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Abstract

Background: While the genomic annotations of diverse lineages of the Mycobacterium tuberculosis
complex are available, divergences between gene prediction methods are still a challenge for
unbiased protein dataset generation. M. tuberculosis gene annotation is an example, where the most
used datasets from two independent institutions (Sanger Institute and Institute of Genomic
Research-TIGR) differ up to 12% in the number of annotated open reading frames, and 46% of the
genes contained in both annotations have different start codons. Such differences emphasize the
importance of the identification of the sequence of protein products to validate each gene
annotation including its sequence coding area.

Results: With this objective, we submitted a culture filtrate sample from M. tuberculosis to a high-
accuracy LTQ-Orbitrap mass spectrometer analysis and applied refined N-terminal prediction to
perform comparison of two gene annotations. From a total of 449 proteins identified from the MS
data, we validated 35 tryptic peptides that were specific to one of the two datasets, representing
24 different proteins. From those, 5 proteins were only annotated in the Sanger database. In the
remaining proteins, the observed differences were due to differences in annotation of
transcriptional start sites.

Conclusion: Our results indicate that, even in a less complex sample likely to represent only 10%
of the bacterial proteome, we were still able to detect major differences between different gene
annotation approaches. This gives hope that high-throughput proteomics techniques can be used
to improve and validate gene annotations, and in particular for verification of high-throughput,
automatic gene annotations.

(page number not for

Page 1 of 13

citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18597682
http://www.biomedcentral.com/1471-2164/9/316
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2008, 9:316

Background

Tuberculosis, the disease caused by the pathogen Mycobac-
terium tuberculosis, is responsible for approximately 2 mil-
lion deaths annually according to the World Health
Organization [1]. At the moment, the genomic annota-
tion of several lineages of Mycobacterium sp. is available
and largely validated [2-5]. However, the annotation of
protein-coding genes is still a challenge in genomic
sequencing projects despite advances in computational
gene finding [6,7]. Consequently, differences in gene
annotation introduced by diverse prediction methodol-
ogy will have a major impact on subsequent studies. In
addition, the presence of overlapping genes further
increases the difficulty of annotation, resulting in theoret-
ical protein products with different lengths.

An example of such differences can be observed from the
number of Open Reading Frames (ORFs) annotated for
the H37Rv laboratory strain of M. tuberculosis by two inde-
pendent institutions [2,8], representing a difference of up
to 12%, simply in the number of annotated genes. In
addition, there are differences in the lengths of genes
annotated by both institutions due to difference in start
codon choice. Therefore, the validation of such annota-
tions by identification of protein sequences is highly
desirable to further refine the genomic annotations and
enable generation of improved unbiased databases. Mass
spectrometry based proteomic approaches (also referred
to as "shotgun" proteomics) is by far one of the most sen-
sitive, high-throughput methods available for large scale
screening of peptides present in a particular sample (for a
recent review, see [9]). Such techniques have emerged to
become instrumental in proteomic projects aiming for
systematic functional analyses of the genes uncovered by
genome sequence initiatives [10]. Recently, MS-based
approaches have been used to aid gene annotation in
prokaryote and eukaryote genomes [11,12], and to vali-
date genomic annotation. Deshayes et al. [13] demon-
strated, for example, that a mass spectrometry driven
validation could identify sequencing errors of the genome
of Mycobacterium smegmatis that were mistakenly believed
to be interrupted coding sequences.

The possibility for in-depth analysis of complex pro-
teomes has been dramatically increased by recent devel-
opments in mass spectrometry-based proteomics [9], in
particular, by a hybrid mass spectrometry Linear Ion Trap
- Orbitrap mass spectrometer [14,15], in which ions are
detected with high resolution by their motion in a spindle
shaped electrode. It has recently been shown that, by
using a 'lock mass strategy', very high mass accuracy is rou-
tinely achievable in both the MS and MS/MS modes [16],
which virtually eliminates the problem of false positive
peptide identification in proteomics.

http://www.biomedcentral.com/1471-2164/9/316

In this article, we compared the revised original annota-
tion for M. tuberculosis strain H37Rv from the Sanger Insti-
tute [2,17] with the annotation of the same sequence from
the Institute for Genomic Research (TIGR) [8]. Previous
results from our group suggested that differences in anno-
tation may lead to divergent proteomic characterization
[18], but such results were obtained using low-sensitivity,
low-accuracy mass spectrometers. Therefore, we now gen-
erated a proteomic dataset from M. tuberculosis H37Rv cul-
ture filtrate acquired on a high-accuracy LTQ-Orbitrap
instrument to improve identification coverage and relia-
bility, and we specifically aimed to identify specific tryptic
peptides represented in one or the other annotation.

Tryptic peptides specific to one or the other annotation
can be observed when a complete gene is described in
only one of the annotations. Specific tryptic peptides can
also be observed when there is discrepancy in choice of
the start codon of a particular gene. In that case, specific
tryptic peptides can be seen in the N-terminal part of the
longer gene. Correct choice of start codon may also be
confirmed by observation of the very N-terminal peptide
with or without its first methionine.

Our M. tuberculosis culture filtrates contain a high number
of secreted proteins exported through the general secre-
tory pathway [18]. In order to identify the N-terminal pep-
tides of processed secreted proteins, where the signal
peptide has been cleaved off, we used the SignalP algo-
rithm [19,20] for identification of proteins with signal
peptide, and the potential cleavage sites. Choice of start
codon may however influence prediction of signal pep-
tides using most signal prediction algorithms, including
SignalP, because they consider the distance between the
potential cleavage site and the precursor starting point. As
a consequence, the N-terminal peptide of a mature
secreted protein may not be detected if the choice of start
codon precludes the prediction of the signal peptide [21].

