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Abstract
Background: T-box anti-termination is an elegant and sensitive mechanism by which many
bacteria maintain constant levels of amino acid-charged tRNAs. The amino acid specificity of the
regulatory element is related to a so-called specifier codon and can in principle be used to guide
the functional annotation of the genes controlled via the T-box anti-termination mechanism.

Results: Hidden Markov Models were defined to search the T-box regulatory element and were
applied to all completed prokaryotic genomes. The vast majority of the genes found downstream
of the retrieved elements encoded functionalities related to transport and synthesis of amino acids
and the charging of tRNA. This is completely in line with findings reported in literature and with
the proposed biological role of the regulatory element. For several species, the functional
annotation of a large number of genes encoding proteins involved in amino acid transport could be
improved significantly on basis of the amino acid specificity of the identified T-boxes. In addition,
these annotations could be extrapolated to a larger number of orthologous systems in other
species. Analysis of T-box distribution confirmed that the element is restricted predominantly to
species of the phylum Firmicutes. Furthermore, it appeared that the distribution was highly species
specific and that in the case of amino acid transport some boxes seemed to "pop-up" only recently.

Conclusion: We have demonstrated that the identification of the molecular specificity of a
regulatory element can be of great help in solving notoriously difficult annotation issues, e.g. by
defining the substrate specificity of genes encoding amino acid transporters on basis of the amino
acid specificity of the regulatory T-box. Furthermore, our analysis of the species-dependency of the
occurrence of specific T-boxes indicated that these regulatory elements propagate in a semi-
independent way from the genes that they control.
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Background
Transcription anti-termination is a regulatory mechanism
commonly encountered in all lineages within the bacte-
rial kingdom (see e.g. [1-3]). In transcription anti-termi-
nation, the regulation of transcription occurs after the
initiation of RNA synthesis, but before transcription of the
coding region. The mechanism of anti-termination
involves a structural change in the RNA transcript that is
dependent on the interaction of the transcript with, for
instance, a regulatory protein [4], a tRNA [5] or a metabo-
lite [6]. The structural elements that compose these anti-
terminators are encoded by conserved sequences on the
DNA and can be found by searches for the related
sequence motifs in upstream regions of regulated genes
[7].

A well-studied anti-termination element is the so-called T-
box. T-box anti-termination is an elegant and sensitive
mechanism by which many bacteria maintain constant
levels of tRNA charged with amino acids [2,8]. When
there is a sufficient supply of charged tRNA in a cell, the T-
box folds into a terminator structure, thereby blocking
further transcription. Transcription can only proceed
upon conversion into an anti-terminator structure, which
is induced by binding of a highly conserved 5'-NCCA-3' of
the uncharged tRNA with a conserved '5-UGGN-3'
sequence in the T-box [9-11]. Although anti-terminator
formation involves contacts between many nucleotides,
the specificity of the interaction seems largely dependent
on the interaction of a tri-nucleotide (anti-anti)-codon in
the so-called specifier loop of the T-box with the anti-
codon of an amino acid-specific tRNA [12-15]. The struc-
tural and kinetic details of this interaction have been well-
studied [16-22]. The appropriate assignment of the speci-
fier codon has been used previously to improve the func-
tional annotation of various genes located downstream of
the T-box [3,23-31]. The T-box controlled genes identified
thus far encode functionalities that reflect perfectly the
pivotal role of uncharged tRNAs in the regulatory mecha-
nism. These functionalities include not only tRNA liga-
tion, but also amino acid biosynthesis and transport
[11,17,24,26,28,32-34]. The encoded proteins are
involved in modulation of the level of uncharged tRNA in
the cell, either directly by charging the corresponding
tRNA with its cognate amino acid or indirectly by control-
ling the intracellular concentration of the specific amino
acid.

To date, T-boxes have been identified predominantly in
the genomes of bacterial species of the phyla Firmicutes
(including Mollicutes) and Actinobacteria [7], although
anti-termination systems have been argued to be among
the oldest regulatory systems in bacteria because of their
independence of regulatory proteins [35]. To investigate
this further, we have explored the occurrence of T-boxes in

all sequenced prokaryotic genomes. To circumvent poten-
tial differences between T-box systems in different bacte-
rial lineages, an iterative HMM-based identification
search was performed using the best conserved region of
the T-box sequence. Species- and amino acid-specific T-
box regulation networks were reconstructed. Most impor-
tantly, the acquired knowledge on amino acid specificity
could be used to propose an improved functional annota-
tion for many T-box controlled genes and to shed light on
the evolution of the regulatory element itself.

Results and discussion
I) A comprehensive collection of T-boxes
The analysis of the taxonomic and functional distribution
of T-boxes was started by de novo identification of T-box
motif characteristics. Conserved nucleotide sequence
motifs upstream of tRNA-ligase encoding genes in species
of the phylum Firmicutes were recovered and used to iden-
tify T-boxes located at other positions in the same genome
as well as in the genomes of other species (see methods).
These searches showed that a T-box could be specified best
by a 30 nt motif that is extremely well-conserved and posi-
tioned in the 3'-region of the terminator/anti-terminator
loop (motif 1 in Figure 1). In fact, this motif is known as
'the T-box sequence' since its discovery [25]. Later it was
recognized that this conserved region belongs to a larger
conserved RNA structure known as the T-box element [9].
This element contains four other highly conserved regions
(see Figure 1 motifs 2–5).

