BIVIC Genomics

Research article

O

BiolVled Central

A preliminary analysis of genome structure and composition in

Gossypium hirsutum

Wangzhen Guo', Caiping Caif, Changbiao Wang, Liang Zhao, Lei Wang and

Tianzhen Zhang*

Address: National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University,

Nanjing 210095, PR China

Email: Wangzhen Guo - moelab@njau.edu.cn; Caiping Cai - caicaiping@163.com; Changbiao Wang - wcbksl@126.com;

Liang Zhao - Feiyue_5352@163.com; Lei Wang - shanshi02@163.com; Tianzhen Zhang* - cotton@njau.edu.cn
* Corresponding author  tEqual contributors

Published: | July 2008 Received: 31 March 2008
BMC Genomics 2008, 9:314  doi:10.1186/1471-2164-9-314 Accepted: | July 2008
This article is available from: http://www.biomedcentral.com/1471-2164/9/314

© 2008 Guo et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Upland cotton has the highest yield, and accounts for > 95% of world cotton
production. Decoding upland cotton genomes will undoubtedly provide the ultimate reference and
resource for structural, functional, and evolutionary studies of the species. Here, we employed
GeneTrek and BAC tagging information approaches to predict the general composition and

structure of the allotetraploid cotton genome.

Results: 142 BAC sequences from Gossypium hirsutum cv. Maxxa were downloaded http://
www.ncbi.nlm.nih.gov and confirmed. These BAC sequence analysis revealed that the tetraploid
cotton genome contains over 70,000 candidate genes with duplicated gene copies in homoeologous
A- and D-subgenome regions. Gene distribution is uneven, with gene-rich and gene-free regions of
the genome. Twenty-one percent of the 142 BACs lacked genes. BAC gene density ranged from 0
to 33.2 per 100 kb, whereas most gene islands contained only one gene with an average of 1.5 genes
per island. Retro-elements were found to be a major component, first an enriched LTR/gypsy and
second LTR/copia. Most LTR retrotransposons were truncated and in nested structures. In
addition, 166 polymorphic loci amplified with SSRs developed from 70 BAC clones were tagged on
our backbone genetic map. Seventy-five percent (125/166) of the polymorphic loci were tagged on
the D-subgenome. By comprehensively analyzing the molecular size of amplified products among
tetraploid G. hirsutum cv. Maxxa, acc. TM-1, and G. barbadense cv. Hai7124, and diploid G. herbaceum
var. dafricanum and G. raimondii, 37 BACs, 12 from the A- and 25 from the D-subgenome, were
further anchored to their corresponding subgenome chromosomes. After a large amount of genes
sequence comparison from different subgenome BACs, the result showed that introns might have

no contribution to different subgenome size in Gossypium.

Conclusion: This study provides us with the first glimpse of cotton genome complexity and serves

as a foundation for tetraploid cotton whole genomesequencing in the future.
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Background

Cotton is the world's most important natural textile fiber
and a significant oilseed crop. The cotton genus (Gossyp-
ium L.) includes approximately 45 diploid species (2n = 2x
= 26) differentiated cytogenetically into eight genome
groups (A-G & K), and five allotetraploid species (2n = 4x
= 52) [1]. Diploid Gossypium species differentiated
approximately 5-10 million years ago (Mya), however,
polyploidization is estimated to have occurred more
recently 1-2 Mya [2]. All allotetraploids were formed
from interspecific hybridization events between an A-
genome-like ancestral African species and a D-genome-
like North American species. The closest extant relative of
the original tetraploid progenitors is the A-genome spe-
cies G. herbaceum L. (A1) and the D-genome species G. rai-
mondii (D5) Ulbrich. Of these, four cotton species,
including two tetraploids G. hirsutum L. (AD)1 and G. bar-
badense L (AD)2, and two diploids G. herbaceum L. (A1)
and G. arboreum L. (A2) were independently domesticated
for fiber.

Upland cotton has the highest yield, and based on the
importance of fiber, over 95% of the annual worldwide
cotton crop is derived from G. hirsutum L., upland cotton,
and the extra-long staple (ELS) or Pima cotton (G. bar-
badense L.) accounts for less than 2% [3]. Two diploid spe-
cies G. herbaceum L. (Al) and G. arboreum L. (A2) are
planted less often. In cultivated tetraploid cotton species,
the D-subgenome plays an important role in genome
structure, function and evolution. For example, many
quantitative trait loci (QTL) for fiber-related traits have
been detected in the D-subgenome of tetraploid cotton [4-
9]. D-genome species do not produce spinnable fiber
[10]; however important genes or regulators for fiber mor-
phogenesis and fiber properties have been detected in this
genome. Based on the above analyses, understanding the
contribution of the A- and D-subgenomes to gene expres-
sion in the allotetraploids may greatly facilitate fiber trait
improvement [11,12]. To attain this goal, decoding cotton
genomes will be a foundation to enhance our understand-
ing of the functional and agronomic significance of poly-
ploidy and genome size variation within Gossypium [13].

