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Abstract
Background: Gene clustering plays an important role in the organization of the bacterial
chromosome and several mechanisms have been proposed to explain its extent. However, the
controversies raised about the validity of each of these mechanisms remind us that the cause of
this gene organization remains an open question. Models proposed to explain clustering did not
take into account the function of the gene products nor the likely presence or absence of a given
gene in a genome. However, genomes harbor two very different categories of genes: those genes
present in a majority of organisms – persistent genes – and those present in very few organisms –
rare genes.

Results: We show that two classes of genes are significantly clustered in bacterial genomes: the
highly persistent and the rare genes. The clustering of rare genes is readily explained by the selfish
operon theory. Yet, genes persistently present in bacterial genomes are also clustered and we try
to understand why. We propose a model accounting specifically for such clustering, and show that
indispensability in a genome with frequent gene deletion and insertion leads to the transient
clustering of these genes. The model describes how clusters are created via the gene flux that
continuously introduces new genes while deleting others. We then test if known selective
processes, such as co-transcription, physical interaction or functional neighborhood, account for
the stabilization of these clusters.

Conclusion: We show that the strong selective pressure acting on the function of persistent
genes, in a permanent state of flux of genes in bacterial genomes, maintaining their size fairly
constant, that drives persistent genes clustering. A further selective stabilization process might
contribute to maintaining the clustering.

Background
Made of DNA, a complex chemical substrate duplicated
using a complex machinery, and submitted to all kinds of
chemical aggressions and accidents, bacterial genome
sequences are subject to many processes leading to
sequence alteration, such as point mutations, rearrange-
ments, gene duplications, gene deletions, lateral transfer

of genes, etc. [1]. The availability of a rapidly increasing
number of completely sequenced bacterial genomes
makes it possible to explore gene order conservation in
related and distant species. Gene order is preserved exten-
sively in closely related species, but fades away in distantly
related organisms [2,3]. Comparing different species, the
conservation of gene order varies in parallel with the
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nature of the different selection pressures imposed upon
genome stability [4]. Most studies of genome rearrange-
ments have shown a marked preference for highlighting
the fluidity of the bacterial chromosomes organization [5-
8]. In contrast, the fact that conserved genes are not uni-
formly distributed but organized into clusters is a feature
of the genome of Escherichia coli shared with many other
bacteria [9]. This clustering property has long been used to
predict gene function through the annotations of its
neighborhoods, with the assumption that conservation of
gene proximity is coupled with their functional relevance
[9-11].

Hypotheses accounting for the clustering of genes in
genomes basically break into three main categories. 1)
Gene clusters are formed in situ as the consequence of
gene duplication followed by divergence, and the con-
served gene clusters are evolutionary relics allowing inves-
tigators to trace back their origins [12,13]. However, the
constant rearrangement of chromosomes requires selec-
tion pressures to maintain the genes clustered along large
evolutionary periods [4]. Furthermore, gene duplication
happens much less frequently in prokaryotes than that in
eukaryotes, while genes' clustering is much stronger in the
former [14]. 2) Genes display a "selfish" behavior, aggre-
gating into clusters to increase their chances of propagat-
ing through horizontal transfer into other genomes [15].
Briefly, this hypothesis is accounted for by a model
describing the repeated loss and gain of batches of contig-
uous genes grouped together in a section of DNA. During
this process, genes within batches coding for coupled
functions will have a higher chance of increasing the
organism fitness, and thus their own, than uncoupled
genes, which would require pre-existence of the interact-
ing partners in the chromosome. This provides a mecha-
nism allowing gradual aggregation of functionally related
genes among genes that are frequently laterally trans-
ferred. While the authors showed that this model works
well for genes submitted to "weak selection pressures",
they found that it did not hold for genes contributing to
fitness at each generation, predicting that essential genes
should not be organised into clusters in prokaryotic
genomes [15]. This is in sharp contrast with the observa-
tion that, compared to non-essential genes, essential
genes are significantly clustered in bacterial genomes [16-
18]. 3) Finally, there is a large variety of works emphasiz-
ing some of the selective advantages that stabilize gene
clusters in chromosomes, which interpret these advan-
tages as the cause of clustering [10,11,19,20]. The nature
of those selective advantages was generally discussed
along two major lines: gene co-transcription and func-
tional coupling. The role of co-transcription, which is at
the core of the concept of operon [21,22], is supported by
several lines of evidence [23-25]. The selection pressure
for co-transcription is naturally gene co-expression. Con-

servation of bi-directionally transcribed gene pairs, which
are not coded on the same mRNA molecule, was also asso-
ciated with coupled functional properties [26]. Because
many genes correspond to complex functions requiring
the simultaneous presence of several components, the
need for protein complexes cooperating in a given cellular
function was therefore suggested as a selective driving
force for gene clustering and formation and/or mainte-
nance of operons [23,27]. A variety of parallel studies of
the "uber-operon", a concept proposed to account for the
clustering of several transcription units together, observed
that in most cases genes are united by consistent func-
tional themes [28,29].

However, some genes within uber-operons have no
apparent functional relation with their neighbors. Their
conservation has been attributed to "genomic hitch-hik-
ing" suggesting that the genes' presence might simply
reflect selection for stable expression at levels controlled
by their neighbors [30]. Furthermore, rules leading to
gene order conservation may be associated to chromo-
some organization and distribution in the cell, as shown
by strong alteration of the bacterial growth observed upon
some genome minimization attempts [31].