The initial search showed prominent variations in the
number of T-boxes per genome between different classes
of the phylum Firmicutes and between different phyla.
Therefore, additional searches with phylum-specific and
class-specific T-box HMMs were performed, but generally
did not yield novel hits. Only in the case of the Clostridia
a limited number of 10 additional T-boxes were identi-
fied. Further iterations did not expand the dataset. Visual
inspection of the upstream regions of all genes encoding
a t-RNA ligase in the Firmicutes indicated that indeed all
those regions that contain the distinctive T-box motifs
were identified by our algorithm. A comparison of the
number of T-boxes identified by us for a representative set
of organisms with the number obtained using the Rfam T-
box model [36] proved that our recovery procedure was
very efficient (see methods for details).

Identification of the specifier codon and amino acid specificity
Although T-boxes were readily identified, it was more dif-
ficult to define their amino acid specificity. To that end,
the phylogeny of homologous genes preceded by a T-box
from different species was determined and the upstream
regions corresponding to each orthologous group were
aligned. In all the cases of T-boxes for which the specifier
codon had been identified experimentally
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[3,5,9,11,12,14-18,21,28,29,33], we observed that the
specifier codon aligned perfectly within the related orthol-
ogous sequences. In fact, this was true for almost all
orthologous groups of sequences. Moreover, most of the
alignments could easily be clustered by eye into larger
groups for which the specifier codon remained directly
apparent from the alignment. The resulting alignments
and the annotation of the specifier codon can be found at
[37]. Nevertheless, there remained a few less clear cases.
For some (~5%) a secondary structure prediction could be
used to provide the additional information required to
define the specifier codon in the specifier loop [38]. Taken
together, a specifier codon could be identified directly for
over 90% of the identified T-boxes.

Codon usage in the specifier codon
Most amino acids are encoded by multiple codons. Leu
for instance, is encoded by six different codons (CUA,
CUU, CUG, CUC, UUA and UUG). Remarkably, the T-
boxes had a conserved preference for certain codons
within as well as between species (Additional file 1). Eval-

uation of these preferences showed that they complied
almost perfectly with the rules observed by Elf et al. for the
codon usage by E. coli [39]. In an elegant study these
authors analyzed the dependence of the charging of vari-
ous codon-specific tRNAs on the use of various codons in
particular proteins. They concluded that: "when codon
reading is part of a control loop that regulates synthesis of
missing amino acid, the translation rate of the selected
codon should be as sensitive as possible to starvation"
[39]. And, in their paper they showed which codons are
the most sensitive in E. coli. We found that for all but one
of the most predominantly used specifier codons in T-
boxes, the corresponding tRNA is among the highest in
sensing shortage of that specific amino acid in E. coli as
reported by [39]. The only exception was the T-box codon
for Ala (GCU). Therefore, assuming the conclusions by Elf
et al. are also valid for Gram-positive bacteria, our find-
ings suggest that the codons that are sensitive to depletion
are preferentially used in T-box regulation.

Sequence logo [64] visualization of the 5 different T-box motifsFigure 1
Sequence logo[64]visualization of the 5 different T-box motifs. Both the consensus sequence and relative conservation 
of individual residues is displayed. Motif 1 (information content: 19.2 bits) displays the motif used to perform the T-box identi-
fication. Validation was performed by checking the presence of motif 2 (29.7 bits) or 3 (20.9 bits) together with motifs 4 (31.4 
bits) and 5 (25.8 bits). Motif 1 includes the (a-specific) tRNA interaction site (T-box sequence, consensus GGTGG) located in 
the antiterminator loop. The other motifs include different parts of the specifier loop [23,26]: GNTG- and AG-box in motif 2 
and 4, TGA-, AGGA- and AGTA-box in motif 3 and a conserved part of the specifier loop in motif 5 (GAG). The specifier 
codon is to be found within 1 – 5 nucleotides upstream of this conserved GAG.
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Functionalities controlled by a T-box
As expected, the proposed regulatory role of the T-box ele-
ments appeared to be perfectly reflected by the genes
under their control. The majority of the T-boxes (62%)
were found to precede genes encoding tRNA ligases, while
most others were found upstream of genes encoding pro-
teins involved in amino acid transport (12%) or amino
acid biosynthesis (18%). The remaining T-boxes (8%; 71
genes in total) were found upstream of genes encoding
proteins with unknown function (54 genes), or a function
that lacks an apparent relation to amino acid metabolism
(17 genes). A complete and species-specific subdivision of
T-boxes based on function prediction of the proteins
encoded downstream and a list of genes with no apparent
relation to amino acid metabolism is provided in the sup-
plementary material, in Additional files 1 and 2.

II) The use of regulator specificity to improve annotation 
of molecular function and biological role
We made two important observations: i) In all cases, the
T-boxes identified upstream of the genes encoding a tRNA
ligase contained a specifier codon that corresponded with
the amino acid specificity of the ligase; and ii) in all other
cases where the function of the protein encoded by the
gene downstream of the T-box had experimentally been
verified, the specifier-codon corresponded to the estab-
lished functionality of the gene. These observations
implied that the employed method for the identification
of T-box specificity was reliable and, consequently, that
predicted T-box specificities could be extrapolated to the
molecular function of the protein encoded by the gene
located downstream, as had occasionally been done
before. Many of the genes preceded by a T-box had not
been specifically annotated to date in the sense that,
although the functional category was often evident (e.g.
proton symport, ABC transport family, etc.), a specific
molecular function had not been attributed. In fact, more
than two-third of the non-tRNA ligase genes preceded by
a T-box lacked such a specific annotation of molecular
function. As importantly, the functional annotation of the
genes could be extended to a different level entirely by
using the knowledge on T-box (regulator) specificity, as
this knowledge discloses (in part) under which conditions
the regulated genes will play their biological role (for the
distinction between molecular function and biological
role see Francke et al. [40]).

