T. parvaFigure 5
Distribution of conserved sequence motifs with respect to putative transcription start sites in T. parva. The dis-
tances between the first base of each motif and the TSS were determined for all genes for which both types of information 
were available. Distances are binned in 10-bp intervals. The frequency is determined based on 132 sites for motif 1, 168 sites 
for motif 2, and 67 sites for motif 3.
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Distribution of three conserved motifs in different partition of the T. parva genomeFigure 6
Distribution of three conserved motifs in different partition of the T. parva genome. The distribution of the three 
highest-scoring MEME-derived motifs in T. parva was determined in coding regions (CDS), 5'-5', 5'-3' and 3'-3' intergenic 
regions, and introns using the MAST algorithm. Relative frequency of each type of sequence with at least one occurrence of a 
motif is plotted as a function of the MAST E-value cutoff.
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detected an association of this motif with genes involved
in protein synthesis, and database searches indicated that
it is similar to a DNA consensus binding site for myeloid
zinc finger protein 1 (MZF1), a C2H2 zinc finger tran-
scription factor involved in cellular proliferation and
oncogenesis [24]. The finding of an identical motif in Plas-
modium associated with genes that are highly expressed
during phases of rapid cellular multiplication makes it
tempting to speculate whether motif 1 may be the binding
site for an unidentified transcription factor in Theileria
associated with protein synthesis and/or cell division.

Motif 3 appears to be associated with genes that are
involved in protein modification, stabilization, degrada-
tion, targeting, sorting, translocation, and other protein
fate-related functions. It is similar to the binding site for
NF-κB transcription factors, which has been shown to be
involved in host cell transformation mechanisms in vari-
ous pathogens, including Theileria [27]. The schizont stage
of T. parva induces sustained activation of NF-κB, which
regulates the expression of genes involved in immune and
inflammatory responses [44], proliferation [45], and sur-
vival [46]. Pathogens may also utilize the NF-κB system to
enhance their own replication, survival, and dissemina-
tion within the host [47]. For example, NF-κB binding
sites have been found in the enhancer region of the long
terminal repeat [48] and 5' UTR [49] of human immuno-
deficiency virus (HIV), through which host NF-κB pro-
motes viral replication and survival. Although no
homolog to human NF-κB has been identified in Theileria,
it is conceivable that a transcription factor with a similar
binding motif to that used by NF-κB might exist in these
species. To that effect we searched the T. parva protein-
coding genes for peptides with homology to the IPT
domain of NF-κB, which is involved in DNA binding. Our
BLASTP analysis uncovered a significant match (E = 3.7e-
5) to a hypothetical protein, TP02-0125, which has 33%
identity and 55% similarity to the DNA-binding domain
of NF-κB. A support vector machine-based algorithm pre-
dicted TP02-0125 to be a DNA-binding protein [50]. This
result, together with the distribution characteristics of
motif 3, suggests that attempting the experimental valida-
tion of this motif is warranted.

In contrast with the previous two motifs, motif 2 is found
throughout non-coding regions, without a localized dis-
tribution relative to TSS or specific protein functional
classes. However, an almost identical motif has been dem-
onstrated to interact with a nuclear protein in developing
rape seeds [18], suggesting the role of our motif as a bind-
ing site for regulatory proteins other than transcription
factors. Interestingly, our motif is highly similar to a con-
served motif in P. falciparum that also has a widespread
genome distribution [14,51]. While it is possible that this
sequence pattern is a characteristic feature of apicompl-
exan genomes, its function remains unknown.

As more Theileria genome sequences become available,
the search for conserved motifs in non-coding sequences
will have added power. A comprehensive list of conserved
elements may be derived by combining phylogenetic foot-
printing and de novo pattern matching algorithms. Various
experimental approaches are available for the verification
of putative regulatory elements, including in vitro protein
binding experiments, in vivo DNA structure assays, and
reverse genetics methods. In particular electrophoretic
mobility shift essays have been documented to work well
in apicomplexan systems [9,11,16]. Revealing the func-
tional potential of these conserved elements will advance
the study of gene regulation in Theileria and possibly lead
to the improved control and therapeutics for East Coast
Fever and tropical therileriosis in cattle.