We designed a database containing predicted N-terminal
sequences in order to improve the identification of pep-
tides in this area. To avoid repetitive entry generation and
high levels of redundancy, the database was organized
represented in a concise, MS-friendly format as described
by Schandorff et al [22]. In order to determine the identi-
fication of single nucleotide polymorphisms (SNP) and
N-terminal predictions, these authors created a modified
IPI human database where the tryptic peptide containing
a possible mutation was inserted at the end of the original
entry, but always preceded by the letter "]" (representing
no amino acid). Through this method they were able to
test and identify several SNPs without compromising
database size, redundancy and reliability of the results.
Therefore, all gene entries in the Sanger and the TIGR
annotations were submitted to SignalP v3.0 prediction,
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and sites with a sufficiently high score were selected and
appended to the entries as described by [22].

In total, we were able to identify 449 proteins from the M.
tuberculosis H37Rv culture filtrate fractions (comprising
mainly extracellular proteins), representing a more in
depth scale of identification from the previous study [18],
a difference explainable solely on better MS instrumenta-
tion. From those, we detected and validated 35 peptides
which were specific to one annotation, 34 of them were
specific to the Sanger annotation and only 1 was specific
to the TIGR annotation. In addition, the identified pep-
tides resulted in the identification of 5 gene products
whose genes are only annotated in the Sanger dataset (and
not in the one from TIGR). These data represented 1.78%
of all peptides identified in the study, comprising a rather
small protein population detected, indicating that such
observations could be even more critical with a larger
dataset. Therefore, it is of significant importance to gener-
ate more precise, unbiased gene annotation datasets from
M. tuberculosis to allow more efficient proteomic charac-
terization.

http://www.biomedcentral.com/1471-2164/9/316

Results

Proteomic description of the evaluated data

Protein samples from M. tuberculosis H37Rv culture fil-
trate were separated by 10% SDS-PAGE and each gel lane
was excised in 10 fractions, as described previously by
Malen et al [18]. Those bands were submitted to in-gel
digestion and the resulting peptides were analyzed with a
LTQ-Orbitrap mass spectrometer. Figure 1 shows an
example of a MS/MS spectrum of a peptide of m/z M+H =
2019.0094. The Mascot engine identified this spectrum as
the peptide AAEPSWNGQYLVTLSANAK, corresponding
to the predicted N-terminal of the entry Rv2253/
NT02MT2445 annotated as a "conserved hypothetical
protein" (see Methods for details of N-terminal database
prediction). Figure 1 also illustrates the fragmentation
pattern and identification of y/b series on sequence
(sequence input). In this example Mascot was able to cor-
relate 14 of the possible 18 y ions for this sequence, and
12 of 18 b ions, resulting in an identification score of 128.

All data acquired from the LTQ-Orbitrap were analyzed
using Mascot with two protein databases derived from
Sanger respectively TIGR annotation of the M. tuberculosis
H37Rv lab strain. In total, 449 different proteins were
identified in this study. This is two times more proteins
and almost four times as many peptides identified as com-
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MS/MS profile of ion M+H 2019.0094. Tandem mass spectrum of a prevalent ion on a particular time point in the LC gra-
dient and ionized on the LTQ-Orbitrap. The peptide fragments randomly on each amide bond, resulting in carboxy-terminal y
ions or amino-terminal b ions. After the fragment masses were submitted to Mascot, the peptide was identified as

AAEPSWNGQYLVTLSANAK (inset, with detected y and b ions represented) from protein Rv2253 — conserved hypothetical

protein.
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pared to previous results from our group on the same cul-
ture filtrates [18]. Additional File 1 reports all peptides
identified in this work, in addition to the protein entry to
which each peptide belongs (only Rv from Sanger denom-
ination were used to keep the analysis simple, an excep-
tion was done if the peptide belonged to the TIGR
database, but not to Sanger). The table also contains infor-
mation about protein mass, peptide length, observed
charge, observed mass over charge ratio, measured pep-
tide mass (Da) Mascot Score, the presence of modifica-
tions (as N-terminal acetylation or Met oxidation), the
error of the observed/theoretical mass in ppm and a col-
umn showing the number of peptides per identified pro-
tein (see Additional file 1). Sequences in red indicate
peptides which were identified in only one of the data-
bases, as also indicated in Table 1.

http://www.biomedcentral.com/1471-2164/9/316

Since our objective in this study was to scrutinize the dif-
ferences between the databases, and not to generate a cat-
alogative dataset, we allowed the validation of proteins
identified with 1 peptide. While such criteria is rarely
employed in proteomic studies, we argue that these pep-
tides should be included in our analysis since they have
been identified with a highly accurate instrument in an
organism with a small genome and thus represent highly
statistically significant results. Therefore, the identified
proteins in the Additional File 1 were divided in 3 catego-
ries. First, all proteins with at least 2 peptides with mini-
mal score of 21 (representing a p-values less than 0.01 per
peptide according to Mascot), followed by proteins with
only 1 peptide but Mascot score higher than 42 (false-pos-
itive rate of 1/10000), and finally, 23 proteins with 1 pep-
tide with score between 30 and 42 (false-positive rate of 5/