a) T-box regulation of amino acid transport
Many of the genes encoding amino acid transporters were
found to be preceded by a T-box, especially in the
genomes of the Lactobacilli and Bacilli of the Bacillus cereus-
group. The transporters controlled by T-boxes belonged to
no less than seven distinct transporter families (MFS,
2.A.1; APC, 2.A.3; NSS, 2.A.22; DAACS, 2.A.23; LIVCS,
2.A.26; NhaC, 2.A.35; and ABC-cassette, 3.A.1; Trans-

porter Classification described by Saier [41]). Table 1
gives an overview of the distribution of the transport sys-
tems regulated by a T-box over the various Firmicutes spe-
cies.

Overall, for more than 85% of the T-box regulated trans-
porters the functional annotation (molecular function
and/or biological role) could be improved as compared to
the entries in the reference database of NCBI. A full list can
be found in Additional file 1. We have limited the sub-
strate specificity definition in our annotation to putatively
dominant substrates based on the amino acid specificity
of the T-box. However, broader substrate specificity is
probably more common for transporters. Especially trans-
port systems consisting of only a permease are expected
(and have been shown) to display broader substrate spe-
cificity (see [42] and [43] for examples), whereas systems
that require prior substrate-binding (like in ABC trans-
port) will be more specific. We discuss the T-box based
functional annotation of some transport systems in more
detail in the following paragraphs and in Additional file 3.

The ABC family
T-box regulation of ABC transport systems was found in
most lineages of the Firmicutes but not in the Bacilli. The
T-box regulated ABC transporters could be sub-divided
into four sub-families, based on the specificity of the sub-
strate-binding protein and the permease. A striking use of
extensive T-box regulation in ABC transport was observed
in L. plantarum. It appears that in the absence of methio-
nine, L. plantarum uses a single mechanism to switch on
not only transport of the amino acid itself, but also of the
precursors and co-factors needed for its biosynthesis (see
Figure 2 and Additional file 3).

The APC family
A T-box was identified in front of an APC-family protein
encoding gene in all the studied Bacillus genomes. In B.
subtilis and B. licheniformis the gene ybvW is preceded by a
Leu T-box, whereas such a box is lacking upstream of the
orthologous genes, which are found in E. faecalis, G. kaus-
tophilus and in L. lactis (co-orthologs: yibG and ysjA) (Fig-
ure 3). The Leu T-box suggests that the YbvW protein is a
Leucine transporter, in line with the general functionality
of transporters of the APC family (family characteristics
described in [44,45]). Surprisingly, in the members of the
Bacillus cereus-group another APC family gene is preceded
by a T-box, specific for threonine. Although an ortholo-
gous gene is present in most of the Firmicutes genomes,
e.g. ykbA in B. subtilis, it is regulated by a T-box only in the
species of the Bacillus cereus-group (Figure 3). The protein
encoded by ykbA in B. subtilis has recently been shown to
be a Ser/Thr exchanger and was consequently renamed
SteT [45]. A similar functionality of the protein ortholog
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Table 1: Overview of T-box regulated transporter genes in different Firmicutes. The type and number (between brackets) of transporters are displayed per species and according to their 
predicted specificity.

B. anthracis 
Ames 0581

B. licheniformis 
ATCC 14580

B. subtilis 
168

O. iheyensis 
HTE813

L. monocytogenes 
EGD-e

L. plantarum 
WCFS1

L. acidophilus 
NCFM

L. johnsonii 
NCC 533

E. faecalis 
V583

L. Lactis 
IL1403

S. pneumoniae 
R6

C. acetobutylicum 
ATCC824

C. perfringens 
ATCC13124

C. tetani E88

Asn ABC
Asp ABC
His ABC ABC ABC ABC
Ile ABC ABC ABC

LIVCS LIVCS LIVCS LIVCS LIVCS LIVCS LIVCS
Leu APC APC

LIVCS
NSS

Lys MFS
Met ABC (5) ABC (3) ABC ABC (3) ABC
Phe NSS
Thr APC

LIVCS
Trp ABC ABC ABC

NSS
Tyr NHAC NHAC NHAC (2) NHAC NHAC NHAC

NSS
Val LIVCS LIVCS
? ABC DAACS

ABC 1|73 8|77 6|48 3|59 4|79 1|57 1|78 1|93 1|60
APC 1|19 1|20 1|18
LIVCS 2|6 2|3 2|3 2|2 1|1 1|3 2|4
MFS 1|69
NHAC 1|4 1|3 2|2 1|1 1|1 1|2
NSS 3|4 1|5

At the bottom the total fraction of regulated transporters is shown per family. ABC: ATP-binding cassette superfamily, APC: Amino acid-polyamine-organocation family, DAACS: dicaboxylate/amino acid:cation 
symporter family, LIVCS: leucine/isoleucine/valine cation symporter family, MFS: major facilitator superfamily, NHAC: Na+:H+ antiporter family, NSS: neurotransmitter:sodium family. Classification adopted from 
Saier [41].
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Overview of T-box-regulated methionine biosynthesis in L. plantarumFigure 2
Overview of T-box-regulated methionine biosynthesis in L. plantarum. Reactions coloured in blue are catalyzed by 
proteins encoded by genes regulated by a T-box. The figure was generared using the the Simpheny software tool (Genomatica, 
San Diego, USA). Reactions were based on the metabolic model of L plantarum published by [65].
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in the members of the Bacillus cereus group is supported by
the codon identification of the T-box.

