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Abstract

Background: In fish, molecular mechanisms that control follicle-enclosed oocyte progression
throughout oogenesis and oocyte developmental competence acquisition remain poorly
understood. Existing data in mammals have indicated that the so called "oocyte-specific”’ genes play
an important role in oogenesis, fertilization, and early embryo development. In teleost species, very
little is known about "oocyte-specific" genes. The present study therefore aimed at identifying and
characterizing oocyte-specific genes in fish.

Results: Using digital differential display PCR, mouse ESTs exhibiting an oocyte-predominant
expression were identified. Those murine ESTs were subsequently used to identify cognate
rainbow trout (Oncorhynchus mykiss) ESTs using a reciprocal Blast search strategy. In the present
study we report the identification of five previously uncharacterized rainbow trout cDNAs
exhibiting a oocyte-specific, oocyte-predominant, or gonad-specific expression: zygote arrest |
(zarl), v-mos Moloney murine sarcoma viral oncogene-like protein (mos), B-cell translocation gene
(btg3), growth differentiation factor 9 (gdf9), and mutS homolog 4 (msh4). The orthology
relationship of each of these genes with vertebrate counterparts was verified by phylogenetic
analysis. Among those five genes, three had never been characterized in any fish species. In addition,
we report the oocyte-predominant expression of btg3 for the first time in any vertebrate species.
Finally, those five genes are present in unfertilized eggs as maternally-inherited mRNAs thus
suggesting that they could participate in ovarian folliculogenesis as well as early embryonic
development.

Conclusion: The expression patterns of zarl, mos, btg3, gdf9 and msh4 in rainbow trout and the
functions of their orthologs in higher vertebrates strongly suggest that they might play an important
role in follicle-enclosed oocyte development, meiosis control and early embryonic development in
fish. Future investigations are however required to unravel the participation of those strong
candidates in the molecular processes that control folliculogenesis and/or oocyte developmental
competence in fish.
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Background

Oocyte developmental competence can be defined as the
oocyte ability to be fertilized and to subsequently develop
into a normal embryo. In fish, molecular mechanisms
that control oocyte developmental competence remain
poorly understood. In the past few years, transcriptomic
investigations have been initiated to tentatively link
oocyte transcriptome and oocyte developmental potential
in order to identify key genes involved in the control of
oocyte developmental competence [1]. While these types
of approaches have been successful, information on the
specific molecular mechanisms that make a good oocyte
are still limited. One alternative way to fully understand
the molecular mechanisms controlling oocyte quality is to
study genes that are specifically or predominantly
expressed in the oocyte. In mammals it has been shown
that the so called "oocyte-specific" genes can affect follic-
ulogenesis, fertilization and early development [2-4].
These genes have been extensively studied in mammals.
Yet, very little information is available about those genes
in fish despite the recent identification of ovarian-pre-
dominant genes in zebrafish [5]. The purpose of the
present study was therefore to identify and characterize
genes exhibiting a predominant oocyte expression in fish.
Taking advantage of the numerous murine tissue-specific
libraries available in public databases, we used an in silico
approach to identify genes exhibiting an oocyte-predomi-
nant expression in rainbow trout (Oncorhynchus mykiss).
Our study led to the identification and characterization of
five previously uncharacterized rainbow trout cDNAs
exhibiting an oocyte-specific, oocyte-predominant, or
gonad-specific expression: zygote arrest 1 (zarl), v-mos
Moloney murine sarcoma viral oncogene-like protein
(mos), B-cell translocation gene (btg3), growth differentia-
tion factor 9 (gdf9), and mutS homolog 4 (msh4).