Table I: Specific tryptic peptides annotated in only one of the datasets

Accession Sequence Peptide Measured Score Database # ppm error  Left flank
number length  mass [Da] Peptides/ AA
protein
Rv0063 VLQPDDGPQFATAK 14 1485.76 96 Sanger 23 2.4780 K
Rv0063 DPAASGWEALSSALGGK 17 1615.79 124 Sanger 23 34751 nterm
Rv0063 SGWEALSSALGGK 13 1261.64 86 Sanger 23 3.0629 nterm
Rv0063 GWEALSSALGGK 12 1174.61 73 Sanger 23 5.1922 nterm
Rv0363c PIATPEVYAEMLGQAK 16 1716.89 64 Sanger 13 0.8069
Rv0932c ELHSSGSTAQENAMEQFVYAYVR 23 2632.21 82 Sanger I 4.6848 K
Rv0932c KELHSSGSTAQENAMEQFVYAYVR 24 274429 48 Sanger I 0.3702 K
Rv3722 HQQDYAALQGMK 12 1388.66 78 TIGR I 2.7728 R
Rv0928 ASGSTAQANAMTR 13 1264.59 84 Sanger 9 4.4435 K
Rv3874 AEMKTDAATLAQEAGNFER 19 2067.97 57 Sanger 9 4.6397
Rv1437 SVANLKDLLAEGVSGR 16 1627.9 54 Sanger 8 5.6825
Rv2889c ANFTAADVKR 10 1091.58 65 Sanger 7 3.1234
Rv0761c IQMEAAGMCR 10 1181.51 53 Sanger 6 4.8286 K
Rv2430c MHFEAYPPEVNSANIYAGPGPDSMLAAAR 29 3075.44 108 Sanger 6 3.1084
Rv2290 SYTLTGTGHAVIPGQTGMR 19 1945.98 104 Sanger 5 1.8289 K
Rv2290 IGSVDYQMPYQPVQSPTQVEATR 23 2609.26 84 Sanger 5 4.0165 K
Rv2290 VNAHDDSASVTLSLSDSTPPDVNGFGISLK 30 3042.49 71 Sanger 5 3.1941 R
Rv2290 ELPFGVHVTCP I 1254.62 41 Sanger 5 3.0884 R
Rv2290 SYTLTGTGHAVIPGQTGMR 19 1961.98 35 Sanger 5 4.8758 K
Rv3705c HPSEPGVVSYAVLGK 15 1538.82 84 Sanger 5 2.0407 nterm
Rv3705c SEPGVVSYAVLGK 13 1304.71 73 Sanger 5 5.3952 nterm
Rv0753c SADVFDPNTGQIQAK 15 1589.78 87 Sanger 4 2.3470 R
Rv0753c TTQISHFIDGQR 12 1401.71 64 Sanger 4 4.5361
Rv0321 LGIDPFDDTLVQPSSIDVR 19 2086.07 80 Sanger 3 3.0416 R
Rv0549c ASPTSPPEQVVVDASAMVDLLAR 23 2352.22 41 Sanger 2 4.8829 R
Rv1352 TEGPSNPLILVFGR 14 1498.83 64 Sanger 2 2816l R
Rv1352 ETGEQFPGDGVFLVGTDIAPGTYR 24 252522 100 Sanger 2 0.7501 nterm
Rvi8I0 DYNPGLTMDSAAK 13 1381.63 78 Sanger 2 4.0868 R
Rvi810 FAAIASGAYCPEHLEHHPS 19 2092.96 43 Sanger 2 4.618l1 K
Rv3800c AELTVPEMR 9 1044.54 28 Sanger 2 33181 R
Rv0500 IAIIGGGSIGEALLSGLLR 19 1809.08 118 Sanger | 2.589%4 R
Rv2752c VTALGGINEIGR 12 1198.68 92 Sanger | 29576 R
Rv3624c SVLLTAEQIQAR 12 1327.75 75 Sanger I 2.3044 K
Rv2035 FTAQSAETTR 10 1110.54 49 Sanger I 3.5484 R
Rv 1987 SGTHYVLSPANWNR 14 1600.79 48 Sanger | 9.8228 R
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10000). Using such score criteria, we had no Reversed hits
being validated in the analysis (all were identified with
only 1 peptide and score lower than 26 - Data not
shown), confirming that our dataset should have
extremely low false-positive rates. However, it is impor-
tant to note that we performed such category separation
solely to help the reader to discriminate such identifica-
tions as lower confidence ones, and they are statistically
acceptable.

Sanger versus TIGR annotation comparison

The initial comparison of Sanger and TIGR gene annota-
tion datasets were mostly based on the fact that we were
previously able to identify three proteins that were specific
to one dataset [18]. In addition, there are several differ-
ences in the annotations which are available at the TIGR
Comprehensive Microbial Resource website [8]. There-
fore, we decided to create a comprehensive list of genes
annotated on each of the two datasets, and also to deter-
mine the genes specific to each. Our alignment was based
on genes that shared the same stop codon, independent of
having different start codons. Additional File 2 shows a
list of 3750 genes that share the same stop codon in both
annotations. This table contains an alignment of the sim-
ilar annotated genes of both datasets, indicating its posi-

http://www.biomedcentral.com/1471-2164/9/316

tion in the genome, the DNA gene size, the protein
product size, GC content ratio, the Stop Codon (StopC)
for the gene, and if available the Swiss-Prot code. Finally,
we also calculated the difference in length of the equiva-
lent annotated protein products (see Additional file 2).