Conservation of gene proximity is useful to infer protein
interactions or functional links [10], but some quantita-
tive evaluations show that this is insufficient to explain
the observed level of gene clustering. As a case in point, for
Mycoplasma genitalium, gene clustering could only account
for 37% of the functional interactions [32]. A program
designed to predict gene function by building gapped
local alignment of genome contexts between prokaryotic
genomes, followed by studying the conserved gene strings
provided significant predictions, yet it could not cover the
majority of genes either [33]. These studies indicate that
correlations between functional cooperativity and gene
clustering could be lower than expected, depending on
different datasets which reflect different evolutionary his-
tories. Moreover, the existence of correlations indicates a
relationship between two features as observed by analysis
of the current bacterial genomes. If we aim at discovering
the mechanism producing gene clustering, not its subse-
quent association with other events, the underlying cau-
sality is not as straightforward as it may seem: if functional
coupling could stabilize clustering, clusters need to exist
in the first place. Cluster formation could well be the ini-
tial process that allows selection and then stabilization of
clusters displaying a strong contribution to fitness. In this
sense, clustering could be a driving force for the creation
of interactions. Even if co-transcription is the only major
selective force that stabilizes favored gene clusters in bac-
terial genomes, the creation of essential gene clusters is yet
to be addressed.
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Considering the controversial explanations proposed to
account for gene clustering, we tried to explore the con-
crete mechanisms that could result in clustering essential
genes together, trying to avoid any type of teleological
explanation. The systematic gene inactivation programs
defined gene essentiality as whether a gene's inactivation
leads to a dead end or not under laboratory growth condi-
tions [34,35]. Remarkably, in our previous analysis of the
conservation of experimentally identified essential genes
in bacterial genomes we observed a further category of
genes that persist in the course of evolution while they are
not "laboratory essential" [16]. Many of the latter code for
functions that considerably increase the fitness of the
organism in natural environments, managing in particu-
lar the maintenance of essential functions. Thus, we pro-
posed that gene persistence is the relevant representative
of gene essentiality in an evolutionary perspective [16]. In
this work, we restricted the analysis of gene clustering to
persistent genes. We propose a model driving step-by-step
the clustering of persistent genes, mainly based on two
common evolutionary processes in bacterial genomes –
lineage-specific genes loss and insertion. We discovered
that to better survive from the random deletion process,
persistent genes, which are under inherent high purifying
selection pressure, organized as clusters. However, while
clustering of persistent gene provided a significant oppor-
tunity to allow the genes to be inherited and spread, these
clusters could also be destroyed by inevitable random
gene insertion. We therefore explored a scenario where
gene deletion and gene insertion would affect gene clus-
tering. We subsequently measured the relative contribu-
tion of known co-transcription, protein-protein
interaction and protein functional coupling to persistent
gene clustering. We suggest that they operate as a stabili-
zation force that maintains gene clustering after gene clus-
ters have been formed in genomes.

Results
Persistent genes are organized into clusters and gene 
persistence is associated with their propensity to cluster 
together
A first indication that persistent genes cluster together can
be found in the work of Martin et al, who observed that
highly conserved genes in E. coli are organized into clus-
ters [9]. This work, however, did not explore to what
extent genes' conservation was coupled to clustering.
Therefore, for each of the 169 bacterial genomes retained
in the present study (see Additional file 1), we measured
the deviation from uniformity in circular distributions
(the Kuiper's test, see Method) to examine the distribu-
tion of genes in groups ordered following their frequency
in genomes. We defined a Persistence Index (PI), as the
percentage of bacteria containing a given gene. Figure 1
shows examples of the association between the genes' ten-

dency of clustering and their PI (see Additional file 2 for
the analysis of all bacteria).

As shown in Figure 1, genes are distributed into three cat-
egories: persistent genes – genes present in a majority of
organisms, rare genes – those present in very few organ-
isms, and genes in between. It is worth noticing that both
persistent and rare genes form clusters, while the genes of
the intermediary category do not cluster. The rarest genes
display the strongest clustering tendency, and this is in
agreement with the selfish gene hypothesis [15] and with
the major processes of lateral gene transfer (conjugation,
bacteriophage infection and transformation). In this work
we will explore the mechanism leading to the clustering of
persistent genes. This clustering shows three remarkable
features (see also Additional file 2): i) The genes with PI
>=65% (around 400 genes in each bacterium) are signifi-
cantly clustered together in most bacteria (Figure 2 and
Additional file 3). ii) The most persistent genes have the
strongest tendency to cluster together, and as their persist-
ence decreases, genes tend to become more uniformly dis-
tributed (Figure 2). Hence, there is a correlation between
persistence and clustering. iii) A few bacteria do not fol-
low the general trend, viz. Cyanobacteria, in that their per-
sistent genes are fairly uniformly distributed in the
genome (Additional file 2).

Estimation of the length of batches of contiguous genes 
indels
Previous studies suggested that genes are deleted from
genomes in batches of contiguous genes [36-38]. To sub-
stantiate this observation, we made multiple alignments
of gene contexts among 9 clades including 33 closely
related genomes (see Methods). A batch of contiguous
genes indel is a gap in the genomes alignment due to the
presence or absence of a group of genes in only one strain
(see Method, as illustrated in Figure 3). We found that the
length of batches of contiguous genes indels ranges from
2 to more than 10 genes, with an average batch of approx-
imately 3 genes (Additional file 4).

A model featuring only passive selection groups persistent 
genes into clusters
As discussed previously, deletion of a persistent gene will
much diminish bacterial fitness and prevent formation of
a significant progeny [16]. Since deletions are very fre-
quent in bacterial genomes we modeled the effect of dele-
tion in batches of genes on the clustering of persistent
genes. If genes are clustered (Figure 4.a), a small number
of deletions will affect one or more persistent genes, while
most deletions will affect none. The consequence of the
first case is that the cell will have no progeny, whereas in
the second it will not be much affected. In the second
extreme gene distribution mode (Figure 4.b) persistent
genes are uniformly distributed. As a consequence many
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Gene clustering in specimen bacteriaFigure 1
Gene clustering in specimen bacteria. The X-axis represents the persistence index, i.e. the number of orthologs found for a 
given gene among the 169 genomes. The blue curve shows the number of genes with identical persistence index, which is indi-
cated by the Y-axis on the right. Genes with similar persistence are assigned into groups and tested for their distribution using 
Kuiper's test. The statistic for each group is shown as a vertical line. The two horizontal lines show the critical values given by 
Kuiper's test. The red one at y = 2.001 (resp. green one at y = 1.747) shows the critical value at the significant level of alpha = 
0.01 (resp. alpha = 0.05). Both the persistent genes and the rare genes are significantly clustered along the chromosome, 
whereas the genes in between are not. Note that groups are not equally spaced along the X-axis to homogenize the number of 
genes in each group (from 100 to 200 genes). The gene persistence range for groups on the left side is 10%: e.g. the first group 
includes genes present in 90% to all of the bacteria; the 2nd group includes genes present in between 85% to 95% of the bacte-
ria, and so on. Gene groups on the right side are assigned to groups with much narrower ranges, due to the fact that there is 
more rare genes than persistent genes in most bacteria.
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deletions will include one, rarely more, persistent genes.
All these will prevent the cell to have a significant prog-
eny. Thus, under these very simplifying conditions, the
clustering of persistent genes is adaptive because it renders
the genome more robust to deletions.

To explore the validity of the model, we performed simu-
lations using the following assumptions: 1) fixed popula-
tion size; 2) fixed genome length; 3) fixed number of
persistent genes; 4) genes are deleted and inserted in
batches of contiguous genes, and this can happen ran-
domly at any position. If the deletion involves a persistent
gene, the cell has no progeny; 5) deletion of non-persist-
ent genes has no fitness effect. In our simulations, we
regarded the genome as made of a string of genes as the
basic units, and ignored the structure of intergenic and
coding regions. Deletion and insertion simply meant the
removal and addition of genes along the string succession
of genes. In real cases, intergenic regions are much shorter
than coding regions in bacterial genomes, thus foreign
genes would probably insert within a coding region. How-

ever, this event is basically identical to a process assuming
first a gene deletion followed by an insertion at the same
place.