Results

Zygote Arrest | (zarl)

The nucleotide sequence of rainbow trout zarl cDNA was
1195 bp in length (EU124662) and presumably encoded
for a 333-aa protein. The encoded protein (ABV25059)
had an estimated molecular mass of 38 kDa. The rainbow
trout zarl protein exhibited 64%, 60%, and 41%
sequence identity with zebrafish (Danio rerio), Xenopus
and Human zar1 proteins respectively (Figure 1) and the
phylogenetic analysis showed that rainbow trout zar1 was
orthologous to ZAR1 proteins previously characterized in
vertebrates (Figure 2). As previously reported for other
species, the zarl rainbow trout sequence exhibited an
atypical Plant Homeo Domain (PHD) finger in its C-ter-
minal region (Figure 1). Real-time PCR data showed that
zarl was strongly expressed in the ovary (Figure 3A). The
transcript was also present in unfertilized eggs thus dem-
onstrating that trout zar1 is maternally-inherited. Finally,
zar1 transcript could be detected in testis but not in any
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other tissue. In the ovary, in situ hybridization data
showed that zar1 was expressed in previtellogenic oocytes
(Figure 3A).

v-mos Moloney murine sarcoma viral oncogene-like
protein (mos)

The nucleotide sequence of rainbow trout mos cDNA was
1530 bp in length (EU276588) and presumably encoded
for a 335-aa protein. The encoded protein (ABX64430)
had an estimated molecular mass of 37 kDa. The rainbow
trout mos protein exhibited 62%, 51%, and 48%
sequence identity with zebrafish, Xenopus and Human
MOS proteins respectively (Figure 4). The phylogenetic
analysis showed that rainbow trout mos was orthologous
to previously characterized MOS proteins (Figure 5). Real-
time PCR data showed that mos was strongly expressed in
the ovary (Figure 3B). The transcript was also present in
unfertilized eggs thus demonstrating that mos is mater-
nally-inherited. Finally, mos transcript could not be
detected in any other tissue. In the ovary, in situ hybridi-
zation data showed that mos was expressed in previtello-
genic oocytes (Figure 3B).

B-cell translocation gene (btg3)

The nucleotide sequence of rainbow trout btg3 was 1385
bp in length (EU723246) and presumably encoded for a
237-aa protein. The encoded protein had an estimated
molecular mass of 27 kDa. The rainbow trout btg3 protein
exhibited 64% and 48% sequence identity with a pre-
dicted zebrafish sequence and Human BTG3 protein
respectively (Figure 6) and the phylogenic analysis
showed that the rainbow trout btg3 was orthologous to
BTG3 proteins previously characterized in vertebrates
(Figure 7). Real-time PCR data showed that btg3 was
strongly expressed in the ovary and in unfertilized eggs
thus demonstrating that btg3 is maternally-inherited (Fig-
ure 3C). The transcript was also present at lower levels in
testis, kidney, intestine, gills and brain. Finally, btg3 tran-
script could be detected at extremely low levels in several
other tissues but not in spleen. In the ovary, in situ hybrid-
ization data showed that big3 was expressed in the pre-
vitellogenic oocyte (Figure 3C).

Growth differentiation factor 9 (gdf9)

For gdf9, a partial rainbow trout cDNA (EU723245) was
sequenced. The deduced rainbow trout gdf9 aa sequence
exhibited 56%, 56%, 47%, 43% and 40% sequence iden-
tity with zebrafish, seabass, chicken, mouse and Human
GDF9 proteins respectively (Figure 8) and the phylogenic
analysis clearly showed that the rainbow trout gdf9 was
orthologous to gdf9 proteins previously characterized in
teleosts (Figure 9) [6,7]. In contrast, the topology of the
tree vertebrates is not consistent with orthology relation-
ships of GDF9 and BMP15 among vertebrates. This arti-
fact could be due to a long-branch attraction
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Alignment of vertebrate ZARI amino acid sequences. Comparison of rainbow trout zar| amino acid sequence
(ABV25059) with human (NP_783318), mouse (NP_777366), rat (EDL89977), chicken (XP_001234452), xenopus

(NP_001083958), fugu (NP_001027939), and zebrafish (NP_919

362) amino acid sequences. Shaded areas indicate identical

amino acids. Asterisks denote the conserved cysteines of the atypical PHD motif.