Conclusion
The highly compact genome of Theileria seems to result
from selection pressure for small introns and IGRs. While,
much like in other apicomplexan genomes, classical
eukaryotic promoter elements have not been found in
Theileria, genome-wide de novo searches identified several
conserved sequence motifs in IGRs. Two putative T. parva
motifs have localized distribution relative to transcrip-
tional start sites and are preferentially associated with spe-
cific protein functions, which is consistent with the
hypothesis that they participate in transcriptional regula-
tion in this eukaryotic parasite. The fact that conserved
motifs with similar sequence are found in Plasmodium
hints at the possibility of common regulatory mecha-
nisms across the phylum Apicomplexa.

Methods
Sequence Data
An in-house database was developed to store and analyze
genome sequences and annotations of two Theileria spe-
cies. There are 4011 annotated genes in T. parva, with
10408 introns. 5' and 3' UTR information is available for
650 and 545 genes, respectively. The total number of
IGRs, defined as complete DNA sequences between start
and/or stop codons of two consecutive annotated genes, is
3982 in T. parva. T. annulata has 3784 annotated genes,
with 10816 introns and a total of 3738 IGRs. Transfer and
ribosomal RNA genes were also excluded from IGRs.

Homology Identification
Orthologous clusters (OCs) were created using the pub-
licly available gene annotations of six apicomplexan
genomes, namely T. parva, T. annulata, Babesia bovis, Plas-
modium falciparum (version released with PlasmoDB 5.0
Beta), Plasmodium yoelii, and Cryptosporidium parvum.
Except for P. falciparum, the original genome annotation
release was used for each species. Jaccard-filtered OC anal-
ysis [52] was used to construct the final ortholog set, and
resulted in 3137 OCs containing at least one gene from
each of the two Theileria species (Jaccard filter cutoff at
Page 11 of 15
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0.6). OCs with paralogs in Theileria were excluded, and
2904 OCs were retained that include exactly one gene
from each species. OCs were also excluded if the ratio of
the shortest to the longest of the two Theileria genes was
smaller than 0.9. Genes eliminated by this criterion are
likely to have an incorrect structural gene annotation in
one or both species, or to contain repeats that render
sequence alignment questionable. The final set of high-
quality OCs contains 1956 genes, with one sequence each
in T. parva and in T. annulata.

A high-quality (HQ) set of orthologous non-coding
regions was then defined as follows: HQ orthologous
IGRs are flanked by HQ OCs at both ends. HQ ortholo-
gous introns are those from HQ OCs with the same
number of introns in both species; in addition, HQ
orthologous introns are flanked by exon regions in which
amino acid similarity is ≥ 75% between species. This cut-
off was determined empirically and resulted in the elimi-
nation of 25% of introns. The final dataset contains 990
pairs of HQ orthologous IGRs and 1487 pairs of HQ
orthologous introns.

Selective Constraint

Orthologous non-coding sequences were aligned using
Owen [53], to generate global alignments consisting of
segments with significant sequence similarity (p < 0.001),
also called hits, interspersed with segments for which
sequence similarity was below that significance threshold.
Selective constraint, c, in IGRs and introns was estimated
according to Shabalina and Kondrashov [54]. It is defined
as the fraction of invariant nucleotides within a sequence
segment. Given a similarity (s) within a hit defined as the
number of matches divided by the length of the shorter
sequence (lshort), and the probability r that a site is identi-

cal between two sequences due to non-deterministic rea-
sons, selective constraint within a hit is estimated as

 for shorter sequence and 

for longer sequence. In this study, we estimated r from the
similarity in third codon positions of 4-fold degenerate
amino acids in HQ OCs between the two Therileria spe-
cies; these should correspond mostly to sites that are iden-
tical due to chance or because not enough time has
elapsed since the two species split for substitutions to
occur. For an IGR or intron having n hits, the selective
constraint is defined as the sum, over all n hits, of the total
number of constrained nucleotides divided by the length

L of non-coding sequence in either species, [55].