The LIVCS family
The Bacilli of the Bacillus cereus group, the Lactobacilli and
the Clostridia contain several branched-chain amino acid
cation symporters of the LIVCS-family [46], some of
which are T-box regulated (Figure 3). Since the three
branched-chain amino acids share very similar molecular
properties (e.g. size and hydrophobicity) we expect that

these transporters are not highly specific despite their pro-
posed amino acid specific control, but merely that expres-
sion of the "multi-specific" system has been brought
under the control of the individual amino acids. Indeed,
the orthologous transporters that have been characterized
in L. delbrueckii (BrnQ; [43]), C. glutamicum (BrnQ;
[47,48]) and P. aeruginosa (BraZ; [49]) displayed transport
of all three branched-chain amino acids.

Occurrence of T-boxes in relation with different transporter familiesFigure 3
Occurrence of T-boxes in relation with different transporter families. The figure displays a NJ-tree of the LIVCS-fam-
ily transporters of the Firmicutes (left) and partial trees related to the APC-, MFS- and NSS-family transporters. It appears T-
boxes are only associated with very few proteins of these families and the association appears to be very species-specific. Boot-
strap values are given for those clusters that contain T-box regulated systems (indicated in black). Those systems that are con-
trolled by a T-box are colored. For the LIVCS-family the sequences of the experimentally studied transporters from 
Pseudomonas aeruginosa (BraZ [49]), Corynebacterium glutamicum (BrnQ [48]) and Lactobacillus delbrueckii (BrnQ [43]) 
were included in the analysis. For the APC-family all B. subtilis sequences were included together with the orthologous clusters 
containing T-box regulated systems. For the MFS- and NSS-family only the orthologous clusters containing T-box regulated 
systems are shown. In the case of the MFS-family the asterisk indicates that the upstream sequence of these systems contains a 
box that seems to be degenerated.
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The NSS family
Finally, the LIVCS family branched-chain amino acid
transporter BraZ of P. aeruginosa, was shown to have a
clear preference for isoleucine and valine over leucine
[49]. In this respect it is noteworthy that in the Bacilli of
the Bacillus cereus group the expression of one of the
homologs of the NSS family (neurotransmitter:sodium
symport) is controlled by a Leu T-box, whereas such a box
is lacking for the LIVCS homologs in those species (Figure
4). Besides the Leu T-box regulated NSS transporter, the
Bacilli of the Bacillus cereus group contain three other

homologs of the same family, two of which are controlled
by a Trp and a Phe T-box, respectively (Figure 3). These
two amino acids agree well with the experimentally deter-
mined tryptophan transport functionality of the NSS
homolog TnaT in S. thermophilum [50]. The presence of a
regulatory T-box ranging from Leu to Trp, and Phe suggest
that the members of the NSS transporter family may dis-
play a rather broad amino acid specificity.

T-box regulation of tRNA ligase encoding genes in the FirmicutesFigure 4
T-box regulation of tRNA ligase encoding genes in the Firmicutes. The color coding relates to the presence or 
absence of a T-box upstream of the genes encoding the amino acid-specific tRNA ligases in the various species and strains. 
Green indicates the tRNA ligase(s) is (are) regulated by a T-box and red that the tRNA ligase(s) is (are) not regulated by a T-
box. Although most tRNA ligases are present in one copy on the genome, several organisms contain two, or in some cases 
three copies of specific ligases (indicated by a number in the box). Orange indicates that 1 of the 2 tRNA ligases is regulated by 
a T-box or 1 out of 3 in the case of the argS genes in B. cereus ATCC 10987 and the aspS genes in C. acetobutylicum. Light green 
indicates that the tRNA ligase is not the first in the operon, but is regulated by a T-box with the same specificity. Yellow color 
coding indicates that the regulated tRNA ligase is the second gene in an operon in combination with another tRNA ligase gene 
regulated by a T-box with different specificity. White indicates that no tRNA ligase of this type is present in the organism. In 
principle, a species needs at least one specific tRNA ligase for each amino acid. Nevertheless, there are exceptions. For 
instance, all but one (Clostridium perfringens) of the analyzed genomes lack the gene that encodes a Gln-tRNA ligase and the 
genomes of the Chloroflexi, Actinobacteria and Thermoanaerobacter tencongens also lack an Asn-tRNA ligase. In these cases, the 
biological role of the Gln-tRNA ligase is taken over by the Glu tRNA ligase, which couples a Glu residue to the tRNAGln. The 
residue is subsequently transformed into a Gln by a tRNA specific amidotransferase [66]. Similarly, an Asn-tRNAAsn is formed 
via transamidation of an Asp residue (Asp-tRNAAsn to Asn-tRNAAsn) in bacteria that lack an Asn tRNA ligase [67]. Conse-
quently, we found that all species lacking either the Gln-tRNA ligase or the Asn-tRNA ligase have an orthologous gene coding 
for the corresponding amidotransferase. No T-boxes were identified upstream of those genes.
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b) Hypothetical proteins controlled by a T-box
Another class of proteins to which significant functional
information could be added (when compared to the
NCBI-annotation) using the specificity of the detected T-
box is that of the so-called hypothetical proteins or
unknown function proteins (data accumulated in Table
2). Obviously, when orthologous proteins in related spe-
cies were also of unknown function, specifier codon infor-
mation clearly improved the annotation. Examples of new
annotations related to amino acid biosynthesis or trans-
port are enzymes (methionine synthase, cystathionine
gamma synthase, chorismate mutase, anthranilate syn-
thase), transporters (Leu-, Lys- and His-specific per-
meases), tRNA-ligase related functions, and regulation
(anti-TRAP protein).