phenomenon. Real-time PCR data showed that gdf9 was
strongly expressed in the ovary (Figure 3D). The transcript
was also present in unfertilized eggs thus demonstrating
that gdf9 is maternally-inherited. Finally, gdf9 transcript
could not be detected in any other tissue. In the ovary, in

situ hybridization data showed that gdf9 was expressed in
previtellogenic oocytes (Figure 3D).

mutS homolog 4 (msh4)
For msh4, a partial rainbow trout cDNA (EU723247) was
sequenced. The deduced rainbow trout msh4 aa sequence
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Figure 2

Phylogenetic tree of ZARI proteins. The phylogenetic tree was built from protein sequences using the Ensembl database.
The tree is the fusion on the NJ topology, of three phylogenetic trees built based on neighbour joining, maximum parsimony,
and maximum likelihood. For each node, bootstrap values are reported for each npl method. An asterisk indicates that the
bootstrap value is lower than 50%. Bootstrapping was carried out with 1000 replications. "R" node represents the ancestral

gene.
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Tissue expression of rainbow trout zarl, mos, btg3 and gdf9. Tissue expression of rainbow trout zar/, mos, btg3 and
gdf9 transcripts. Real-time PCR analysis was conducted using total RNA originating from the following tissues sampled in 3 dif-
ferent fish: brain, pituitary, gills, heart, liver, stomach, intestine, spleen, head kidney, trunk kidney, muscle, skin, ovary, unferti-
lized eggs (i.e. metaphase Il oocytes), and stage |l testis. For each tissue, 3 separate reverse transcription reactions were
carried out using separate RNA samples originating from 3 different fish. Reverse transcription reactions were pooled and use
to run real-time PCR in triplicates. Mean and standard deviation are shown (N = 3). Expression levels not significantly different
from background signal at p < 0.05 are indicated (#). Expression levels are expressed as a percentage of the expression in the
ovary. In situ hybridization of rainbow trout ovarian tissue sections in the presence of antisense (AS) probe. Labels: nu =
nucleus, oo = ooplasm. Bars represent 200 um. A smaller view of an adjacent section hybridized with the sense probe is shown

for each gene.

exhibited 66% and 67% sequence identity with mouse
and Human MSH4 proteins respectively while it exhibited
81% with an aa sequence deduced from the zebrafish
genome (Figure 10) and the phylogenic analysis showed
that the rainbow trout msh4 was orthologous to MSH4
proteins previously characterized in vertebrates (Figure
11). Real-time PCR data showed that msh4 was strongly
expressed in the ovary and in the testis (Figure 12). The
transcript was also present at low but detectable levels in
unfertilized eggs but could not be detected in any other
tissue.

Discussion

Zygote Arrest | (zarl)

Zygote arrest 1 (Zar 1) is a maternal-effect gene critical for
the oocyte-to-embryo transition first identified in the
mouse [8]. In this species, zar17/- mice are infertile as most
of their embryos stop developing at one-cell stage. Since
its discovery, Zarl was characterized and its expression
studied in several vertebrates species including mammals
[9-12], chicken [13] and Xenopus [12]. By contrast, avail-
able data in fish are scarce. Zebrafish (Danio rerio) and
pufferfish (Fugu rubipres) zarl sequences have been
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Alignment of vertebrate MOS amino acid sequences. Comparison of rainbow trout mos amino acid sequence
(ABX64430) with human (NP_005363), chicken (NP_001026687), xenopus (NP_001081563), tetraodon (CAF92637), goldfish

(BAA85880) and zebrafish (NP_991143) amino acid sequences.