Motif Discovery
Although computational motif discovery approaches
have traditionally been used to find over-represented pat-
terns among co-regulated genes, they may also be applied
to large sets of unrelated promoter regions [56]. In the cur-
rent study, we retrieved up to 300 bases of IGRs flanking
the translation start sites of all T. parva and T. annulata
genes and used MEME (Multiple EM for Motif Elicitation)
to search for over-represented motifs on both DNA
strands. The search was done separately for each species.
MEME looks for conserved ungapped blocks in a group of
sequences using an iterative expectation-maximization
algorithm [57]. A background model is used by MEME to
calculate the log likelihood ratio and statistical signifi-
cance of a motif. The model used in our search is a first-
order Markov chain derived from all intergenic sequences
in T. parva and T. annulata respectively. We assume the
presence of either zero or one motif per sequence, with
motif width between 5–15 bp. Putative motifs found in
two species were compared by the Smith-Waterman local
alignment method with similarity score defined by Pear-
son's correlation coefficient [23].

Biological Relevance of Putative Motifs
Putative motifs were further investigated in terms of their
location distribution in relation to TSS, functional charac-
terization of downstream genes, similarity to known tran-
scription factor binding sites, and occurrence pattern in
different non-coding genomic regions. These four analy-
ses were performed in T. parva only. First, we retrieved all
T. parva genes with putative TSSs information available
and looked at the intersection between these genes and
our set of putative motifs. Distance between the first base
of a motif and TSS was calculated and binned in 10-bp
intervals. Localized distribution of motifs in relation to
TSS will provide evidence for the biological relevance of
putative motifs.

Secondly, we investigated if any specific gene function(s)
is over-represented in the region downstream of each
motif. T. parva genes have been previously annotated
based on the Munich Information Centre for Protein
Sequences (MIPS) catalog and Signal P software had been
used to predict the existence of signal peptides/signal
anchors in expressed genes [15]. We tested functional
over-representation in terms of 9 MIPS categories, tel-
omere association and signal peptide/signal anchor infor-
mation associated with the group of genes whose 5' IGRs
contain a particular motif. The statistical significance is
measured by a test for hypergeometric distribution
(Fisher's exact test). If R genes have been annotated with
an annotation category and the total number of unique
genes in the genome is N, then the p-value of finding at
least t genes with the annotation category among m genes
with the motif of interest in their upstream regions is:

c short
s r
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As multiple functional catagories were tested simultane-
ously, p-values are corrected for multiple hypotheses test-
ing using a Bonferroni approach. The calculation was
done using the function phyper in the statistical language
R.

In the third analysis, we identified known motifs with sig-
nificant similarity to our putative motifs using the web
tool STAMP [23]. T. parva motifs were searched against a
collection of databases including two comprehensive
eukaryotic motif databases JASPAR [58] and TRANSFAC
[59], drosophila DNase I footprint database FlyReg [60],
plant motif databases PLACE [61] and AthaMap [62],
prokaryotic motif databases RegTransBase [63] and DPIn-
teract [64], as well as yeast motifs predicted by Harbison
et al [65] and MacIsaac et al [66]. Motif similarity was esti-
mated by the Smith-Waterman local alignment method
with similarity score defined by Pearson's correlation
coefficient. The significance is estimated based on simu-
lated position specific scoring matrix (PSSM) models [67].

Lastly, we used MAST (Motif Alignment and Search Tool)
to find all occurrences of each putative motif in T. parva
non-coding regions [68]. The E-value of a match in an IGR
or intron to a motif is based on a random sequence model
derived from all non-coding sequences in T. parva. Vari-
ous E-value cutoffs are used to retrieve matches with dif-
ferent statistical significance.