III) Taxonomic variation and T-box evolution
The comprehensive list of T-boxes that was generated for
all sequenced genomes (see Table 3 for the phylogenetic
distribution) confirmed the previous attribution that T-
boxes are predominantly encountered in species of the
phylum Firmicutes (>95% of the hits)[26]. Our analyses
uncovered many previously unidentified T-boxes. In spe-
cies of the class Mollicutes two T-box elements were found,
but only in the subclass Endoplasmatales [51], in Proteobac-
teria (i.e. in Geobacter sulfurreducens and Pelobacter carbino-
licus) a typical T-box element was identified upstream of
the leuA gene (2-isopropylmalate synthase) in both spe-
cies. Deinococcus radiodurans contained two T-boxes

(related to ile and gly t-RNA ligase) whereas species of the
phylum of Chloroflexi (Dehalococcoides CBDB1 and Dehalo-
coccoides ethenogenes 195) contained three T-box elements
(one related to an ile tRNA ligase and two related to tryp-
tophan biosynthesis (trpE and trpB-like). Earlier analysis
of riboswitches in Actinobacteria showed that some spe-
cies belonging to this phylum contain a T-box upstream of
ileS [52]. However, Symbiobacterium thermophilum con-
tained not less than eighteen T-boxes, comparable to spe-
cies of the Firmicutes. This finding is in line with the
conclusion of [53] that S. thermophilum is probably more
closely related to Firmicutes than to Actinobacteria.

To evaluate the phylogenetic distribution of T-boxes in
more detail, the correlation between the presence of T-box
regulatory elements and the regulated genes was analyzed
for the Firmicutes and will be described shortly in the next
sections. Furthermore, the scattered appearance of these
regulatory boxes as observed for the various transporter
families will be discussed.

T-box regulation of genes encoding tRNA ligases in the Firmicutes
It appeared (Figure 4) that regulation by T-boxes is con-
served in almost all (at least 29 out of 34) Firmicutes for
several tRNA ligases (ileS, a laS, serS and thrS), whereas
some tRNA ligases (lysS, asnS and gltX; the latter gene
encodes a Glu-tRNA ligase (see also the legend of Figure
4)) appeared to be controlled by a T-box in only a few spe-
cies. The genes encoding the tRNA ligases for cysteine and

Table 2: Proposed annotation of the genes regulated by a T-box that were assigned as "hypothetical protein" in the original NCBI 
annotation file.

Species Gene ID T-box Proposed function

Bacillus halodurans C-125 BH0807 Lys Lysine-specific permease
Bacillus subtilis 168 BSU02530 Trp Anti TRAP protein

BSU34010 (yvbW) Leu Leucine-specific permease
Enterococcus faecalis V583 EF2480 Gly Gly related hypothetical
Lactobacillus acidophilus NCFM LBA1071 Ile Ile related hypothetical
Lactobacillus johnsonii NCC 533 LJ0632 Met 5-methyltetrahydropteroyltriglutamate – homocysteine methyltransferase 

(Methionine synthase)
Lactobacillus plantarum WCFS1 lp_3283 Met 5-methyltetrahydropteroyltriglutamate – homocysteine methyltransferase 

(Methionine synthase)
Listeria sp.1 lmo1740 His Histidine transport system permease protein hisM

lmo2587 Met Met related cytosolic hypothetical
Staphylococcus aureus2 SA0347 Met Cystathionine gamma-synthase

SA1199 Trp Anthranilate synthase component I
Streptococcus agalactiae3 SAG0809 Ala Ala-tRNA ligase related hypothetical
Streptococcus pneumoniae4 spr0489 Val Val-tRNA ligase related hypothetical

spr1241 Ala Ala-tRNA ligase related hypothetical
spr1331 Gly Gly-tRNA ligase related hypothetical
spr1471 Thr Thr-tRNA ligase related hypothetical
spr1638 Trp Trp biosynthesis related hypothetical

Streptococcus thermophilus5 str0474 Val Val-tRNA ligase related hypothetical
str1594 Trp Chorismate mutase

1 Listeria innocua Clip11262, Listeria monocytogenes EGD-e, L. monocytogenes 4bF2365. 2 Staphylococcus aureus MW2, S. aureus N315. 3 Streptococcus 
agalactiae 2603, S. agalactiae A909, S. agalactiae NEM316.4 Streptococcus pneumoniae TIGR4, S. pneumoniae R6. 5 Streptococcus thermophilus CNRZ106, 
S. thermophilus LMG18311.
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asparagine were often found as the second gene in a puta-
tive operon that was T-box regulated. In several organ-
isms, multiple copies of amino-acid specific tRNA-ligase
encoding genes are found and in more than half of the
cases (58%) only one of them is subject to T-box regula-
tion.