reported but no information is available on tissue or cel-
lular expression of zarl in any fish species. Similarly to
what has been reported in all studied vertebrate species
[12], the rainbow trout zarl sequence exhibits an atypical
PHD motif (C-X,-C-X,;-C-X,-C-X,-C-X;-C-X,,-C-X,-C)
(Figure 1). The phylogenic analysis confirmed that the
rainbow trout zar1 sequence was orthologous to the pre-
viously characterized vertebrate ZAR1 sequences includ-

ing mouse Zar1 (Figure 2). We also show, for the first time
in any fish species, that rainbow trout zarl is strongly
expressed in the ovary whereas a limited expression is
observed in metaphase II oocytes (unfertilized eggs).
Within the ovary, the expression was limited to the
ooplasm as demonstrated by in situ hybridization. A very
low signal was also observed in testis whereas no detecta-
ble expression was seen in any other tissue. In agreement
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Figure 5
Phylogenetic tree of MOS proteins. The phylogenetic tree was built from protein sequences using the Ensembl database.
The tree is the fusion on the NJ topology, of three phylogenetic trees built based on neighbour joining, maximum parsimony,
and maximum likelihood. For each node, bootstrap values are reported for each npl method. An asterisk indicates that the
bootstrap value is lower than 50%. Bootstrapping was carried out with 1000 replications. "R" node represents the ancestral

gene. For clarity reasons, the branch corresponding to paralogous genes were reduced and indicated by a circled C.
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Alignment of vertebrate BTG3 amino acid sequences. Comparison of rainbow trout btg3 amino acid sequence
(ACE74545) with human (NP_006797), and zebrafish (XP_707837) amino acid sequences.

with the results reported here, Zarl was shown to be
expressed exclusively in the oocyte in chicken and mouse
[8,12,13]. In contrast, expression in other tissues such as
testis [8,11], muscle [12], lung [12], and brain [11] was
also observed in various vertebrates species. In bovine, pig
and human, the mRNA expression observed in the testis
results from an alternative splicing of the ZAR1 gene [11].
Together, rainbow trout zarl sequence and tissue expres-
sion are consistent with a role in oocyte/embryo develop-
ment in fish that would be similar to what has been
shown in the mouse. Further studies are needed to thor-
oughly explore any relationship between zarl expression
in the oocyte and the acquisition of oocyte developmental
competence.

v-mos Moloney murine sarcoma viral oncogene-like
protein (mos)

In the mouse oocyte, Mos encodes for a serine-threonine
kinase involved in the maintenance of the meiotic arrest
at metaphase II [14-16]. A disruption of Mos results in
spontaneous parthenogenetic activation of oocytes
[14,16]. In Xenopus, mos has also long been implicated in
the maintenance of the meiotic arrest [17]. In contrast,
data on mos function and expression are extremely lim-
ited in fish. In the goldfish (Carassius auratus), mos is also
involved in the metaphase II arrest but does not partici-
pates in oocyte maturation [18]. In the present study, we
observed that rainbow trout mos mRNA is specifically
expressed in the oocyte and not detected in any other tis-
sue. Interestingly, mos mRNA is present in the unfertilized
egg and is therefore maternally inherited. To the best of
our knowledge, no information is available on the tissue

distribution of the mos mRNA in fish. In several mamma-
lian species, Mos mRNA was only found in embryos, ovary
and testis [19,20]. In addition, mos mRNA was found to be
expressed in the shark testis [21]. While it is unknown if
rainbow trout mos is expressed in the testis at other stages,
its expression in the oocyte is consistent with existing data
in higher vertebrates. Interestingly, the expression of mos
mRNA in the unfertilized egg suggests that mos could par-
ticipate in early development in addition to its well docu-
mented role in meiotic arrest.

B-cell translocation gene (btg3)

BTG3 also named ANA and TOBS5 belongs to a family of
proteins, the BTG family; know for their anti-poliferative
activity. In this family, 6 different proteins have been char-
acterized in vertebrates [22]. The phylogenetic analysis
carried out in the present study clearly shows that we have
identified the rainbow trout btg3 cDNA. The Btg3 gene
was originally cloned in the mouse [23] and reported to
be expressed in several cell lines and in a wide variety of
murine and human adult tissues [23,24]. Similarly, por-
cine Btg3 mRNA was detected in most tissues assayed [25].
In the present study, btg3 mRNA could be detected in
many tissues at very low levels. However, a strong and pre-
dominant expression was monitored in the oocyte.
Together, our observations are consistent with existing
data in mammals. However the oocyte-predominant
expression of BTG3 was never reported in any vertebrate
species and a thorough expression analysis will be neces-
sary in other vertebrate species. Interestingly, several stud-
ies have shown that BTG4, another BTG family member,
was preferentially expressed in the chicken oocyte [13]
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Figure 7