Authors' contributions
JS conceived the project. JS and XG devised computational
approaches, XG performed the analyses. XG and JS wrote
the manuscript.

Additional material

References
1. Norval RAI, Perry BD, Young AS: The epidemiology of Theileriosis in

Africa London: Academic Press; 1992. 

2. Dobbelaere DA, Kuenzi P: The strategies of the Theileria para-
site: a new twist in host-pathogen interactions.  Curr Opin
Immunol 2004, 16(4):524-530.

3. Brown CGD, Stagg DA, Purnell RE, Kanhai GK, Payne RC: Infection
and transformation of bovine lymphoid cells in vitro by infec-
tive particles of Theileria parva.  Nature 1973,
245(5420):101-103.

4. Shiels B, Swan D, McKellar S, Aslam N, Dando C, Fox M, Ben-Miled
L, Kinnaird J: Directing differentiation in Theileria annulata:
old methods and new posibilities for control of apicompl-
exan parasites.  Int J Parasitol 1998, 28(11):1659-1670.

5. van Noort V, Huynen MA: Combinatorial gene regulation in
Plasmodium falciparum.  Trends Genet 2006, 22(2):73-78.

6. Militello KT, Dodge M, Bethke L, Wirth DF: Identification of reg-
ulatory elements in the Plasmodium falciparum genome.
Mol Biochem Parasitol 2005, 134(1):75-88.

7. Meissner M, Soldati D: The transcription machinery and the
molecular toolbox to control gene expression in Toxo-
plasma gondii and other protozoan parasites.  Microbes Infect
2005, 7(13):376-1384.

8. Kibe MK, Coppin A, Dendouga N, Oria G, Meurice E, Mortuaire M,
Madec E, Tomavo S: Transcriptional regulation of two stage-
specifically expressed genes in the protozoan parasite Toxo-
plasma gondii.  Nucleic Acid Res 2005, 33(5):1722-1736.

9. Behnke MS, Radke JB, Smith AT, Sullivan WJ Jr, White MW: The
transcription of bradyzoite genes in Toxoplasma gondii is
controlled by autonomous promoter elements.  Mol Microbiol
2008, 68(6):1502-1518.

10. Hackney JA, Ehrenkaufer GM, Singh U: Identification of putative
transcriptional regulatory networks in Entamoeba histolyt-
ica using Bayesian inference.  Nucleic Acid Res 2007,
35(7):2141-2152.

11. Sunil S, Chauhan VS, Malhotra P: Distinct and stage specific
nuclear factors regulate the expression of falcipains, Plasmo-
dium falciparum cysteine proteases.  BMC Mol Biol 2008, 9:47.

12. De Silva EK, Gehrke AR, Olszewski K, León I, Chahal JS, Bulyk ML,
Llinás M: Specific DNA-binding by apicomplexan AP2 tran-
scription factors.  Proc Natl Acad Sci USA 2008, 105(24):8393-8398.

13. Mullapudi N, Lancto CA, Abrahamsen MS, Kissinger JC: Identifica-
tion of putative cis-regulatory elements in Cryptosporidium
parvum by de novo pattern finding.  BMC Genomics 2007, 8:13.

14. Young JA, Johnson JR, Benner C, Yan SF, Chen K, Le Roch KG, Zhou
Y, Winzeler EA: In silico discovery of transcription regulatory
elements in Plasmodium falciparum.  BMC Genomics 2008, 9:70.

15. Bishop R, Shah T, Pelle R, Hoyle D, Pearson T, Haines L, Brass A,
Hulme H, Graham SP, Taracha ELN, Kanga S, Lu C, Hass B, Wortman
J, White O, Gardner MJ, Nene V, Villiers EP: Analysis of the tran-
scriptome of the protozoan Theileria parva using MPSS
reveals that the majority of genes are transcriptionally
active in the schizont stage.  Nucleic Acid Res 2005,
33(17):5503-5511.