A clear phylogenetic effect is observed when the four
major orders within the Firmicutes (Bacillales, Clostridia,
Lactobacillales and Mollicutes) are compared. This is true
for both the number and the type of tRNA-ligase encoding
genes regulated by a T-box. Most T-box regulated tRNA-
ligase encoding genes are found in the Bacillales and espe-
cially in species of the Bacillus cereus group. Within the
Lactobacillales, it appears that Streptococci have far less
tRNA- ligase encoding genes regulated by T-boxes than
Lactobacillus species. The lowest number of tRNA ligases
regulated by T-boxes was found for S. thermophilus, S.
pneumoniae and some strains of S. pyogenes. The relatively
low amount of T-box regulation in these species could be
the result of regressive evolution, a process that was sug-
gested to be the underlying mechanism for the large loss
of functionally active genes in S. thermophilus [54].

T-box regulation of genes involved in amino acid biosynthesis in the 
Firmicutes
T-box regulation of genes related to amino acid biosyn-
thesis has been described previously for various amino
acids [3,23,24]. Like in the case of the t-RNA ligases, T-box
control of amino acid biosynthesis displayed clear phylo-
genetic patterns (Figure 5). For instance, the biosynthesis
of Branched Chain Amino Acids (BCA: isoleucine, leu-
cine, valine) was found to be T-box regulated in Bacillales
and Clostridia, whereas several families within the Bacilla-
les (e.g. Staphylococci and Listeria) as well as several Strepto-
cocci consistently lack T-box control of BCA biosynthesis.
Similarly, we found that the species of the B. cereus group

contain a T-box in the upstream region of the tyrosine bio-
synthesis operon consistent with the experimental data
that showed that tyrosine biosynthesis from shikimate is
T-box regulated in B. anthracis [24]. The B. cereus group
representatives are the only organisms in our study that
encode a phenylalanine-4-hydroxylase ortholog (convert-
ing phenylalanine into tyrosine). We found this gene also
to be T-box regulated in all members of the B. cereus
group.

The evolution and propagation of T-boxes
An important observation related to T-box evolution was
made by Grundy et al. [9,12]. They showed that a single
nucleotide change in the specifier codon of the Tyr T-box
of tyrS in B. subtilis was enough to change the amino acid
specificity. In addition, while analyzing the distribution of
T-boxes over the various transporter families we were
struck by the fact that although some of these families are
very large, there was only one (or a few) family-mem-
ber(s) found to be regulated by a T-box and only in a
restricted number of species (see Table 1 and e.g. Figure
3). In our opinion, the only likely scenario to explain the
phylogenetically limited occurrence of the transporter T-
box associations that would not imply massive loss of the
T-box regulation was that of acquisition of the regulatory
element by the transporter encoding gene in a specific lin-
eage. Moreover, the results of Grundy et al. [9,12] imply
that in principle the T-Box can change specificity easily.

To analyze this further, the T-boxes preceding the genes
that encode the t-RNA-ligases for the branched-chain
amino acids (ileS, leuS and valS) were examined. These
were chosen because T-box regulation of these genes is
most wide-spread (Figure 4) and because the proximal
genes themselves, ileS, leuS and valS form a separate tRNA-
ligase sub-family with a very clear evolutionary lineage
(Figure 6A). In sharp contrast, the NJ-tree of the aligned

Table 3: The occurrence of T-boxes in different bacterial phyla. The phyla are taken from the NCBI taxonomy [68].

Phylum Genomes sequenced Genomes with at least one T-box Number of T-boxes

Firmicutes 53 53 855
Actinobacteria 19 12 32
Chloroflexi 2 2 6
Deinococcus/Thermus 3 1 2
Proteobacteria 125 2 2
Cyanobacteria 13 0 0
Chlamydiae 10 0 0
Bacteroidetes/Chlorobi 7 0 0
Spirochaetes 6 0 0
Planctomycetes 1 0 0
Aquificiates 1 0 0
Fusobacteria/Thermotogae 2 0 0

Total 242 70 897
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complete T-boxes (approximately 200 – 300 nt) appeared
extremely unreliable (Figure 6B). This finding implies that
amino acid specificity of a T-box is not prominent on the
overall sequence level and that the apparent overall
sequence variability in time of the T-box is relatively high.
Simultaneously, in case T-box sequences do cluster in reli-
able clusters (high bootstrap support) in a NJ-tree they
must therefore be closely related in time.

To limit possible obscuring effects of comparing
sequences between species, we collected and compared
the T-box sequences within species and for clarity
restricted the comparison to the T-boxes that accompany
transport systems and the related tRNA ligases. For all
three analyzed species: B. anthracis, L. acidophilus and L.
plantarum. similar phenomena were observed. The multi-
ple sequence alignment of the analyzed T-box sequences
and the associated NJ-tree (depicted in Figure 6C for B.
anthracis) are strongly suggestive of a close evolutionary
relationship between several of the T-boxes. For example
in B. anthracis, the Thr T-boxes found in front of BA4970
(transport systems of LIVCS-type) and the Thr-tRNA ligase
(BA4820) were highly similar and the same was observed
for the Ile T-boxes found in front of another LIVCS
homolog and the Ile-tRNA ligase. As the LIVCS homologs
appear closely related in time (apparent duplication in the

B. cereus group ancestor, see Figure 3), the data imply that
the regulatory T-box was not inherited in a similar way but
'acquired' independently. In fact, this explanation fits the
observed scattered appearance of the T-boxes for the vari-
ous transporter families perfectly.