Phylogenetic tree of BTG3 proteins. The phylogenetic tree was built from protein sequences using the Ensembl database.
The tree is the fusion on the NJ topology, of three phylogenetic trees built based on neighbour joining, maximum parsimony,
and maximum likelihood. For each node, bootstrap values are reported for each npl method. An asterisk indicates that the
bootstrap value is lower than 50%. Bootstrapping was carried out with 1000 replications. "R" node represents the ancestral
gene. For clarity reasons, the branches corresponding to paralogous genes were reduced and indicated by a circled C.

and in bovine reproductive tissues [26]. In fish, a recent
transcriptomic study also revealed that btg4 was predomi-
nantly expressed in zebrafish ovarian tissue [5].

In the mouse, the 30 kDa protein encoded by the Btg3
gene was cell cycle-dependent and peaked at the end of
the G1 phase [23]. Overexpression of the human cognate
protein resulted in an impaired serum-induced cell cycle
progression from the GO/G1 to S phase in NIH3T3 cells
[24]. More recently, in an attempt to study DNA damaged-
induced genes, BTG3 was identified as a p53 target exhib-
iting an antiproliferative activity. Together, the predomi-
nant oocyte-expression of rainbow trout btg3 and the

antiproliferative activity of the cognate protein in mam-
mals suggest that btg3 could play an important role in
oocyte development in fish. In addition, the presence of
btg3 mRNA in the trout female gamete suggests a role for
btg3 during early embryonic development, possibly in
response to UV-induced DNA damage.

Growth differentiation factor 9 (gdf9)

Gdf9 is an oocyte-specific gene of the TGF beta super-
family involved in folliculogenesis. It participates in the
successful transition from primary to secondary follicles
and it was previously shown that Gdf9-null mice are sterile
[27,28]. In fish, gdf9 was very recently characterized in
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Alignment of GDF9 amino acid sequences in vertebrates. Comparison of rainbow trout gdf9 amino acid sequence
(ACE74544) with seabass (CAP71884), zebrafish (NP_001012383), chicken (AAT74587), mouse (NP_032136) and human

(NP_005251) GDF9 proteins.

zebrafish [7] and sea bass (Dicentrarchus labrax) [6]. In the
present study, the phylogenic analysis clearly showed that
rainbow trout gdf9 was orthologous to those previously
characterized gdf9 proteins in teleosts [6,7] despite the
difficulty to construct a reliable phylogenetic tree among
vertebrate species. Northern blot analysis showed an ovar-
ian-specific expression of gdf9 in sea bass [6]. Similarly,
semi quantitative PCR showed a gdf9 expression in
zebrafish oocyte and testis, and possibly a weak signal in
follicular cells [7]. In the present study, we clearly showed
using real-time PCR and in situ hybridization that rainbow
trout gdf9 is exclusively expressed in the oocyte. Interest-
ingly, significant levels of gdf9 mRNA were detected in the
unfertilized egg, thus demonstrating that gdf9 is mater-
nally inherited in rainbow trout. This observation is sup-

ported by semi-quantitative PCR data in zebrafish
showing strong mRNA levels at early blastula stage and
sharp decrease during gastrulation [7]. While data on gdf9
in fish are scarce, the observed expression patterns are
consistent with existing data in mammals. However, the
functions of gdf9 in fish, including a possible role during
early development, remain currently unknown.