16. Shiels B, Fox M, Mckellar S, Kinnaird J, Swan D: An upstream ele-
ment of the TamS1 gene is a site of DNA-protein interac-
tions during differention to the merozoite in Therileria
annulata.  J Cell Sci 2000, 113(Pt 12):2243-2252.

17. Gardner M, Bishop R, Shah T, de Villiers EP, Carlton JM, Hall N, Ren
Q, Paulsen IT, Pain A, Berriman M, Wilson RJ, Sato S, Ralph SA, Mann
DJ, Xiong Z, Shallom SJ, Weidman J, Jiang L, Lynn J, Weaver B, Shoaibi
A, Domingo AR, Wasawo D, Crabtree J, Wortman JR, Haas B,
Angiuoli SV, Creasy TH, Lu C, Suh B, Silva JC, Utterback TR, Feld-
blyum TV, Pertea M, Allen J, Nierman WC, Taracha EL, Salzberg SL,
White OR, Fitzhugh HA, Morzaria S, Venter JC, Fraser CM, Nene V:
Genome seqeuence of Theileria parva, a Bovine Pathogen
that transforms lymphocytes.  Science 2005,
309(5731):134-137.

18. Pain A, Renauld H, Berriman M, Murphy L, Yeats CA, Weir W, Ker-
hornou A, Aslett M, Bishop R, Bouchier C, Cochet M, Coulson RM,
Cronin A, de Villiers EP, Fraser A, Fosker N, Gardner M, Goble A,
Griffiths-Jones S, Harris DE, Katzer F, Larke N, Lord A, Maser P, McK-
ellar S, Mooney P, Morton F, Nene V, O'Neil S, Price C, Quail MA,
Rabbinowitsch E, Rawlings ND, Rutter S, Saunders D, Seeger K, Shah
T, Squares R, Squares S, Tivey A, Walker AR, Woodward J, Dobbe-
laere DA, Langsley G, Rajandream MA, McKeever D, Shiels B, Tait A,
Barrell B, Hall N: Genome of the host-cell transforming para-
site Theileria annulata compared with T. parva.  Science 2005,
309(5731):131-133.

Additional file 1
Enrichment analysis of functional and structural annotations in T. 
parva. The data provided represent the analysis of functional and struc-
tural enrichment of genes downstream of each putative motif in T. parva.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-582-S1.doc]

P t

R

i

N R

m i
N

m
i t

R m

( )
min( , )

=

⎛

⎝
⎜

⎞

⎠
⎟

−
−

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟=

∑

Page 13 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-9-582-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15245750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15245750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4200607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4200607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4200607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9846602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9846602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9846602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16380193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18433450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18433450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18433450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17355990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17355990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17355990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18541913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18541913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17212834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17212834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17212834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18257930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18257930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16186131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16186131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16186131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10825296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10825296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10825296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994557


BMC Genomics 2008, 9:582 http://www.biomedcentral.com/1471-2164/9/582
19. Lim LP, Burge CB: A computational analysis of sequence fea-
tures involved in recognition of short introns.  Proc Natl Acad
Sci USA 2001, 98(20):11193-11198.

20. Seoighe C, Gehring C, Hurst LD: Gametophytic selection in Ara-
bidopsis thaliana supports the selective model of intron
length reduction.  PLoS Genet 2006, 1(2):e13.

21. Gaffney DJ, Keightley PD: Genomic selective constraints in
murid noncoding DNA.  PLoS Genet 2006, 2(11):e204.

22. Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM: Compre-
hensive analysis of transcriptional promoter structure and
function in 1% of the human genome.  Genome Res 2006,
16(1):1-10.

23. Mahony S, Benos PV: STAMP: a web tool for exploring DNA-
binding motif similarities.  Nucleic Acids Res 2007, 35:W253-258.