We ran the model on 5000 chromosomes, each with ran-
domly distributed 3600 dispensable and 400 persistent
genes (see Methods). We tested at each generation the
clustering of persistent genes (Kuiper's test, alpha = 0.05).
The percentage of bacteria with significant clustering of
persistent genes fluctuates widely (red curve in Figure 5.a).
Several peaks appear during the simulation and the anal-
ysis of the maximal peak showed long clusters of 5 to 7
persistent genes. As intuitively predicted, this simulation
shows that the conflict between gene indispensability (at
the basis of persistence) and deletion of batches of contig-
uous genes tends to group persistent genes into clusters.
We repeated this simulation for 10 times, with similar
results (Additional file 5.a). We also made simulations for
smaller (500) and larger (50 000) population sizes (resp.
green and orange curve in Figure 5.b). This showed that
the clustering effect increases steadily with population
size, as expected from a trait under weak selection. We fur-
ther made a control of persistent gene's indispensability
during the simulation: supposing that deletion of persist-
ent gene(s) had no fitness effect (while inserting the
deleted gene batch back into the chromosome at a ran-
domly chosen place), persistent genes clustering con-
stantly appeared in just 2 ~ 3% chromosomes, and did not
vary over generations (blue curve in Figure 5.a).

For short population sizes the clustering is quickly dis-
rupted by continuation of the insertion/deletion process
(see Figure 5.b). In this scenario, clustering is therefore a
dynamic process where groups of persistent genes form
and vanish in the course of generations but in the absence
of other selective forces requires high population sizes.
These are not rare among bacteria, but the lack of knowl-
edge of the insertion/deletion frequency in bacterial line-
ages precludes the development of a more quantitative
model. That persistent genes tend to cluster together in
many bacterial clades suggests that either population sizes
are indeed sufficient to select for this trait or that there
exists some sort of selective stabilization pressure super-
imposed on the process we have tried to mimick.

Mutually Attracted Gene Pairs
To understand which factors might stabilize the clusters of
persistent genes, we looked for genes staying conserva-
tively close to each other in all the 169 bacterial genomes.
To this aim, we introduced the concept of Mutual Attrac-
tivity (MA) between genes. The MA is a measure derived
from the average distances between two genes in all the
genomes, with shorter distances corresponding to
stronger attraction (see Methods, Figure 6). We subse-
quently analyzed the 384 genes that are persistent among

Distribution of groups of genes according to their persist-ence indexFigure 2
Distribution of groups of genes according to their persist-
ence index. Genes were grouped according to their PI and 
examined each for its distribution in each of the 169 bacteria 
of interest. This figure shows the summary of the distribu-
tions of genes present in more than 50% (PI > 0.5) of the 
bacteria. The X-axis indicates gene groups: specifically, for 
each bacterium, genes with PI > 0.9 are assigned into the first 
group; genes with PI ≤ 0.9 and >0.8 are assigned into the sec-
ond group, and so on. These genes groups were then exam-
ined by Kuiper's test in each bacterium for their distribution. 
The Y-axis shows the percentage of bacteria in which a 
group of genes was clustered. The red (resp. blue) curve is 
tested at alpha = 0.05 (resp. 0.01). Gene's persistence index 
is determined by the gene's presence in the 169 bacteria we 
studied.
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the 169 bacteria (see Methods), looking for pairs of genes
that stay consistently clustered together (Figure 7).

If two persistent genes were randomly distributed, their
MA should follow a normal distribution, with mean 0.5.
By contrast, the distribution of MA among all pairs of per-
sistent genes is significantly skewed toward the right, with
mean 0.569 (Figure 7). This could be explained by the
large-scale organization of the bacterial genome that tends
to bias the distribution of some genes. For example,
highly expressed genes, which often are persistent, cluster
near the replication origin in fast growing bacteria [39].
This clustering is due to the location preference in the
chromosome, not discriminant for a given pair's associa-
tion, thus it leads to MA values that on average are not
necessarily very large but still larger than the average given
by a random process, i.e. 0.5. A further remarkable feature
of the distribution is that we also find using the Expecta-
tion Maximization algorithm (see Methods) a small
group of pairs of genes that are grouped at a value close to
1 (Figure 7), corresponding to pairs of genes that are con-

sistently co-localized (see Methods). In summary, isolated
from the mixture distribution of 73536 MA (see Meth-
ods), most gene pairs (over 98%) belong to a class follow-
ing a normal distribution (average MA = 0.569, standard
deviation = 0.063) while 1064 pairs form a smaller class
of genes located close to each other (MA between 0.794
and 1). These 1064 gene pairs (formed by association of
258 genes into specific pairs) from that second class were
named Mutually Attracted Gene Pairs (MAGP). Approxi-
mately half (506 pairs) of this group was composed of
ribosomal proteins genes. The list detailing the 1064
MAGP is supplied in Additional file 6.

Association between co-transcription and gene clustering
We used the 1064 MAGP to investigate the nature of the
"stabilization" forces that might maintain the clusters'
integrity. Since most bacterial genes are organized into
operons, co-transcription might be regarded as the major
force gluing together persistent genes. We firstly estimated
the contribution from co-transcription to maintain
MAGP. In the absence of a general set of experimental

Deletion and insertion of batches of contiguous genes in closely related bacterial cladesFigure 3
Deletion and insertion of batches of contiguous genes in closely related bacterial clades.

Genes absent in only one chromosome

Genes present in only one chromosome

Chromosome GapAligned Gene
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data on co-transcribed genes for all genomes in this study,
we used three indicators to segment bacterial chromo-
somes and predict operons borders: presence of a rho-
independent transcription terminator, intergenic regions
spanning more than 200 bp or presence of two adjacent
Coding DNA Sequences (CDS) on each of the comple-
mentary DNA strands (this prediction method fits well
with experimentally identified operons, when data are
available, see Methods). Each MAGP was examined for its
distribution relative to operons in the 169 bacteria. Based
on the proportion of bacteria in which the two genes
belonged to the same operon, coupled with the distance
between them in bacteria where they were not in the same
operon (see Methods), we tested if a MAGP is maintained
by operons. With this estimation, 563 (53%) MAGP were
clustered as (part of) operons; removing ribosomal pro-
tein genes from the set (they display considerable persist-
ent clustering), we concluded that operons maintained
together 268 (48%) of the 558 MAGP (Additional file 6).
Thus, co-transcription is one of the forces contributing to
the stabilization of the clusters of persistent genes but is
not enough to account for the entire phenomenon. It
must also be stressed that this contribution correlates with
clustering, but that we have no way at this point to know
whether it causes clustering.