From those, 2025 had exactly the same base pair/protein
sequence size, while 1725 (46%) had different start
codons in the two datasets. Strikingly, there are some
extremely divergent annotations in terms of gene size, as
can be seen for the TIGR entries NT02MT1622 (840
amino acids,) or NT02MT0741 (401 amino acids), which
are 538 and 259 amino acids longer than the respective
entries, Rv1483c and Rv0677 in the Sanger annotation.
However, most of the differences are within the range 10
to 15% of the total sequence length. Figure 2 illustrates
the length distribution of the protein product of these
similarly annotated genes, and it is clearly observable that
the differences are equally distributed between datasets,
i.e., both TIGR and Sanger contribute similarly to the dif-
ferences observed, therefore initially eliminating the pos-
sibility that one of the datasets were generated through a
less stringent methodology. For example, while TIGR has
701 entries with longer genes, Sanger has a slightly higher
frequency of such cases, with 1021 entries. However, the

40
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Figure 2

Length comparison between genes annotated in both Sanger and TIGR datasets. When the TIGR and Sanger data-
sets where compared, 46% of the genes present on both sets differed by chosen TSS. The graph shows frequency distribution
(number of genes) and number of amino acid difference on the N-terminal side (AA len diff). While the distribution by number
of cases is higher in the Sanger dataset (1021 genes with longer products compared to the same gene in TIGR, inset Table),
genes that are longer on TIGR tend to be exceedingly longer when compared to Sanger.

Page 5 of 13

(page number not for citation purposes)



BMC Genomics 2008, 9:316

> Rv2253,
MSGHRKKAMLALAAASTAATLAPNAVAAAEPSWNGQYLVTLSANAKTGTSMAANRPEYPH
KANYTFSSRCASDVCIATVVDAPPPKNEFIPRPIEYTWNGTOQWVREISWQWDCLLPDGTTI
EYAPAKSITAYTPGQYGILTGVFHTDIASGTCKGNVDMPVSAKPIVGEEPSWNGQYLVTL
SANAKJAPNAVAAAEPSWNGQYLVTLSANAKJPNAVAAAEPSWNGQYLVTLSANAKJNAV
AAAEPSWNGQYLVTLSANAKJAVAAAEPSWNGQYLVTLSANAKIVAAAEPSWNGQYLVTL
SANAKIAAAEPSWNGQYLVTLSANAKJIAAEPSWNGOYLVTLSANAKJAEPSWNGQYLVTL
SANAKJIPSWNGQYLVTLSANAKJISWNGQYLVTLSANAKIWNGQYLVTLSANAKINGQYLV
TLSANAKJGQYLVTLSANAKJIQYLVTLSANAKIJMSGHRISGHRJIJGHRIJHRJIJRIJKJAMLAL
AAASTAATLAPNAVAAAEPSWNGQYLVTLSANAKIMLALAAASLAATLAPNAVAAAEPSW
NGQYLVTLSANAKJLALAAASTLAATLAPNAVAAAEPSWNGQYLVTLSANAKJALAAASTA
ATLAPNAVAAAEPSWNGQYLVTLSANAKJLAAASLAATLAPNAVAAAEPSWNGQYLVTLS
ANAKJAAASLAATLAPNAVAAAEPSWNGQYLVTLSANAKJAASLAATLAPNAVAAAEPSW
NGOQYLVTLSANAKJASLAATLAPNAVAAAEPSWNGQYLVTLSANAKJSLAATLAPNAVAA
AEPSWNGQYLVTLSANAKJLAATLAPNAVAAAEPSWNGQYLVTLSANAKJAATLAPNAVA
AAEPSWNGQYLVTLSANAKJATLAPNAVAAAEPSWNGQYLVTLSANAKIJTLAPNAVAAAE

http://www.biomedcentral.com/1471-2164/9/316

conserved hypothetical protein 2527982:2528482 MW:17832

PSWNGQYLVTLSANAKJLAPNAVAAAEPSWNGQYLVTLSANAK

Figure 3

Example of MS-friendly database entry for N-terminal prediction validation. This entry represents the protein
Rv2253 (Conserved hypothetical protein) which is 167 amino acids long. Analysis with the tool SignalP v3.0 resulted in the pre-
diction of the sequence A27-A28-A29 (underlined) as a possible cleavage site of signal peptidase I. Therefore, the predicted N-
terminal peptide is inserted after a | (box). In addition, we also appended all peptides possible from position -25 until +7 from
the predicted signal peptidase cleavage site. In this case, we not only identified the predicted N-terminal peptide starting in E30
(underlined after box) but also a second peptide starting on amino acid A28 (last underline — see Figure | for MS/MS data) rep-

resenting a possible N-terminal alternative option.

ratio of exclusive amino acid sequences per entry is higher
in TIGR (38 amino acids) compared to Sanger (27 amino
acids) (Table Inset, Figure 2).

N-terminal prediction and database generation

Since most of the observable differences belong to the N-
terminal side of the proteins, and based on the knowledge
that exported proteins from M. tuberculosis can be submit-
ted to N-terminal processing by a signal peptidase com-
plex [23], we were naturally concerned that a possible lack
of capability to identify such differences could be a result
from a database limitation to generate tryptic peptides
which correspond to the post-processed N-terminal of the
protein. This was already described by Rison et al. [24],
who generated theoretical tryptic peptides to identify the
correct TSS of 11 proteins from M. tuberculosis. However,
those authors chose a database setup which was redun-
dant (each new protein version has a new entry). This lim-
itation was satisfactorily solved by Schandorff et al [22],
where the authors designed a database where "artificial"
tryptic peptides representing predicted N-terminal

sequences from human proteins were inserted at the end
of its respective protein entry, consequently allowing the
identification of this peptide by mass-spectrometry.