The results presented in Figure 6 are also suggestive of
another way in which the T-boxes have evolved. The NJ-
tree relates the Phe T-box found in front of one of the NSS
family transporters to the Tyr T-box associated with the
Tyr-tRNA ligase (Figure 6C). It thus seems that the Tyr T-
box of the tRNA ligase was duplicated -as this T-box is
present in various Firmicutes species- and has diverged/
adapted to control a Phe transporter in the Bacilli of the B.
cereus group. In fact, the similarity between the T-box
upstream of Tyr-tRNA ligase and the Phe T-box in front of
the transporter is higher than between the Tyr T-box and
the Tyr T-box preceding BA4353 (NhaC family trans-
porter). This is consistent with the fact that: the Tyr T-box
acquisition of the NhaC ortholog should have occurred
earlier in history, as the Tyr T-box control of the NhaC
ortholog is present in several Firmicutes, and the sequences
thus had more time to diverge.

T-boxes preceding the genes related to amino acid biosynthesis in FirmicutesFigure 5
T-boxes preceding the genes related to amino acid biosynthesis in Firmicutes. Color coding identifies the presence 
of the biosynthesis pathway and whether it is regulated by a T-box: Green; T-box regulated; red; not T-box regulated; no 
color; pathway absent. +TRAP protein is present. M Pathway genes organized in multiple operons. BCA indicates the branched 
chain amino acids valine, leucine and isoleucine.
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The evolutionary relationship between some T-boxesFigure 6
The evolutionary relationship between some T-boxes. (A) shows a putative phylogeny of the branched-chain amino 
acid tRNA ligases of B. anthracis Ames, B. subtilis 168, C. acetobutylicum ATCC824D, L. acidophilus NCFM, L. plantarum WCFS1, 
L. mesenteroides ATCC8293 and S. aureus Mu50. (B) shows the Neighbor-Joining tree for the related T-boxes. The underlying 
alignments were made with the complete 200 – 300 nucleotides of the identified T-boxes. These alignments were homogene-
ous in the sense that the fully conserved motifs aligned perfectly and that between those conserved elements there were little 
gaps. Nevertheless, the low bootstrap support for the various branches indicates that this tree is unlikely to reflect the true 
phylogeny of the regulatory elements. (C) shows the Neighbor-Joining tree for various T-boxes found in B. anthracis Ames. 
Next to the tree, the part of the corresponding multiple sequence alignment containing the specifier codon (indicated in white 
letters) is depicted. The amino acid specificity of the specifier codon is color-coded: Red and orange relate to Ile, green to Leu, 
light blue to Phe, beige to Pro or Gln, pink to Ser, brown to Thr, turquoise to Trp, purple to Tyr and dark blue to Val. The 
family of the protein encoded by the regulated gene is indicated by the letters that follow the amino acid code. These protein 
families included the APC, LIVCS, MFS, NhaC and NSS transporter protein families and various tRNA-ligase families (S or Smr 
for mupirocin resistant tRNA ligase). The NSS-family transport proteins regulated by a Leu, Phe and Trp T-box are in-paralogs 
characteristic for the species of the Bacillus cereus group. The purple numbers between brackets indicate the bootstrap support 
for the displayed clusters (out of 1000).
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Conclusion
The sequence signature of a T-box is very specific and as a
result T-boxes can be readily identified. Using specific T-
box HMMs, we identified a large number of the T-boxes
and their amino acid specificity in sequenced prokaryote
genomes.

An important aspect of this work is that we show that the
prediction of the amino acid specificity of the various T-
boxes can be used to improve the functional annotation
of a large number of genes. In particular, the functional
annotation of genes related to amino acid transport and
genes with unknown substrate specificity, genes for which
it is normally quite difficult to find functional attributes,
could be improved significantly. In our opinion, the pro-
cedure of improving annotation through knowledge of
the regulatory signals can be generalized and should be
used on a much broader scale than currently is being
done.

Riboswitches have been argued to be among the oldest
regulatory systems in bacteria because of their independ-
ence of regulatory proteins and widespread biological dis-
tribution [35]. One might therefore have expected that T-
boxes are abundantly present among all different lineages
of bacteria. This clearly can not be concluded from our
results and those presented in other studies [52,55]. In
fact, these regulatory elements can only be found in a few
bacterial phyla and only abundantly in the phylum Firmi-
cutes. This implies that either Firmicutes developed T-box
regulation after their branching off from the other bacteria
or that the other bacteria lost the system soon after the
branching off of the Firmicutes to evolve more complex
regulatory systems. Which of the two scenarios is most
likely remains unclear.

Nevertheless our data do allow some extrapolation of the
propagation of T-boxes within the phylum Firmicutes. We
conclude on basis of our observations that the T-boxes
have evolved in four clearly distinct ways: i) by co-evolu-
tion with the regulated gene or operon; ii) by co-evolution
and divergence with the regulated gene or operon to
adopt a new specificity; by iii) duplication and insertion
of the regulatory element in front of a gene or operon that
encodes functions related to the T-box-specified amino
acid; and finally iv) by duplication and divergence toward
a new amino acid specificity after duplication. In short,
this means that every T-box regulatory element acts as a
connected yet independent "functional module". The fact
that the isoleucine specific T-box connected to the ile-
tRNA ligase encoding gene is the only box present in all T-
box containing bacteria suggests this box could very well
compose the archetype T-box.