Highly conserved protein interaction sets are weakly 
associated with gene co-localization
A modest proportion of interacting proteins genes in E.
coli are co-localized in the chromosome [40]. We tested if
the physical interaction between proteins could account
for MAGP. We restricted our analysis to the set of 197 per-
sistent genes for which all possible interactions were
explored by Butland et al: they made up 1164 interac-
tions. In our analysis, 742 MAGP are found for genes in
this same set. However, only 127, i.e. 10.9%, of the 1164
interacting pairs are also MAGP, and conversely only
17.1% MAGP are interacting pairs in E. coli. A detailed
Venn diagram showing the overlapping relationships
between all the sets is in Additional file 7. The low overlap
between the interacting pairs and MAGP strongly argues
against a major stabilizing role for the known protein-pro-
tein interactions on the clustering of persistent genes.

When we removed the 44 ribosomal interacting pairs we
were left with 83 gene pairs that are MAGP and code for
physically interacting proteins, 22 of which were coded in
the same operon. As a consequence, after the removal of
the overlap (27%) with operon structure, the effect of pro-
tein physical interactions contributes to only 19% of
MAGP. In summary, gene co-transcription and known

Two modes symbolizing persistent genes distributions along chromosomesFigure 4
Two modes symbolizing persistent genes distributions along chromosomes. Under mode A, persistent genes are organized 
into clusters. Supposing that 15 gene deletions occurred, only 2 lead to the deletion of persistent genes. Under mode B persist-
ent genes are uniformly distributed and 9 out of the same 15 gene deletions involve persistent genes.
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The percentage of genomes having persistent genes clustered over the time course of our simulationFigure 5
The percentage of genomes having persistent genes clustered over the time course of our simulation. The Y-axis shows the 
percentage of cells in which persistent genes are significantly not uniformly distributed (Kuiper's test, alpha = 0.05). a) Insertion 
is allowed at any position in a population of 5 000 cells. The red curve is under the hypothesis that deletion of persistent genes 
significantly affect the cell's multiplication, and the blue curve is the control supposing that persistent genes are indistinguishable 
from the other genes; b) Comparison of different population sizes. The green curve shows the simulation with a population 
size of 500 cells, and the orange curve is for a population of 50 000 cells. The blue curve is the control; c) Insertion is not 
allowed within clusters of persistent genes. In panel a and b, areas calculated by integral beneath the green, red and orange 
curves are 6290, 14033 and 19892, respectively for population sizes of 500, 5 000 and 50 000.
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Background control
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protein physical interaction together could explain two
thirds of the non-ribosomal MAGP.

Functional coupling among genes in persistent gene 
clusters
Co-transcription and protein-protein interactions corre-
spond to direct physical interactions. As other functional
couplings may also have a role on MAGP stabilization, we
assessed the influence of known functional association in
the creation of MAGP. We first classified the genes form-
ing MAGP into functional categories, based on our previ-
ous work [41], with some modifications (Additional file
8). We then examined each MAGP to see if the two genes
were functionally coupled (see details in Additional file
6). This showed that 618 (58%) MAGP were composed of
genes belonging to the same functional category, among

which 391 were MAGP maintained by operons. In a sim-
ilar way, after removing the 506 ribosomal MAGP, only
112 of the 558 non-ribosomal MAGP belonged to the
same functional category. Among those, 96 (85%) were
accounted for by operons, and another 6 MAGP by phys-
ical protein interaction pairs. In summary, functional cou-
pling that would not be already taken into account either
in the operon structure or in protein-protein interactions,
could explain very few MAGP (~2%). When integrating
co-transcription, protein physical interaction and gene
functional coupling together, 69% of the non-ribosomal
MAGP could be explained. We need to stress however that
the concept of functional coupling here is restricted to
function definitions as defined in extant ontologies, leav-
ing the possibility of unsuspected novel functional inter-
actions

Simulation of selective stabilization in gene clustering
In the simulation presented above, we allowed non-per-
sistent genes to freely insert into persistent gene clusters,
ignoring selective advantages provided by persistent gene
clusters during evolution. Clusters in our simulation are
not stable in time: they form and then are disrupted, to
form again later in a different configuration. As a control,
we examined whether the insertion process might be the
cause of gene clusters disruption. Briefly, we did not allow
genes to insert into a position where the two nearest per-
sistent genes were close enough (with at most two non-
persistent genes in between). Once the insertion was
restricted, a new position would be examined, until an
unlimited insertion position was found. The other steps in
the simulation were kept unchanged. Not unexpectedly,
insertion indeed is the cause of the instability of persistent
gene clusters in the simulations (compare Figure 5.c with
Figure 5.ab). This simulation was repeated for 10 times
with similar results, suggesting that the contribution of
selective stabilization is indeed essential to account for the
observed clustering patterns (Additional file 5.b). A vari-
ety of selective advantages of persistent gene clusters could
account for the "prevention of insertion" (observed from
progenies) into them. Selective stabilization is operating
at most levels of integration of biological processes [42].
It is therefore natural to assume that once persistent genes
clusters are created, there will be a variety of selective
advantages, i.e. stabilization forces, that might concur to
preserve such clusters. Naturally, more biological realistic
models should now be developed, where insertion is not
completely prevented and where non-persistent genes
deletion could have a distribution of fitness effects. For
the moment, we lack the appropriate quantitative data to
quantify such a model.

Discussion
The tendency of persistent genes to cluster correlates with
several biological or biochemical processes, notably co-

Histogram of the distribution of MA between pairs of persist-ent geneFigure 7
Histogram of the distribution of MA between pairs of persist-
ent gene. The abscissa is the MA between every pair of genes, 
and it spans from 0.315 to the maximum of 1.0 (with our def-
inition of MA the expected range is 0 to 1). The mean is 
0.574.