mutS homolog 4 (msh4)

mutS homolog 4 (MSH4) is a meiosis-specific gene
belonging to the DNA mismatch repair (MMR) system. In
yeast (Saccharomyces cerevisiae) MSH4 is required for recip-
rocal recombination and proper segregation of homolo-
gous chromosomes during meiosis I [29]. In humans,
MSH4 protein is only found in testis and ovary [30]. In
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Figure 9

Phylogenetic tree of GDF9 proteins. The phylogenetic tree was built from protein sequences using the Ensembl database.
The tree is the fusion on the NJ topology, of three phylogenetic trees built based on neighbour joining, maximum parsimony,
and maximum likelihood. For each node, bootstrap values are reported for each npl method. An asterisk indicates that the
bootstrap value is lower than 50%. Bootstrapping was carried out with 1000 replications. "R" node represents the ancestral
gene. For clarity reasons, some of the branches corresponding to paralogous genes or orthologous genes in higher vertebrates

were reduced and indicated by a circled C.
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Figure 10
Alignment of MSH4 amino acid sequences in vertebrates. Comparison of rainbow trout msh4 amino acid sequence
(ACE74546) with zebrafish (XP_688406), mouse (AAL18350), and human (AAB72039) MSH4 proteins.
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MSH4

Phylogenic tree of MSH4 proteins. The phylogenetic tree was built from protein sequences using the Ensembl database.
The tree is the fusion on the NJ topology, of three phylogenetic trees built based on neighbour joining, maximum parsimony,
and maximum likelihood. For each node, bootstrap values are reported for each npl method. An asterisk indicates that the
bootstrap value is lower than 50%. Bootstrapping was carried out with 1000 replications. "R" node represents the ancestral
gene. For clarity reasons, the branch corresponding to MSH3 paralogous genes was reduced and indicated by a circled C.

mice, Msh4 plays an essential role in the control of mei-
otic recombination and a disruption of this gene leads to
male and female sterility due to meiotic failure [31]. In
fish, very little is known about msh4. To date, msh4 cDNA
and protein sequences were never characterized from any
fish species and only sequences automatically predicted
from zebrafish and tetraodon genomes are available. In
rainbow trout, in agreement with existing data in mam-
mals, the tissue distribution study shows a gonad-specific

expression pattern and a strong testicular expression. In
addition, high expression levels were found in the late
vitellogenic ovary, immediately prior to meiosis resump-
tion. Based on existing data in yeast and mammals, it can
be speculated that msh4 plays an important role in meio-
sis in fish. However, the msh4 mRNA is also detected in
metaphase Il oocytes at low levels. This indicates that
msh4 mRNA is maternally inherited and could thus partic-
ipate in early development, possibly through DNA mis-
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Figure 12

Tissue expression of rainbow trout msh4. Tissue
expression of rainbow trout msh4 transcript. Real-time PCR
analysis was conducted using total RNA originating from the
following tissues sampled in 3 different fish: brain, pituitary,
gills, heart, liver, stomach, intestine, spleen, head kidney,
trunk kidney, muscle, skin, ovary, unfertilized eggs, and stage
Il testis. For each tissue, 3 separate reverse transcription
reactions were carried out using separate RNA samples orig-
inating from 3 different fish. Reverse transcription reactions
were pooled and use to run real-time PCR in triplicates.
Mean and standard deviation are shown (N = 3). Expression
levels not significantly different from background signal at p <
0.05 are indicated (#). Expression levels are expressed as a
percentage of the expression in the ovary.

match repair functions. Further investigations are needed
to study the expression of msh4 in fish and characterize its
participation in oocyte and embryo development.

Conclusion

Using an in silico analysis, we have successfully identified
5 previously uncharacterized rainbow trout cDNAs exhib-
iting an oocyte-specific, gonad-specific, or oocyte-pre-
dominant expression. Among those 5 genes, 3 had never
been characterized in any fish species. In addition, we
report the oocyte-predominant expression of btg3 for the
first time in any vertebrate species. Finally, expression pat-
terns of those 5 genes in fish and the functions of their
orthologs in higher vertebrates strongly suggest that they
might play an important role in fish oocyte development,
meiotic arrest and early embryonic development.