To better identify peptides from the N-terminal region of
the entries, we designed a similar MS-friendly database as
cited above, where all entries that had a signal peptide pre-
dicted by the SignalP tool v3.0 [19,20] were modified to
insert the post-processed sequence as a tryptic peptide J-
tagged to the original sequence. This method is illustrated
in Figure 3. In this example, the protein Rv2253 from the
Sanger dataset had the N-terminal predicted to start in
position E30, just after the sequence portion AAA, con-
firming an AXA motif (marked with a short underline).
While the peptide EPSWNGQYLVTLSANAK is not origi-
nally a tryptic peptide in the entry (as it is preceded by an
A, not an R or K), its chance of successful identification is
non-existent. Therefore, this peptide is re-inserted in the
entry after a J letter (box) and Mascot trypsin parameters
are changed to consider the ] code as a cleavage site of

trypsin.
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We also considered that additional cleavage sites could be
preferred in the neighboring predicted site, or that the pre-
diction was incorrect. Therefore, as shown in Figure 3, we
also inserted in the entry all possible tryptic peptides from
the position -25 up to +7 of the predicted site, to achieve
a better coverage of possible positions of N-terminal
cleavage. In this study, we utilized this method on both
the TIGR and Sanger datasets, in order to obtain a better
chance to identify any exclusive peptides on the N-termi-
nal side of the entries. A total of 44 peptides from 32 dif-
ferent proteins were identified and are listed in Additional
File 1 and marked as "Nterm" on its left flanking amino
acid category. From those 44 peptides, six peptides from
proteins Rv0063, Rv3705c and Rv1352 are specific to one
dataset. Interestingly, for Rv2253 (Figure 3), we identified
both the predicted N-terminal in E30, as well as an addi-
tional sequence starting in A28 (see Figure 1 for MS/MS)
(both peptides underlined in Figure 3). Interestingly, the
amino acid A28 is also following an AXA motif, suggesting
that in this case Signal Peptidase I may recognize and
cleave at different portions of the same molecule.

Specific tryptic peptides on Sanger or TIGR identified by
LC-MS/MS

Once we generated the peptide lists of the identified pro-
teins from Sanger or TIGR databases, we compared them
in order to determine the presence of peptides or proteins
which are specific to one of the datasets. To characterize a
peptide as such, it is relevant to point out that the
observed sequence should be absent from similar entries
representing the same gene, and should also be absent
from other entries in the database or from the reversed
sequences inserted as false-positive delimiters.

In total, we identified 35 peptides which were specific to
one of the databases, representing a total of 24 different
proteins (Table 1). This table is a summarized version of
Additional File 1 showing only the specific peptides, their
sequences, their Mascot Score, total number of peptides
identified for that protein hit (including peptides that are
shared in both databases), in which database they were
observed and finally the ppm error observed for the
parental ion. While 30 of those specific-dataset peptides
were identified for protein hits in conjunction with other
peptides (indicating that the gene product detection is
correct), 5 of these peptides were observed given our iden-
tification criteria of "1 peptide per hit". However, those
peptides had still a very high Mascot score (ranging from
48 for Rv1987 and Rv2035 to 128 for Rv0500). In addi-
tion, the in silico trypsinization of the databases per-
formed by Mascot could not identify any other sequence-
combinations that could fit with the observed spectra,
when such a small mass error as 10 ppm was required on
the database search (data not shown).

http://www.biomedcentral.com/1471-2164/9/316

Surprisingly, the vast majority of specific peptides were
observed in the Sanger database, while only one peptide,
from the protein Rv3722/NT02MT4052 was specific to
the TIGR database (Figure 4). In this figure, it is possible
to observe the CID fragmentation pattern of the peptide
HQQDYAALQGMK (mass of 1388.66 Da) from the pro-
tein Aspartate transaminase, identified with a Mascot
score of 78. This peptide had 9/11 theoretical y ions
detected, and 7/11 b ions. Below the MS/MS spectra, the
alignment between the Sanger (top) and TIGR (below)
annotation is shown, indicating that the identified
sequence was only annotated as part of the Aspartate
transaminase gene in the TIGR dataset (underlined).

Most of the differences were due to differences in N-termi-
nal annotations, but 5 of these 24 proteins were also spe-
cific to Sanger, while their peptides and the corresponding
genes were not annotated in the TIGR database. Figure 5
represents one of these proteins, Rv2290, a probable IppO
conserved lipoprotein, visualized using the Artemis tool
and the Sanger genomic database [25]. The genomic
region containing lppO, marked with a square, has no
defined gene annotation according to the TIGR database
(data not shown). Below the Artemis visualization, the
sequence of the protein is represented, and the sequences
of the identified peptides (4 in total plus 1 of them were
also identified with an oxidized methionine - see Addi-
tional File 1) are shown underlined.