MA

Mutual Attractivity (MA) between gene I and JFigure 6
Mutual Attractivity (MA) between gene I and J.
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transcription and protein-protein interactions. While this
has been noticed in previous works [11,23-30], no mech-
anism specifically leading to persistent gene clustering has
yet been proposed. A previous analysis of the extent of
clustering into operons of essential and rare genes shows
that, in E. coli, essential genes cluster more frequently than
rare genes, leading the authors to question the selfish
operon model [17]. This highlights the importance of
considering different categories of genes when studying
chromosome organisation: unless having obvious reasons
to do otherwise, specific mechanisms resulting in cluster-
ing could be proposed for each category of genes, taking
into account their tendency to be distributed in a large
number or only in a few organisms. The parallel variation
between gene persistence and their clustering tendency
suggests that the persistent character of a gene allows a
good classification of genes in the context of the study of
chromosome organization. In fact, it is a better character
than simply using laboratory essentiality, because these
genes share many characteristics with other non-essential
but persistent genes.

In an endeavour to understand clustering we constructed
a model where batches of contiguous genes could be
inserted and deleted randomly into a bacterial genome,
while keeping constant its overall length. This process has
a differential outcome, whether genes are inserted or
deleted at loci involving persistent genes, or genes gener-
ally dispensable for the cell multiplication. During the ini-
tial generations in our simulation, persistent genes,
initially chosen to be uniformly distributed (this displays
the lowest possible level of clustering) remained approxi-
mately uniformly distributed in the chromosomes. At this
step, gene insertion essentially boosted the creation of
gene clustering, and this is the reason why we could see a
steady growth of the number of chromosomes with their
persistent genes clustered at the beginning of simulations
(Figure 5.abc). In parallel with the accumulation of clus-
ters, the probability that they would be destroyed by gene
insertion increased. This accounts for the decrease of clus-
tering observed at a certain point, when it reached a peak
(Figure 5.ab). A straightforward control illustrated that
once the insertions were not allowed to break persistent
gene clusters, the clustering quickly became stable (Figure
5.c). Figure 5.ab illustrates the mutual opposition
between gene deletion (creation) and insertion (destruc-
tion) upon gene clustering. We proposed using this simu-
lation that random gene deletion could drive persistent
genes clustering together in bacterial genomes. Once per-
sistent gene clusters were created, selective stabilization
caused by specific processes would ensure that clusters
created by the purely random processes of genome
remodeling acquire significant perennity. It should how-
ever, be noted that the stabilizing processes we explored

are not enough to explain the extent of clustering
observed in all genomes.

Among the stabilization forces, the advantage of co-tran-
scription is the most obvious one as it can easily be discov-
ered during evolution by the existing transcription
machinery when genes are in close proximity. Our analy-
sis suggested that this process accounts for 48% of overlap
between predicted operons and mutually attracted gene
pairs (MAGP, removing the bias due to ribosomal pro-
teins). Protein interaction and functional coupling could
also lead to clustering, but we found little evidence of an
important contribution of these processes in our analysis.

It must also be stressed that protein interaction data con-
tains substantial noise and is incomplete, which may have
resulted in the overlook of significant interactions [43].
The question to what extent protein interactions correlate
with gene clustering remains therefore open. A limitation
of the analysis of functional coupling between genes in
persistent gene clusters is that functional classifications
are generally of fairly coarse granularity, and, in any event,
very inhomogeneous. For example, the gene secY, a subu-
nit of the secretome, is assigned to a functional class of
protein transport and secretion belonging to the super
class of cell compartmentalization. However, in the per-
sistent genes clusters, it formed MAGP together with many
ribosomal subunits, belonging to the information transfer
class. Experiments indeed proved that secY functions
closely coupled with ribosome [44]. This illustrates how
unknown relationships existing in the genes forming clus-
ters could still reveal unexpected functional coupling.
Gene functional coupling is a fairly vague concept, and in
the absence of explicit data about various types of func-
tional interactions we cannot therefore exclude that unex-
pected types of interactions, not identified in functional
ontologies, will be discovered that account for most of the
stabilization of gene clusters. In any event, even if compre-
hensive and exact physical/functional interactions were
established, one would still have to explore whether the
interaction is a cause or a consequence of stabilization of
gene clustering.

The degree of clustering of persistent genes varies signifi-
cantly among genomes (Additional file 1). The reasons for
this may be multiple. Firstly, some genomes are more sta-
ble than others because they witness an intense gene flux,
and one would expect less stable genomes to show lower
degree of clustering. Indeed, cyanobacteria genomes,
which are unstable [4], show the lowest clustering ten-
dency. Secondly, if gene clustering opens a window of
opportunity for genes to become associated, the degree of
clustering may reflect the adaptive events occurring in the
species history. In both scenarios, understanding the clus-
Page 10 of 14
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tering of persistent genes in bacterial chromosomes will
allow a better understanding of genome evolution.

Conclusion
Gene clustering in bacterial genomes is observed in two
different categories of genes, persistent genes and rare
genes, and the mechanisms leading to their clustering are
not identical. Attempts to explain the whole clustering
based on a single model are prone to bring forward one-
sided views missing important constraints. To account for
the clustering of persistent genes, we showed that the
strong selective pressure acting on the function of persist-
ent genes, in a permanent state of flux of genes in bacterial
genomes, maintaining their size fairly constant, is suffi-
cient to drive genes clustering. A further selective stabiliza-
tion process might contribute to maintaining the
clustering. We emphasized the importance to distinguish
causes from simple correlations when discussing the rela-
tionships between biological phenomena where the order
of causality is not known. The mechanism we proposed,
allowing first to create, and then to select for clustered
genes, is more likely to reflect the true evolutionary proc-
esses, without asking for any external cause, such as driv-
ing forces caused by interactions between objects that had
no reasons to interact previously.

Methods
Bacterial genomes
Bacterial genome sequences and annotation were taken
from the EBI entry point of the International Nucleotide
Sequence Database Collaboration [45] on Jan. 1st 2007.
To avoid bias introduced by a limited genome size when
exploring the clustering of persistent genes, we excluded
from the study genomes with less than 2000 genes (105
genomes). 30 bacteria with multiple chromosomes were
removed as well. Proper gene identification being funda-
mental for this study, we also put aside 21 bacterial
genomes without proper 16S rDNA annotations. This
resulted in a set of 227 bacteria from 169 species. To
reduce the bias of some species with many sequenced
strains, we only used one strain from each species (see
Additional file 1).

Assignation of orthology and definition of persistence
Orthology between genes was identified by Bi-directional
Best Hits with >=40% similarity in amino acid sequences
and <=20% length difference in their protein sequences.
The persistence index was calculated as the ratio of the
number of orthologs relative to the total number of bacte-
ria scanned [16]. When examining gene persistence, we
used only one strain from each species (see Additional file
1).