Methods

In silico identification of candidate genes specifically
expressed in the oocyte

A differential digital display (DDD) analysis was previ-
ously performed with mouse ESTs providing a list of
murine oocyte-specific genes [32]. Cognate rainbow trout
expressed sequence tags (ESTs) were subsequently identi-

http://www.biomedcentral.com/1471-2164/9/499

fied using a reciprocal blast search strategy. A tblastX
search was performed against all rainbow trout expressed
sequence tags (ESTs) available in dbEST [33] using oocyte-
specific mouse sequences identified in silico. The corre-
sponding clones were obtained from INRA-Agenae pro-
gram resource center (Jouy-en-Josas, France) [34] and
fully sequenced in both directions using the dye-termina-
tion method (ABI PRISM 310, PE Biosystems). The
deduced amino acid sequence was used for sequence
alignment and phylogenetic analysis. Alternatively, the
amino acid sequence was deduced from rainbow trout
ESTs belonging to the same UniGene cluster.

Phylogenetic analysis

Phylogenetic analysis was performed using the phyloge-
nomic analysis pipeline available in the FIGENIX plat-
form http://www.up.univ-mrs.fr/evol/figenix/[35].
FIGENIX retrieved sequences, provided multiple sequence
alignments, performed phylogenetic reconstruction, and
deduced orthology and paralogy relationships (for a
detailed description of pipelines and models used, see
[35]). For each studied gene, the protein sequence was
entered in the phylogenomic inference task, which was
run with the default parameters and with Ensembl data-
base (release 49) [36]. We chose the NJ (neighbor joining)
topology for the graphical representation. The trees (npl)
are the fusion of three phylogenetic trees built based on
neighbor joining [37], maximum parsimony, and maxi-
mum likelihood [38]. The Dayhoff PAM matrix provided
the distance matrix for the NJ method. The evolutionary
distance separating sequences is defined as the number of
mutational events per site underlying the evolutionary
history separating sequences. Thus, evolutionary relations
among sequences are represented by the tree structure,
where branch length represents the evolutionary distance
[38,39]. Thus, evolutionary relations among sequences
are represented by the tree structure, where branch length
represents the evolutionary distance [38,39]. In phyloge-
netic tree, bootstrap values are reported on each node for
each npl method. Bootstrapping was carried out with
1000 replications.

Tissue collection and RNA extraction

Investigations were conducted according to the guiding
principles for the use and care of laboratory animals and
in compliance with French and European regulations on
animal welfare. Rainbow trout (Oncorhynchus mykiss) in
their first reproductive season were obtained from an
experimental fish farm (PEIMA, Sizun, France). Fish were
deeply anaesthetized in 2-phenoxyethanol (10 mg/ml of
water), killed by a blow on the head and bled by gill arch
section. Tissues were sampled from 3 ovulated females.
Testis samples were obtained from 3 different males at
stage Il of spermatogenesis [40]. For RNA extraction, tis-
sues were homogenized in Tri-reagent (Molecular
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Research Center, Cincinnati, OH) at a ratio of 100 mg per
ml of reagent and total RNA was extracted according to
manufacturer's instruction. For in situ hybridization,
ovarian tissue was sampled from an ovulated female,
fixed in Dietrick's fixative (10% Formaldehyde, 28. 5%
ethanol, 2% glacial acetic acid) at 4° C overnight, rinsed in
tap water for 1 hour and held in 50% ethanol until further
processing.