24. Morris JF, Hromas R, Rauscher FJ 3rd: Characterization of the
DNA-binding properties of the myeloid zinc finger protein
MZF1: two independent DNA-binding domains recognize
two DNA consensus sequences with a common G-rich core.
Mol Cell Biol 1994, 14(3):1786-1795.

25. Militello KT, Dodge M, Bethke L, Wirth DF: Identification of reg-
ulatory elements in the Plasmodium falciparum genome.
Mol Biochem Parasitol 2004, 134(1):75-88.

26. Ericson ML, Muren E, Gustavsson HO, Josefsson LG, Rask L: Analy-
sis of the promoter region of napin genes from Brassica
napus demonstrates binding of nuclear protein in vitro to a
conserved sequence motif.  Eur J Biochem 1991, 197(3):741-746.

27. Heussler VT, Rottenberg S, Schwab R, Kuenzi P, Fernandez PC, McK-
ellar S, Shiels B, Chen ZJ, Orth K, Wallach D, Dobbelaere DA:
Hijacking of host cell IKK signalosomes by the transforming
parasite Theileria.  Science 2002, 298(5595):1033-1036.

28. Rogozin IB, Makarova KS, Natale DA, Spiridonov AN, Tatusov RL,
Wolf YI, Yin J, Koonin EV: Congruent evolution of different
classes of non-coding DNA in prokaryotic genomes.  Nucleic
Acid Res 2002, 30(19):4264-4271.

29. Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI:
Complete nucleotide sequence of the chlorarachniophyte
nucleomorph: Nature's smallest nucleus.  Proc Natl Acad Sci USA
2006, 103(25):9566-9571.

30. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H,
Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW,
Murakami Y, Philippsen P, Tettelin H, Oliver SG: Life with 6000
Genes.  Science 1996, 274(5287):546-567.

31. Bhattacharya S, Bakre A, Bhattacharya A: Mobile genetic elements
in protozoan parasites.  J Genet 2002, 81(2):73-86.

32. Silva JC, Bastida F, Bidwell SL, Johnson PJ, Carlton JM: A potentially
functional mariner transposable element in the protist Tri-
chomonas vaginalis.  Mol Biol Evol 2005, 22(1):126-134.

33. Pritham EJ, Putliwala T, Feschotte C: Mavericks, a novel class of
giant transposable elements widespread in eukaryotes and
related to DNA viruses.  Gene 2007, 390:1-2.

34. Souza RT, Santos MR, Lima FM, El-Sayed NM, Myler PJ, Ruiz JC, da Sil-
veira JF: New Trypanosoma cruzi repeated element that
shows site specificity for insertion.  Eukaryot Cell 2007,
6(7):1228-38.

35. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carl-
ton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA,
Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shal-
lom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft
D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ,
Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM,
Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis
RW, Fraser CM, Barrell B: Genome sequence of the human
malaria parasite Plasmodium falciparum.  Nature 2002,
419(6906):498-511.

36. Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermo-
laeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack
DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB,
Feldblyum TV, Cho JK, Quackenbush J, Sedegah M, Shoaibi A, Cum-
mings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cun-
ningham DA, Preiser PR, Bergman LW, Vaidya AB, van Lin LH, Janse
CJ, Waters AP, Smith HO, White OR, Salzberg SL, Venter JC, Fraser
CM, Hoffman SL, Gardner MJ, Carucci DJ: Genome sequence and
comparative analysis of the model rodent malaria parasite
Plasmodium yoelii yoelii.  Nature 2002, 419(6906):512-519.

37. Castillo-Davis C, Hartl DL, Achaz G: Cis-regulatory and protein
evolution in orthologous and duplicate genes.  Genome Res
14(8):1530-1536.

38. Rohrer J, Conley ME: Transcriptional regulatory elements
within the first intron of Broton's tyrosine kinase.  Blood 1998,
91(1):214-221.