Groups of homologs and mutually attracted genes
From each bacterium, we selected the genes with PI
>=65% and grouped all the putative orthologs together
using the COG method [46]. We took into account the
possibility of gene duplication (we defined duplications
as genes from the same bacterium with amino acid
sequence similarity >=80% and protein length difference
<=20%, and in grouping homologs, a pair of duplicated
genes was treated as same as a pair of orthologs). This pro-
cedure led to the identification of 580 groups of
homologs. Considering gene duplications led to the same
groups, as expected since persistent genes rarely duplicate
[14]. Some groups comprised genes present in only one or
two bacteria, while others had members from all of the
169 bacteria. We picked up the groups of homologs exist-
ing in a quorum of the bacteria investigated (>=110, i.e.
more than 65%), and this procedure led to a set of 384
groups, each represented by a persistent gene common in
the quorum.

The distance between two genes in one chromosome was

denoted by , where Nij is the number of inter-

calated genes between gene i and gene j, and N is the total
number of genes of that chromosome. In different bacte-
ria, this distance varied widely. A pair of genes retaining
low dij values in most bacteria signifies that these two are

systematically located together. We need to find a measure
to explore whether there are such pair-wise associated
genes that are constantly close to each other in most bac-
teria. Since the bacterial genomes available are not equi-
distantly distributed in the phylogenetic tree, to tone
down the bias due to phylogeny, we put aside the smallest
and largest 10% dij and calculated a mean of the remain-

ing dij acquired from all chromosomes to represent their

average distance. In the cases where there are gene dupli-
cations, the distance of all combinations of the two genes
were considered. When the average distance between a
pair of genes was consistently small, it behaved as if the
two genes had a mutual attraction. As Figure 6 illustrates,
we proposed to use the value of 1 minus this average dis-
tance to measure the strength of such attractions. We
named this intuitive measure MAIJ (Mutual Attractivity

between gene I and J).

Kuiper's test
The Kuiper's test assesses whether a distribution is uni-
form or not. It is adapted from the Kolmogorov-Smirnov
test (K-S test). In K-S test, the hypothesis is made that the
objects are uniformly distributed among a group of
sequential units. The K-S test involves computing a varia-
ble called D-max which is the largest difference between

dij
Nij

N= −/ 2 1
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the observed and expected cumulative frequencies meas-
ured for each unit. When the D-max is large enough, we
can reject the hypothesis that the observed distribution is
uniform [47]. This test is not appropriate to examine clus-
ters at the two ends of a linear string, nor suitable to detect
clusters distributed in a circle. Kuiper's test is meant to
overcome these difficulties, using the sum of D+-max and
D--max, referring to the observation's largest deviation
above and below the expected cumulative frequencies,
respectively, as the statistics [48].

Operons
We constructed putative operons in the same way as we
did previously [16], taking into account the presence of
rho-independent transcription terminators [49], the CDS
direction and restricting the intergenic distance to less
than 200 bp [50]. In the case of E. coli, for which the tran-
scripts' data set is the most complete [51], 96% intergenic
regions inside their operons are shorter than 200 bp.
While this method is not perfect, it consistently produces
groups of genes (over 95%) that are experimentally found
to be co-transcribed [51].

Mutually Attracted Gene Pairs and operons
A Mutually Attracted Gene Pair (MAGP, see Results) could
be composed of two genes in some highly conserved
operon, or be a pair of genes conservatively close together
irrespective of operon structures. To find out those MAGP
not maintained by operon structures, we examined the
genes from each MAGP in all the bacterial chromosomes.
If in more than 50% of the bacteria, the two genes from a
MAGP were coded in the same operon, we regarded this
MAGP as maintained by the operon. If this was not the
case, we further measured the number of genes between
these two genes in chromosomes where they were not part
of the same operon, and calculated a new MA for these
two genes. When putting aside the operon effect, if this
new MA showed that the two genes still had a very strong
attraction (3 sigma larger than the mean of MA drawn
from pairs of genes randomly distributed; the mean and
standard deviation were from the large class following a
normal distribution, retrieved from Figure 7, see Results),
we then concluded that this MAGP was not due to oper-
ons.

Multiple alignments of gene contexts in bacterial clades 
and batches of contiguous genes deletion and insertion
We constructed closely related bacterial clades by picking
up those species with more than 3 strains sequenced,
putting aside the strains which were almost identical (16S
rDNA are 100% the same, or more than 95% of genes are
identical), for which we just retained one instance in each
clade. For the clades counting many sequenced strains,
like E. coli and Staphylococcus aureus, we limited our anal-
ysis to a maximum of 5 genomes. The resulting closely

related bacteria clades were used to compare the genome
contexts to detect batches of contiguous genes deletion
and insertion. To define batches of contiguous genes
indels we used the intuitive approach illustrated in figure
3. Where there was a gap (with the minimal length of 2
genes) in only one chromosome in the multiple align-
ments (Figure 3), we defined it as an indel. An in-depth
identification of batches of contiguous genes indels to tell
an insertion from a deletion would require a case-by-case
analysis, since evolutionary time measured by some other
conserved genes might not fit with such genes' influx/
efflux in/from the chromosome. This is beyond the focus
of this work. We used "batches of contiguous genes indel"
as the generic term representing both events (insertion or
deletion).

Algorithm for indel-mediated evolution of the bacterial 
chromosome
At the initial state, a set of 5000 artificial circular chromo-
somes each containing 4000 genes was constructed,
among which 400 uniformly distributed genes were
picked up and labeled as persistent genes. We simulated
the gene distribution evolution process with the following
steps: at each generation, one random batch of contiguous
genes deletion was performed in each chromosome. We
assumed that the gene deletion and insertion of batches of
contiguous genes length was 3 genes (we tried lengths of
4, 5 and 7 genes as well and this did not change the con-
clusion of the simulation; data not shown). If this deleted
a persistent gene, the corresponding chromosome was not
passed into the next generation; we then randomly picked
up a position in each surviving progeny and inserted there
a batch of contiguous non-persistent genes. The second
generation was composed of the surviving progenies. To
keep the cell population constant as 5000 bacteria (the
model assumes a steady state) through generations, the
inadequate amount in second generation was restored by
picking up genes randomly from the surviving bacteria.
We repeated this evolution process, generation after gen-
eration.

Expectation Maximization and software used
The Expectation-Maximization algorithm to isolate com-
ponents from the MA distribution was carried out by the
EM program from Mclust R package [52]. At the initial
step, we used MA = 0.8 as the boundary value to separate
the MA into two distributions. An iteration process
between expectation and maximization was then carried
out through the EM program. For the expectation step,
each MA was assigned a weight (possibility to belong to
these two distributions), and then based on these weights,
a maximum likelihood calculation updated the parame-
ters of the two distributions. The process was repeated
until parameters converged. Thus we obtained the clear
boundary to separate the two distributions.
Page 12 of 14
(page number not for citation purposes)



BMC Genomics 2008, 9:4 http://www.biomedcentral.com/1471-2164/9/4
List of abbreviations
PI, Persistence Index

MA, Mutual Attractivity

MAGP, Mutually Attracted Gene Pairs

Authors' contributions
All authors contributed to the writing of the manuscript.
GF performed the study and introduced the concept of
mutual attraction, ER validated the statistical approaches
and placed the study in the perspective of evolution of
interactions, and AD proposed the study and the idea of
purely passive evolution to gene clustering followed by
selective stabilization.