Real-time PCR

Real-time PCR was performed using an I-Cycler IQ (Bio-
rad, Hercules, CA) as previously described [41]. Reverse
transcription products were diluted to 1/50 and 5 pl were
used for each real-time PCR reaction. Triplicates were run
for each RT product. Real-time PCR was performed using
a real-time PCR kit provided with a SYBR Green fluoro-
phore (Eurogentec, Belgium) according to the manufac-
turer's instructions and using 600 nM of each primer
(Table 1). After a 2 min incubation step at 50°C and a 10
min incubation step at 95°C, the amplification was per-
formed using the following cycle: 95°C, 20 sec; 62°C, 1
min, 40 times. The relative abundance of target cDNA
within sample set was calculated from a serially diluted
ovarian cDNA pool using the I-Cycler IQ software. Subse-
quently, real-time PCR data were normalized using 18S
transcript abundance. After amplification, a fusion curve
was obtained in order to ensure that a single PCR product
had been generated using the following protocol: 10 sec
holding followed by a 0.5°C increase, repeated 80 times
and starting at 55°C.

In situ hybridization

Dehydration (increasing ethanol: 15 min in 50% ethanol,
twice 15 min in 70% ethanol, 15 min in 80% ethanol, 30
min in 96% ethanol, and 30 min in 96% ethanol/butanol
vol/vol), clearing (butanol once for 30 min, and twice for
3 h each), and paraffin infiltration (once for 1 h and twice
for 2 h, at 60°C) were performed in a Citadel 1000 tissue
processor (Shandon, Pittsburgh, PA). Dehydrated tissues
were embedded in plastic molds in paraffin using a His-
toEmbedder (TBS88, Medite, Germany).

Table I: Real-time PCR primers

http://www.biomedcentral.com/1471-2164/9/499

Digoxigenin-labeled anti-sense RNA probes were pro-
duced using the Promega T3/T7 RNA polymerase Ribo-
probe Combination System as recommended by the
manufacturer, using as DNA template a PCR product
obtained following amplification of the plasmid inserts
with M13 reverse and M 13 forward primers. Digoxigenin-
labeled riboprobes were then purified by precipitation in
ammonium acetate 7.5 M/ethanol for 2 hours at -20°C,
and RNA concentrations were measured using a Nano-
Drop® spectrophotometer. Serial cross-sections of 5 um
were deparaffinized, re-hydrated in TBS (50 mM Tris, pH
7.4, 150 mM NaCl) and post-fixed in 4% PFA for 20 min.
ISH was performed using the "In situ Pro, Intavis AG
robotic station". Incubation volumes for all ISH steps
were set to 250 pl. Digestion was carried out for 20 min
with 3 pg/ml of proteinase K. Pre-hybridization (2 h,
60°C) and hybridization (12 h, 60°C) were carried out in
50% formamide, 2 x SSC, 1 x Denhardt, 10% dextran sul-
fate, and 250 pg/ml tRNA. For hybridization the digoxi-
genin-labeled anti-sense RNA probes were diluted in
hybridization buffer at a final concentration of 3 ng/pl.
Washing steps (2 x SSC, 60 min) were performed at 60°C
followed by an RNAse treatment at 37 ° C. The digoxigenin
signal was then revealed with an anti-digoxigenin anti-
body conjugated with alkaline phosphatase (Roche Diag-
nostics Corp.) and a NBT/BCIP revelation system (Roche
Diagnostics Corp.) as recommended by the manufacturer.
Slides were mounted with mowiol 4-88 (Calbiochem).
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Name Acc # Forward primer Reverse primer

zarl EU124662 GAACGAGCAAGGTCTACTTCAAG GCAAGTCTGGCAGGTGATGTC
mos EU276588 GGCGACAGGCAATATGTTTT CACTTGGACACAATGGATCG
gdf9 EU723245 ACGAGCGACTGTGCTTTGTAC AATGATCCAATGGCTCAGTT
btg3 EU723246 AGAGGAGGTGTGCTGCAGAT CGTCTGAGGAGGAACAGGAG
msh4 EU723247 TCTGTCTGCGAATTCCTCCT ACCTCCATGTGCTGGTTTTC
18S AF308735 CGGAGGTTCGAAGACGATCA TCGCTAGTTGGCATCGTTTAT

For all studied genes the GenBank accession number of the rainbow trout cDNA and the sequence of the primers used for the real-time PCR study

are shown
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