39. Chan RY, Boudreau-Lariviere C, Angus LM, Mankal FA, Jasmin BJ: An
intronic enhancer containing an N-box motif is required for
synapse- and tissue-specific expression of the acetylcho-
linesterase gene in skeletal muscle fibers.  Proc Natl Acad Sci USA
1999, 96(8):4627-4632.

40. Marais G, Nouvellet P, Keightley PD, Charlesworth B: Intron size
and exon evolution in Drosophila.  Genetics 2005,
170(1):481-485.

41. Bishop R, Gobright E, Nene V, Morzaria S, Musoke A, Sohanpal B:
Polymorphic open reading frames encoding secretory pro-
teins are located less than 3 kilobases from Theileria parva
telomeres.  Mol Biochem Parasitol 2000, 110(2):359-371.

42. Mancio-Silva L, Rojas-Meza AP, Vargas M, Scherf A, Hernandez-Rivas
R: Differential association of Orc1 and Sir2 proteins to telo-
meric domains in Plasmodium falciparum.  J Cell Sci 2008,
121(Pt 12):2046-2053.

43. Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, Montiel-Condado D,
Ruvalcaba-Salazar OK, Rojas-Meza AP, Mâncio-Silva L, Leal-Silvestre
RJ, Gontijo AM, Shorte S, Scherf A: Telomeric heterochromatin
propagation and histone acetylation control mutually exclu-
sive expression of antigenic variation genes in malaria para-
sites.  Cell 2005, 121(1):25-36.

44. Karin M, Delhase M: The IkB kinase (IKK) and NF-kB: key ele-
ments of proinflammatory signaling.  Semin Immunol 2000,
12(1):85-98.

45. Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG: NF-κB
and cell-cycle regulation: the cyclin connection.  Cytokine
Growth Factor Rev 2001, 12(1):73-90.

46. Kucharczak J, Simmons MJ, Fan Y, Gelinas C: To be, or not to be:
NF-kB is the answer-role of Rel/NF-kB in the regulation of
apoptosis.  Oncogene 2003, 22(56):8961-8982.

47. Tato CM, Hunter CA: Host-pathogen interactions: subversion
and utilization of the NF-κB pathway during infection.  Infect
Immun 2002, 70(7):3311-3317.

48. Roulston A, Lin R, Beauparlant P, Wainberg MA, Hiscott J: Regula-
tion of human immunodε ficiency virus type 1 and cy tokine
gene expression in myeloid cells by NF-κB/Rel transcription
factors.  Microbiol Rev 1995, 59(3):481-505.

49. Al-Harthi Λ, Roebuck KA: Human immunode ficiency virus type-
1 transcription: role of the 5'-untranslated leader regi on.  Int
J Mol Med 1998, 1(5):875-881.

50. Kumar M, Gromiha MM, Raghava GPS: Ide ntification of DNA-
binding proteins using support vector machines and evolu
tionary profiles.  BMC Bioinformatics 2007, 8:463.

51. Imamura H, Persampieri JH, Chuang JH: Sequences conserved by
selection across mouse and human malaria species.  BMC
Genomics 2007, 8:372.

52. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal
G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Pea-
cock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark
UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton
JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM,
Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D,
Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger
S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall
N: Comparative genomics of Trypanosomatid parasitic pro-
tozoa.  Science 2005, 309(5733):404-409.

53. Ogurtsov AY, Roytberg MA, Shabalina SA, Kondrashov AS: OWEN:
aligning long collinear regions of genomes.  Bioinformatics 2002,
18(12):1703-1704.

54. Shabalina SA, Kondrashov AS: Pattern of selective constraint in
C. elegans and C. brigsae genomes.  Genet Res 1999, 74(1):23-30.

55. Shabalina SA, Ogurtsov AY, Kondrashov VA, Kondrashov AS: Selec-
tive constraint in intergenic regions of human and mouse
genomes.  Trends Genet 2001, 17(7):373-376.

56. Ohler U, Liao G, Niemann H, Rubin G: Computational analysis of
core promoters in the Drosophila genome.  Genome Biol 2002,
3(12):1-0087.