Additional material

Acknowledgements
This work was supported by the European Union Network of Excellence 
BioSapiens, grant LSHG CT-2003-503265, the French Ministry of Research 
ACI IMPBio Blastsets and MicroScope. The authors thank Dr. Massimo 
Vergassola for substantial discussions.

References
1. Krawiec S, Riley M: Organization of the bacterial chromosome.

Microbiol Rev 1990, 54(4):502-539.
2. Huynen MA, Bork P: Measuring genome evolution.  Proc Natl

Acad Sci U S A 1998, 95(11):5849-5856.
3. Tamames J: Evolution of gene order conservation in prokary-

otes.  Genome Biol 2001, 2(6):RESEARCH0020.
4. Rocha EP: Inference and analysis of the relative stability of

bacterial chromosomes.  Mol Biol Evol 2006, 23(3):513-522.
5. Bentley SD, Parkhill J: Comparative genomic structure of

prokaryotes.  Annu Rev Genet 2004, 38:771-792.
6. Mira A, Klasson L, Andersson SG: Microbial genome evolution:

sources of variability.  Curr Opin Microbiol 2002, 5(5):506-512.
7. Rocha EP: DNA repeats lead to the accelerated loss of gene

order in bacteria.  Trends Genet 2003, 19(11):600-603.
8. Rocha EP: Order and disorder in bacterial genomes.  Curr Opin

Microbiol 2004, 7(5):519-527.
9. Martin MJ, Herrero J, Mateos A, Dopazo J: Comparing bacterial

genomes through conservation profiles.  Genome Res 2003,
13(5):991-998.

10. Nitschke P, Guerdoux-Jamet P, Chiapello H, Faroux G, Henaut C,
Henaut A, Danchin A: Indigo: a World-Wide-Web review of
genomes and gene functions.  FEMS Microbiol Rev 1998,
22(4):207-227.

11. Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N: The use
of gene clusters to infer functional coupling.  Proc Natl Acad Sci
U S A 1999, 96(6):2896-2901.

12. Lewis EB: Pseudoallelism and gene evolution.  Cold Spring Harb
Symp Quant Biol 1951, 16:159-174.

13. Stephens SG: Possible significances of duplication in evolution.
Adv Genet 1951, 4:247-265.

14. Lerat E, Daubin V, Ochman H, Moran NA: Evolutionary origins of
genomic repertoires in bacteria.  PLoS Biol 2005, 3(5):e130.

15. Lawrence JG, Roth JR: Selfish operons: horizontal transfer may
drive the evolution of gene clusters.  Genetics 1996,
143(4):1843-1860.

16. Fang G, Rocha E, Danchin A: How essential are nonessential
genes?  Mol Biol Evol 2005, 22(11):2147-2156.

17. Pal C, Hurst LD: Evidence against the selfish operon theory.
Trends Genet 2004, 20(6):232-234.

18. Price MN, Huang KH, Arkin AP, Alm EJ: Operon formation is
driven by co-regulation and not by horizontal gene transfer.
Genome Res 2005, 15(6):809-819.

19. Galperin MY, Koonin EV: Who's your neighbor? New computa-
tional approaches for functional genomics.  Nat Biotechnol 2000,
18(6):609-613.

20. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO:
Assigning protein functions by comparative genome analy-

Additional file 1
Bacterial genomes used in this study, persistent genes and operons' distri-
butions in bacterial chromosomes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-4-S1.xls]

Additional file 2
Gene clustering in bacterial chromosomes
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-4-S2.pdf]

Additional file 3
Distribution of groups of genes according to their persistence index
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-4-S3.xls]

Additional file 4
Length of batches of contiguous genes indels
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-4-S4.xls]

Additional file 5
a: Simulation without considering stabilization forces. b: Simulation with 
stabilization forces
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-4-S5.pdf]

Additional file 6
MAGP and its composition
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-4-S6.xls]

Additional file 7
Venn diagram showing the intersections between the datasets of protein 
interactions and MAGP
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-4-S7.pdf]

Additional file 8
Functional annotation of the genes involved in MAGP
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-4-S8.xls]
Page 13 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-9-4-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-9-4-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-9-4-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-9-4-S4.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-9-4-S5.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-9-4-S6.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-9-4-S7.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-9-4-S8.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2087223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11423009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11423009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15568993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15568993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12354559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12354559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14585609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14585609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15451508
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12695324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12695324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9862121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9862121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14942737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14943679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15799709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15799709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8844169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8844169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16014871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16014871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15930492
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15930492
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10835597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10835597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10200254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10200254


BMC Genomics 2008, 9:4 http://www.biomedcentral.com/1471-2164/9/4
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

sis: protein phylogenetic profiles.  Proc Natl Acad Sci U S A 1999,
96(8):4285-4288.

21. Jacob F, Perrin D, Sanchez C, Monod J: [Operon: a group of genes
with the expression coordinated by an operator.].  C R Hebd
Seances Acad Sci 1960, 250:1727-1729.

22. Jacob F, Monod J: Genetic regulatory mechanisms in the syn-
thesis of proteins.  J Mol Biol 1961, 3:318-356.

23. Dandekar T, Snel B, Huynen M, Bork P: Conservation of gene
order: a fingerprint of proteins that physically interact.
Trends Biochem Sci 1998, 23(9):324-328.

24. de Daruvar A, Collado-Vides J, Valencia A: Analysis of the cellular
functions of Escherichia coli operons and their conservation
in Bacillus subtilis.  J Mol Evol 2002, 55(2):211-221.

25. Itoh T, Takemoto K, Mori H, Gojobori T: Evolutionary instability
of operon structures disclosed by sequence comparisons of
complete microbial genomes.  Mol Biol Evol 1999, 16(3):332-346.

26. Korbel JO, Jensen LJ, von Mering C, Bork P: Analysis of genomic
context: prediction of functional associations from con-
served bidirectionally transcribed gene pairs.  Nat Biotechnol
2004, 22(7):911-917.

27. Campillos M, von Mering C, Jensen LJ, Bork P: Identification and
analysis of evolutionarily cohesive functional modules in pro-
tein networks.  Genome Res 2006, 16(3):374-382.