Methods
Sequence information and tools
Genome sequences and annotation files of completely
sequenced bacterial and archaeal genomes were down-
loaded from the NCBI repository [56]. In addition, for the
analysis of the molecular functions encoded by T-box con-
trolled genes, genomic information was obtained from
the ERGO genome analysis and discovery system [57].
Multiple sequence alignments were created with MUSCLE
[58] and bootstrapped Neighbor-Joining trees with CLUS-
TALX [59] (corrected for multiple substitutions). HMMs
were constructed from a multiple sequence alignment
using HMMER 2.3.2 [60]. Conserved nucleotide sequence
motifs were recovered via MEME [61] (settings: maximally
5 motifs, modus ZOOPs, minimal width 10 nt, maximal
width 30 nt) and visualized using Weblogo [62]. Hidden
Markov Models (HMMs) were constructed on basis of the
recovered motifs to perform genome-wide searches.
Although HMMsearch [60] yielded essentially identical
results to the search-tool MAST [63], in our hands the pro-
cedure was much faster and the output was easier to inter-
pret (including motif e-values rather than p-values). RNA
secondary structure predictions were performed by Mfold
[38] using default settings.

Identification of a general T-box sequence
The T-boxes reported so far in literature were mainly
located upstream of tRNA-ligase encoding genes in species
of the phylum Firmicutes [7,26]. We therefore initiated the
search for a general T-box sequence motif by collecting the
nucleotide sequences (300 nt) preceding all tRNA ligases
(n = 910) found in sequenced genomes of the Firmicutes.
Five characteristic consecutive motifs were recovered in
the nucleotide sequences (displayed in Figure 1). They
were part of a generic T-box sequence that spans a length
of about 250 nt, as described by [8]. The best-conserved
motif (Figure 1, motif 1, E-value = 1.2e-2841), which is
located closest to the translation start, had a length of 30
nt and was found in about 61% (n = 553) of the nucle-
otide sequences. A genome-wide HMMsearch based upon
the best-conserved motif yielded 374 new hits. To probe
eventual in-homogeneity induced by the fact that only T-
boxes associated with tRNA ligases were taken to create
the initial T-box HMM, a new HMM based on the non-
tRNA ligase associated T-boxes was made and the
genomes were searched anew. We found that all t-RNA
ligase associated T-boxes were recovered (with an e-value
< 1) with this new HMM. This finding implied that the set
of recovered T-boxes was relatively homogeneous. The
upstream 500 nt of every putative best-conserved T-box
motif was then checked for the presence of at least one of
the four other conserved T-box specific motifs recovered
using MEME. In 40 cases (less than 4% of total) none of
the other motifs was detected. Without exception, these
were not located in the proximity of a coding sequence
Page 13 of 16
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and thus unlikely to be related to transcription attenua-
tion. The hits were therefore considered false-positives
and were removed. To potentially increase the recovery
rate, the remaining 887 T-box sequences were subdivided
on basis of the taxonomy of the species and taxonomic
class-specific HMMs were built as before. This procedure
yielded only 10 additional T-boxes. Finally, the position
of all boxes with respect to the start-codon of the proximal
gene was determined. It appeared that In 839 cases, motif
1 was found to be located within 300 nucleotides
upstream of a predicted gene start. The remaining 48 T-
boxes were located 300 to 480 nt upstream of a start-
codon. Manual inspection of those T-boxes revealed an
overrepresentation of the proximal genes thrZ (11×), trpE
(11×), branched amino acid transferase (5×), chorismate
mutase (5×) and a sodium symporter (4×). In fact, for
both thrZ and trpE it was previously shown that they are
preceeded by multiple (2 or 3) adjacently located T-boxes
in different bacilli [3,29].

Functional classification of the genes regulated by T-boxes
The genes downstream of the recovered T-boxes were
divided into four different classes on basis of the gene
annotation information of the proximal gene: 'tRNA liga-
tion', 'amino acid biosynthesis, 'amino acid transport' and
'other'. In those cases the T-box preceded an operon
(45%) it appeared that most of these operons (>75%)
contained genes of only one functional class.

Comparison with the Rfam T-box model
The Rfam database [36] is an excellent reference database
to start the identification of specific RNA-motifs. To eval-
uate the performance of our recovery procedure, we com-
pared our results with predictions based on the Rfam T-
box HMM. Unfortunately, a direct comparison with the
contents of the database proved not informative as the
Rfam database includes all nucleotide sequences present
in the TREMBL database, which includes many genome
fragments or partially sequenced genomes, whereas our
analysis was restricted to completed genomes.

Therefore, we used the Rfam model to search for T-boxes
against the same set of complete genome sequences that
was used for our analysis. A striking difference between
the Rfam-search and our analysis was that the Rfam-
search was computationally far more expensive (more
than three weeks on an 8 node,16 core, linux cluster com-
pared to 16 hours on a 2 core linux system). For the
selected species we predicted 883 T-boxes characterized by
the presence of all the characteristic motifs, of which 835
(95%) were within the first 300 nt upstream of a gene
start. When using a cut-off of 53.000 bits (described by
Rfam as reliable) only 501 (60%) of the 883 T-boxes were
predicted using Rfam. In addition to these 501 shared T-
boxes Rfam identified 8 additional genuine T-boxes (~0.9

gain) within the first 300 nt. upstream of a gene start. At a
lower cutoff-value (25.000 bits), chosen such that ~81%
(683) of the boxes identified by us were recovered, the
prediction with our HMM and the Rfam results were more
alike albeit that Rfam now also yielded a considerable
number of false positive identifications: only ~90% of the
total number of T-boxes was found within the first 300 nt.
upstream of a gene start. Using this cutoff, 6 additional
genuine T-boxes were found (~0.7% gain) to be present
within the first 300 nt. upstream of a gene start. When
applying no cutoff, the Rfam-search retrieved 89% (745)
of the T-boxes that were found in our analysis. However,
in this case the number of putative false-positives (not
located within 300 nt upstream of a gene start) had
increased to 65% of the total.
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