57. Bailey TL, Elkan C: Fitting a mixture model by expectation
maximization to discover motifs in biopolymers.  In Proc Sec-
Page 14 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11572975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11572975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17166057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17166057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17478497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17478497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8114711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8114711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14747145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14747145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2029903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2029903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2029903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12411708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12411708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12411708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16760254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16760254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16760254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8849441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8849441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12532039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12532039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15371525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15371525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15371525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17027200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17027200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17027200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17526721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17526721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256508
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256508
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9414287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9414287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10200313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10200313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10200313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11071289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11071289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11071289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18525026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18525026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15820676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15820676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15820676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10723801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10723801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11312120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11312120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14663476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14663476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14663476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12065467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7565415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7565415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9852310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18042272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17937810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16020724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16020724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10505405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11418197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11418197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11418197


BMC Genomics 2008, 9:582 http://www.biomedcentral.com/1471-2164/9/582
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

ond Int Conf Intelligent Systems for Mol Bio: August 1994; Menlo Park, CA
AAAI Press; 1994:28-36. 

58. Sandelin A, Wesserman WW: Constrained binding site diversity
within families of transcription factors enhances pattern dis-
covery bioinformatics.  J Mol Biol 2004, 338(2):207-215.

59. Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, Hor-
nischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S,
Lewicki-Potapov B, Michael H, Münch R, Reuter I, Rotert S, Saxel H,
Scheer M, Thiele S, Wingender E: TRANSFAC: transcriptional
regulation, from patterns to profiles.  Nucleic Acids Res 2003,
31(1):374-378.

60. Bergman CM, Carlson JW, Celniker SE: Drosophila DNase I foot-
print database: a systematic genome annotation of tran-
scription factor binding sites in the fruitfly, Drosophila
melanogaster.  Bioinformatics 2005, 21(8):1747-1749.

61. Higo K, Ugawa Y, Iwamoto M, Korenaga T: Plant cis-acting regu-
latory DNA elements (PLACE) database.  Nucleic Acids Res
1999, 27(1):297-300.

62. Galuschka C, Schindler M, Bülow L, Hehl R: AthaMap web tools
for the analysis and identification of co-regulated genes.
Nucleic Acids Res 2007, 35:D857-862.

63. Kazakov AE, Cipriano MJ, Novichkov PS, Minovitsky S, Vinogradov
DV, Arkin A, Mironov AA, Gelfand MS, Dubchak I: RegTransBase–
a database of regulatory sequences and interactions in a
wide range of prokaryotic genomes.  Nucleic Acids Res 2007,
35:D407-D412.

64. Robison K, McGuire AM, Church GM: A comprehensive library
of DNA-binding site matrices for 55 proteins applied to the
complete Escherichia coli K-12 genome.  J Mol Biol 1998,
284(2):241-254.

65. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford
TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zei-
tlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES,
Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory
code of a eukaryotic genome.  Nature 2004, 431(7004):99-104.

66. MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraen-
kel E: An improved map of conserved regulatory sites for Sac-
charomyces cerevisiae.  BMC Bioinformatics 2006, 7:113.

67. Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B:
JASPAR: an open-access database for eukaryotic transcrip-
tion factor binding profiles.  Nucleic Acid Res 2004, 32:D91-D94.

68. Bailey TL, Gribskov M: Combining evidence using p-values:
application to sequence homology searches.  Bioinformatics
1998, 14(1):48-54.
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15066426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15066426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15066426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15572468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15572468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15572468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17148485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17148485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9813115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9813115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9813115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15343339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15343339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16522208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16522208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520501
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Characterization of non-coding DNA in T. parva and T. annulata
	Conserved Sequence Motifs and their Biological Relevance

	Discussion
	Conclusion
	Methods
	Sequence Data
	Homology Identification
	Selective Constraint
	Motif Discovery
	Biological Relevance of Putative Motifs

	Authors' contributions
	Additional material
	References