Discussion

In prokaryotes, due to its simpler gene structure (i.e., lack-
ing intron/exon organization), ORF determination using
a combination of bioinformatic tools such as coding
potential and homology to other confirmed genes from
other organisms, is a relatively efficient task, which is
achieved through automated and, in lower scale, manual
curation (see [26] for a recent review). However, high-
throughput genomic sequencing, and consequently auto-
matically generated ORF determination, results in the
identification of genes or gene families which are purely
hypothetical. Therefore, the determination of the correct
coding sequence regions, and its validation, are still chal-
lenging tasks. This is illustrated, for example, with the
existent difficulty to predict the translational starting site
of the predicted ORF. Our results show that, even with the
constant advances in the in silico analysis of genomes and
in the annotation of ORFs, there are still difficulties to
establish reliable determination of coding sequence
regions. Proteomic approaches are a powerful method to
validate such annotations. Using two dimensional elec-
trophoresis, Jungblut et al. [27], demonstrated this
through the identification of protein products from genes
which were not reported on the first gene annotation of
M. tuberculosis H37Rv performed at the Sanger Institute

[2].

Page 7 of 13

(page number not for citation purposes)



BMC Genomics 2008, 9:316

http://www.biomedcentral.com/1471-2164/9/316

M+H=1388.6600 wx
0 677.98
A
9 yi1 y3
9
s B ol
8 b2 ba b6 bo b11
7
, ye+1t
& 618.03
&
é y10
%. 1124.35
%
3 y8
3 881.26
2 6 y9 y*10
, b4 5 Y y7 996.37
1 b*2 b2 y3 soote Y 647.251 74527 b7 b8 110759 y11
266.15 y4 576.26 927.33 b11
1 249.11 335.20 57625 46522 7!;‘)‘(2.22 814.24 7. 1055.33 1252.39
R T IR el | ‘{,3%4-?4,1 'L'J‘ brrildend I . .UH L L7z | eesar oy Joses | L 1,?%431& bo1314.42
200 300 400 500 600 700 800 900 1000 1100 1200 1300
m/z
B
>Rv3722/NT02MT4052, Aspartate transaminase
MKLALDLTRGKPSAEQLDLSNQLLSLPGDDYRD
MSFDSLSPQELAALHARHQQODYAALQGMKLALDLTRGKPSAEQLDLSNQLLSLPGDDYRD
Figure 4

A specific tryptic peptide observed in the TIGR annotation. In total, we identified 35 peptides which were specific to
Sanger or TIGR datasets. This figure illustrates the only example observed only in the TIGR database. In (A), MS/MS informa-
tion of the ion M+H = 1388.6600. While this MS/MS spectrum could not be identified by Mascot when using the Sanger data-
base, it was identified as sequence HQQDYAALQGMK (inset with fragmentation pattern) only when the TIGR database was
used. When the N-terminal region of this entry was aligned with the corresponding gene annotated by Sanger Rv3722 (B), it is
clear that the Sanger entry (Top) failed to annotate the correct TSS for this gene. The identified sequence is underlined in the

TIGR entry (bottom).

It is important to note that differences in annotations as
observed for Sanger and TIGR are expected, due to differ-
ences in the methodology used for predicting and validat-
ing coding sequences [28,29]. In addition, since primary
annotations have been available for a longer time and
tested more extensively (as exemplified above by [27]),
they are probably more refined, as is the case for the
Sanger M. tuberculosis H37Rv dataset. However, an exten-
sive generation of protein databases through different pre-
diction methods, without the concern to integrate them,
can result in less efficient proteomic characterization on
further studies. It is then relevant to be able to validate,
through peptide identification, which gene is appropri-
ately annotated, in order to provide more concise and
unbiased databases.

It is striking that the TIGR dataset, even though it includes
a higher number of predicted genes, still failed to annotate

5 proteins (Rv2290, Rv1352, Rv1810, Rv1987, Rv2035).
Similar results were already observed when unpredicted
protein products of lipoproteins from Methylococcus capsu-
latus were identified [30]. While our results give a straight-
forward indication that the annotation criteria produced
by the group at the Sanger Institute is more reliable than
the TIGR, we do not exclude the possibility that this obser-
vation may be due to the fact that we performed our vali-
dation on a sample that represents only a small portion of
the M. tuberculosis proteome. For example, we were able to
identify slight differences as observed for ESAT-6
(Rv3874), one of the main components of M. tuberculosis
exported proteins [31] and only 3 amino acids longer in
the Sanger database, but failed to detect several other pro-
teins with more remarkable differences. However, it is still
important to point out that further annotation compari-
sons using TIGR datasets and other primary annotations
could be performed in order to establish more reliable
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Figure 5

Identification of specific protein products. From the 35 specific tryptic peptides reported, we were able to identify 5 pro-
teins that were only annotated in the Sanger database. The protein Rv2290 is an example of this. The visualization of this gene
in the genome using Artemis tool and Sanger annotation (box) is illustrated in (A), while the same genomic region does not
contain any annotated gene in TIGR (not shown). The sequence of this protein is shown in (B), which was identified with four
tryptic peptides. The sequence of these peptides is represented with underlining.

datasets. The Comprehensive Microbial Resource has, at
the moment, 401 total genomes mostly sequenced by
other institutes/consortiums. In some cases, differences in
annotations can have variations as extreme as that
observed for the organism Mycobacterium leprae, with a
primary annotation of 2720 genes [3], but with a TIGR
annotation of 5398 protein coding genes.