28. Che D, Li G, Mao F, Wu H, Xu Y: Detecting uber-operons in
prokaryotic genomes.  Nucleic Acids Res 2006, 34(8):2418-2427.

29. Lathe WC 3rd, Snel B, Bork P: Gene context conservation of a
higher order than operons.  Trends Biochem Sci 2000,
25(10):474-479.

30. Rogozin IB, Makarova KS, Murvai J, Czabarka E, Wolf YI, Tatusov RL,
Szekely LA, Koonin EV: Connected gene neighborhoods in
prokaryotic genomes.  Nucleic Acids Res 2002, 30(10):2212-2223.

31. Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keya-
mura K, Ote T, Yamakawa T, Yamazaki Y, Mori H, Katayama T, Kato
J: Cell size and nucleoid organization of engineered
Escherichia coli cells with a reduced genome.  Mol Microbiol
2005, 55(1):137-149.

32. Huynen M, Snel B, Lathe W 3rd, Bork P: Predicting protein func-
tion by genomic context: quantitative evaluation and quali-
tative inferences.  Genome Res 2000, 10(8):1204-1210.

33. Wolf YI, Rogozin IB, Kondrashov AS, Koonin EV: Genome align-
ment, evolution of prokaryotic genome organization, and
prediction of gene function using genomic context.  Genome
Res 2001, 11(3):356-372.

34. Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty
MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya
A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein
MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL: Experi-
mental determination and system level analysis of essential
genes in Escherichia coli MG1655.  J Bacteriol 2003,
185(19):5673-5684.

35. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud
M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC,
Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille
M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Err-
ington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins
C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo
MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K,
Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le
Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S,
Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T,
O'Reilly M, O'Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins
JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild
HH, Scanlan E, Schumann W, Seegers JF, Sekiguchi J, Sekowska A,
Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T,
Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat
A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K,
Yoshida K, Yoshikawa H, Zuber U, Ogasawara N: Essential Bacillus
subtilis genes.  Proc Natl Acad Sci U S A 2003, 100(8):4678-4683.

36. Koonin EV, Galperin MY: Sequence-Evolution-Function: Com-
putational Approaches in Comparative Genomics.  Norwell,
Massachusetts 02061 USA , Kluwer Academic Publishers; 2003. 

37. Nilsson AI, Koskiniemi S, Eriksson S, Kugelberg E, Hinton JC, Anders-
son DI: Bacterial genome size reduction by experimental
evolution.  Proc Natl Acad Sci U S A 2005, 102(34):12112-12116.

38. Ochman H, Jones IB: Evolutionary dynamics of full genome
content in Escherichia coli.  Embo J 2000, 19(24):6637-6643.

39. Couturier E, Rocha EP: Replication-associated gene dosage
effects shape the genomes of fast-growing bacteria but only
for transcription and translation genes.  Mol Microbiol 2006,
59(5):1506-1518.

40. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V,
Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J,
Greenblatt J, Emili A: Interaction network containing con-
served and essential protein complexes in Escherichia coli.
Nature 2005, 433(7025):531-537.

41. Fang G, Ho C, Qiu Y, Cubas V, Yu Z, Cabau C, Cheung F, Moszer I,
Danchin A: Specialized microbial databases for inductive
exploration of microbial genome sequences.  BMC Genomics
2005, 6(1):14.

42. Changeux JP, Danchin A: Selective stabilisation of developing
synapses as a mechanism for the specification of neuronal
networks.  Nature 1976, 264(5588):705-712.

43. D'Haeseleer P, Church GM: Estimating and improving protein
interaction error rates.  Proc IEEE Comput Syst Bioinform Conf
2004:216-223.

44. Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S, Brooks CL 3rd, Ban
N, Frank J: Structure of the E. coli protein-conducting channel
bound to a translating ribosome.  Nature 2005,
438(7066):318-324.

45. International Nucleotide Sequence Database Collaboration
[http://www.ebi.ac.uk/genomes/]

46. Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on
protein families.  Science 1997, 278(5338):631-637.

47. Zar JH: Biostatistical analysis.  Upper Saddle River, NJ 07458 ,
Prentice-Hall International Limited; 1996. 

48. Jammalamadaka SR, SenGupta A: In Topics in Circular Statistics.
Singapore , World Scientific Publishing; 2001. 

49. Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL: Pre-
diction of transcription terminators in bacterial genomes.  J
Mol Biol 2000, 301(1):27-33.

50. Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J: Operons
in Escherichia coli: genomic analyses and predictions.  Proc
Natl Acad Sci U S A 2000, 97(12):6652-6657.

51. Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-
Solano F, Santos-Zavaleta A, Martinez-Flores I, Jimenez-Jacinto V,
Bonavides-Martinez C, Segura-Salazar J, Martinez-Antonio A, Col-
lado-Vides J: RegulonDB (version 5.0): Escherichia coli K-12
transcriptional regulatory network, operon organization,
and growth conditions.  Nucleic Acids Res 2006, 34(Database
issue):D394-7.

52. Mclust   [http://www.stat.washington.edu/mclust]
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10200254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14406329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14406329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13718526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13718526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9787636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9787636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12107597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12107597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12107597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15229555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15229555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15229555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16449501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16449501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16449501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16682449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16682449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11050428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11050428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15612923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15612923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10958638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10958638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10958638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11230160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11230160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11230160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13129938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13129938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13129938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12682299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12682299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11118198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11118198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16468991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16468991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16468991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15690043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15690043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15698474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15698474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=189195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=189195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=189195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16448015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16448015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16292303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16292303
http://www.ebi.ac.uk/genomes/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10926490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10926490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10823905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10823905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381895
http://www.stat.washington.edu/mclust
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Persistent genes are organized into clusters and gene persistence is associated with their propensity to cluster together
	Estimation of the length of batches of contiguous genes indels
	A model featuring only passive selection groups persistent genes into clusters
	Mutually Attracted Gene Pairs
	Association between co-transcription and gene clustering
	Highly conserved protein interaction sets are weakly associated with gene co-localization
	Functional coupling among genes in persistent gene clusters
	Simulation of selective stabilization in gene clustering

	Discussion
	Conclusion
	Methods
	Bacterial genomes
	Assignation of orthology and definition of persistence
	Groups of homologs and mutually attracted genes
	Kuiper's test
	Operons
	Mutually Attracted Gene Pairs and operons
	Multiple alignments of gene contexts in bacterial clades and batches of contiguous genes deletion and insertion
	Algorithm for indel-mediated evolution of the bacterial chromosome
	Expectation Maximization and software used

	List of abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