Another important advantage of comparing databases
through such an approach is to determine the transla-
tional start site (TSS) of the annotated gene. This is rele-
vant not only to define the amino acid sequence of the
protein (since the stop codon in unambiguous) but, most
importantly, to define the upstream region of the ORF
itself. Genome-wide and focused studies of promoter
structure and other regulatory motifs depend on the cor-
rect definition of the intergenic regions defined by the
coding sequence annotations [32,33]. Therefore, a correct
TSS assignment directly affects the analysis of both pro-
tein function and transcriptional regulation. For M. tuber-
culosis, it was shown through a proteomic approach [24]
that the protein Rv1099c¢ had an incorrect TSS, and that
reassignment completely altered the predicted promoter
region for the gene. While in our study we can not ensure
that the specific peptides are indeed the N-terminal of the

protein, our results are still valid in order to eliminate the
incorrect TSS annotated in one or the other dataset.

Furthermore, differences in TSS choices of the annotated
gene will also influence subsequent in silico analysis, like
N-terminal predictions used in this article. For example,
we observed two cases (entries Rv0519c and Rv3484)
where the cleavage site for signal peptidase I was correctly
assigned only in the TIGR dataset, even though the region
containing it is correctly annotated on both datasets.
However, both entries are shorter in the TIGR database
(15 amino acids for Rv0519c and 38 amino acids for
Rv3484), meaning that the predicted cutting site is closer
to the TSS choice of TIGR than it is in the Sanger entry,
resulting in higher score results for its correct prediction.

Therefore, it is desirable to create more concise databases
with as little redundancy as possible. Differences in anno-
tations from different institutes or consortiums can be
assimilated as a single file, allowing a more precise analy-
sis through proteomic approaches. A perfect example of
this was demonstrated by [22] and their MS-friendly data-
base, where they not only created modified entries to con-
firm N-terminal predictions, but also to validate cSNP
variations and sequence disagreement between different
databases. While in most of their cases the difference
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resides in only one amino acid from case to case, the same
method could be easily used to create concise databases
for M. tuberculosis or even for other bacteria. Figure 6
shows an example of how such a database could be built.
In this case, the longer entry (Sanger) would be kept as the
"original" entry in the new database. The shorter TIGR ver-
sion, with an N-terminal part that could not be identified
as a tryptic peptide in the Sanger version is inserted at the
end of the "original" entry separated by a neutral code let-
ter. Additional N-terminal or TSS predictions from both
Sanger and TIGR could also be inserted in the final file.
Such an approach would probably increase identification
efficiency considerably in following proteomic studies.

Conclusion

By using a combination of high-accuracy mass spectrom-
etry data acquisition, N-terminal prediction and gene
annotation comparison, we were able to identify 35 tryp-
tic peptides which were specific to one or other of the two
most used databases of the M. tuberculosis H37Rv labora-
tory strain. Our data indicates that even on a less complex
sample isolated from culture filtrate (representing close to
10% of the total predicted proteome), such differences in
gene annotation may be a limitation to proteomic identi-
fications, since specific proteins for one of the databases

http://www.biomedcentral.com/1471-2164/9/316

were also detected. We propose that a more concise and
efficient database generation, including divergent annota-
tion, should be achieved to improve MS-based identifica-
tions as recently demonstrated with human cSNP
validation.

Methods

Bacterial culture and sample preparation

M. tuberculosis H37Rv ATCC27294 strain from the
National Institute of Health (Tokyo, Japan) was cultured
as surface pellicle on the wholly synthetic Sauton medium
for 3 weeks without shaking. Bacteria were removed by fil-
tration and the culture filtrate was concentrated by 80%
ammonium sulphate precipitation. Precipitated proteins
were dissolved in buffer and dialyzed against distilled
water and lyophilized [34].

SDS-PAGE and in situ digestion

Fifty micrograms of M. tuberculosis H37Rv culture filtrate
proteins were diluted in 15 pL of deionized water, mixed
with 5 puL of eletrophoretic sample buffer (NuPAGE kit,
Invitrogen, Carlsbad CA, USA) with 1 pL DTT 100 mM,
and boiled for 5 min at 56°C prior to electrophoretic run.
Proteins were separated using a NuPage 10% Bis Tris Gel
(Invitrogen) in MES buffering system at 200 V constant

[] Sanger
[ TIGR
[] Sanger Nt pred

> Rv##### | NTO2MT###, Protein name, Sanger

Figure 6

i
N

MS-friendly database generation as a solution to discrepancy of datasets. As it was reported by Schandorff et al.
[22], we propose the creation of a unified database where differences in the N-terminal side of annotated genes can be easily
accommodated to improve proteomic identification. In this example, the N-terminal of a gene annotated in Sanger, TIGR and a
predicted cleavage site of the Sanger are considered (A). The alignment in (A) only shows the N-terminal region to facilitate
comparison, with the first common tryptic site as a black box. When the entry is generated, the sequence of the longer version
is kept (in this case, Sanger). Only the tryptic peptides comprising the TIGR N-terminal and the Sanger predicted N-terminal
are inserted after a J. Such an approach not only allows the identification of all sequence variations within a single and simplified
entry, but also eliminates redundancy from regions where the annotated sequences are identical.
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voltage. The sample migration was allowed to proceed
until the blue dye reached the bottom of the gel. The pro-
teins were further visualized using a Colloidal Coomassie
Novex kit (Invitrogen).

After staining, each gel lane was divided in 10 fractions as
described by [18], sliced in minor pieces and submitted to
in gel reduction, alkylation and tryptic digestion. Proteins
were reduced using 10 mM DTT for 1 hour at 56°C and
alkylated with 55 mM iodoacetamide for 45 minutes at
room temperature. The reduced and alkylated peptides
were digested with trypsin 1:50 wt:wt (Sequence grade-
modified, Promega, Madinson WI, USA) for 16 hours at
37°C in 50 mM NH,HCO;, pH 8.0. The reaction was
quenched through acidification with 2% trifluoracetic
acid (Fluka, Buchs, Switzerland). The resulting peptide
mixture were desalted on RP-C,5 STAGE tips [35] and
diluted in 0.1% trifluoracetic acid for nano-HPLC-MS
analysis.

N-terminal Database

To predict signal peptide cut sites, we used the standalone
version of SignalP 3.0 [19,36,20]. This program uses Neu-
ral Network (NN) and Hidden Markov Model (HMM)
methods to predict likely sites based on data known from
the literature. The program may predict one cleavage site
by the HMM method and up to three using the NN
method which often, but not always, is the same. The
HMM method has a tendency to print out a specific site to
have a probability of 0, so we removed HMM predictions
with a probability less than 0.25. The remaining predic-
tions appear to include the true predictions. In this work,
we used SignalP with the training data for gram positive
bacteria.

We prepared two databases of the M. tuberculosis dataset,
one based on the primary (Sanger) annotation [17] and
one based on the TIGR annotation [8]. The Sanger data-
base had 4010 sequences, and SignalP predicted at least
one signal peptide cut for 1315 of them. The TIGR
sequences had 4219 entries, and of these 1350 had at least
one prediction. Considering that the prediction method-
ology is not completely accurate, we also considered that
the cut site could occur in the neighborhood of a pre-
dicted site. Therefore, we tested all N-terminal possibili-
ties starting 25 amino acids upstream until 7 downstream
of the predicted site (see Figure 3), until the first tryptic
site is found. Each of those peptides were appended at the
end of the protein sequence, each separated by the letter
"J" [22]. The Mascot search engine was then configured to
recognize "J" as a possible tryptic site. In addition, we also
included in the database the reverse of each of the original
entries for false-positive identification control of the pro-
teomic data [37]. The whole process including running
SignalP was automated using an in-house program.

http://www.biomedcentral.com/1471-2164/9/316

Mass Spectrometry

All experiments were performed on a Dionex Ultimate
3000 nano-LC system (Sunnyvale CA, USA) connected to
a linear quadrupole ion trap - Orbitrap (LTQ-Orbitrap)
mass spectrometer (ThermoElectron, Bremen, Germany)
equipped with a nanoelectrospray ion source (Proxeon
Byosystems, Odense, Denmark). For liquid chromatogra-
phy separation, we used a capilar of 5 cm bed length 100
micron ID self packed with Reprosil_Pur C18-aq (Dr.
Maisch Gmbh, Ammerbuch-Entringen, Germany). The
flow rate used was 0.2 pL/min for the nano column, and
the solvent gradient used was 5% B to 60% B in 42 min-
utes, then from 60% B to 95% B in 10 minutes. Solvent A
was aqueous 2% acetonitrile (ACN) in 0.1% trifluoracetic
acid, whereas solvent B was aqueous 80% ACN in 0.1%
trifluoracetic acid.

The mass spectrometer was operated in the data-depend-
ent mode to automatically switch between Orbitrap-M$
and LTQ-MS/MS acquisition. Survey full scan MS spectra
(from m/z 400 to 2,000) were acquired in the Orbitrap
with resolution R = 60,000 at m/z 400 (after accumula-
tion to a target of 1,000,000 charges in the LTQ). The
method used allowed sequential isolation of the most
intense ions (up to five, depending on signal intensity) for
fragmentation on the linear ion trap using collisionally
induced dissociation at a target value of 100,000 charges.

For accurate mass measurements the lock mass option
was enabled in MS mode and the polydimethyilcyclosi-
loxane (PCM) ions generated in the electrospray process
from ambient air (protonated (Si(CH;),0)6; m/z
445.120025) were used for internal recalibration during
the analysis [16]. Target ions already selected for MS/MS
were dynamically excluded for 30 seconds. General mass
spectrometry conditions were: electrospray voltage, 1.9
kV; no sheath and auxiliary gas flow. Ion selection thresh-
old was 500 counts for MS/MS, an activation Q-value of
0.25 and activation time of 30 ms was also applied for
MS/MS.

Mascot search and peptidelprotein validation

Protein identification was performed by searching the
data separately against the databases (including alterna-
tive N-termini as described above) derived from the
Sanger and TIGR annotations, using MASCOT Deamon
(Matrix Science). The search parameters used were: Maxi-
mum missed cleavages: 3; Carbamidomethyl (C) as fixed
modification; N-acetyl (Protein) and Oxidation (M) as
variable modifications. Peptide mass tolerance of + 10
parts per million; MS/MS mass tolerance of 0.5 Da. Under
such criteria, Mascot indicated a minimal score of 21 for p
=0.01 and 15 for p = 0.05, in both Sanger and TIGR data-
sets. All data had a mass accuracy average of 3.8 parts per
million. Spectra and protein validation were performed
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using an open source software called MSQuant, largely
used for LC-MS/MS data analysis [38]. Proteins were vali-
dated accordingly in three categories (see Additional File
1): those with at least two, fully tryptic peptides with a
minimal score of 21 for individual peptides; those with
only 1 peptide, but individual MS/MS score higher than
42 (p = 0.0001); and finally those with score higher than
30 (p = 0.0025). Under such criteria, all MS/MS identifi-
cations of peptides present in entries with reversed
sequences (i.e., false-positive identifications) were not
validated, since none of them were identified with 2 pep-
tides with score higher than 21 each or 1 peptide with
score higher than 30.
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