Genome size differences are evident in the tetraploids and
their diploid progenitors. The haploid genome size is esti-
mated to be ~980-Mb for G. raimondii Ulbrich, ~1.86-Gb
for G. arboreum L., and ~2.83 Gb for G. hirsutum L. [14].
Diploid species variation in DNA content reflects
increases and decreases in copy numbers of various repeat
families [15], especially retrotransposon-like elements
[16]. The method most appropriate for elucidating whole-
genome sequence information in cotton is either BAC-by-
BAC sequencing or gene-enrichment approaches. A pilot
study by the U.S. Department of Energy Joint Genome
Institutes [17] has been initiated to generate the whole-
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genome shotgun sequence of G. raimondii. Meanwhile,
gene-enrichment techniques such as methylation filtra-
tion and C_t-based cloning have also been used to com-
pare G. raimondii, G. arboreum, G. hirsutum, and G.
barbadense (B. Scheffler, Workshop communication).

The whole-genome sequence analysis of G. hirsutum will
undoubtedly provide the ultimate reference and resource
for structural, functional, and evolutionary studies of the
species that accounts for > 95% of world cotton produc-
tion. Prior to large-scale sequencing of tetraploid G. hirsu-
tum genomes, a microcolinearity analysis of a few pairs of
homoeologous BACs was completed, and indicated that
sequence conservation of homoeologous BACs was high
in both intergenic and genic regions [14]. In addition,
Grover et al. (2007)[18] suggested size differences
between homoeologous BACs was attributed to differen-
tial accumulation of retroelements.

The GeneTrek approach has been proposed as an efficient
way to evaluate the general properties of any genome
[19,20] and has been successfully applied to predictions
regarding components of the maize genome [21]. To bet-
ter understand the general composition and structure of
the tetraploid cotton genome, in the present paper, we
also employed GeneTrek and BAC tagging information
approaches to analyze. This methodology facilitated our
evaluation of the structure and composition of the
allotetraploid genome based on 142 G. hirsutum cv.
Maxxa BAC clones downloaded from the National Center
for Biotechnology Information (NCBI) [22]. The study
provided us the first glimpse at cotton genome complex-
ity, and the results indicated that the gene distribution in
cotton genome is uneven with gene-rich and gene-free
regions, and rich in repetitive elements. Introns might
have no contribution to different subgenome size in Gos-
sypium, and a two-fold genome difference between A- and
D-subgenomes, which might largely be attributed to large
amplifications of transposable elements in low-density
gene or gene-free regions.

Results

Confirmation of 142 BACs origin

Due to the fact that 142 BACs were result from a mistake
first submitted as part of the maize sequencing project by
the Genome Sequencing Center, Washington University
School of Medicine and further corrected as G. hirsutum
cv. Maxxa BAC clones, we downloaded these BACs from
the National Center for Biotechnology Information
(NCBI) [22] and confirmed their origin by developing
BAC-SSR markers from 142 BAC sequences.

Each BAC was scanned for dinucleiotide to hexanuclei-
otide repeats of at least 18 bp in length. A total of 694 mic-
rosatellite sequences were detected. Among them, 208
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SSRs were dinucleotides, 118 trinucleotides, 69 tetranu-
cleotides, 80 pentanucleotides and 219 hexanucleotides.
In addition, 578 SSR primer pairs were developed and
used to detect the amplification ability in G. hirsutum cv.
Maxxa, and our two mapping parents, G. hirsutum acc.
TM-1 and G. barbadense cv. Hai7124. Among them, all
578 primer pairs amplified expected fragment sizes in G.
hirsutum cv. Maxxa, and 161 primer pairs from 79 BACs
amplified polymorphisms between TM-1 and Hai7124,
yielding a 27.85% polymorphic rate. Both the high-level
transferability among G. hirsutum cv. Maxxa, acc. TM-1,
and G. barbadense cv. Hai7124 and the high-level poly-
morphism between TM-1 and Hai7124 indicated that
these 142 BAC sequences must be from Maxxa genome.
Further, these genomic SSR markers also have potential
for use in future cotton genomics and molecular breeding.
The newly developed SSR primer sequences, Genbank
accession numbers, repeat motifs and numbers, expected
product size, and polymorphic data between TM-1 and
Hai7124 are presented in additional file 1.

Global analysis of genome structure and composition of
tetraploid cotton

Gene annotations

Using the sequence information of the 142 BACs span-
ning 14.2 Mb of the cotton genome, genome structure
and composition of tetraploid cotton were analyzed.
Comprehensively analyzing the gene prediction results
from three ab initio gene prediction programs FGENESH,
GENEMARK.HMM and GENSCAN+, 3,440 gene models
were predicted. Of them, 1,329 (38.6%) were identified
repeat components (mostly LTR retrotransposons), which
were further analyzed with mobile elements; 1,653
(47.9%) lacked homology to other NCBI protein database
species. Furthermore, the putative protein-encoding gene
was subjected to BLASTN queries against the cotton EST
database released in NCBI and two hundred eight were
partially confirmed by EST evidence; and 458 showed
homology to other species in the NCBI protein database.
Based on significant homology to other species (¢ < 10-10),
412 gene models were classified as verified gene candi-
dates, with an average gene density of one gene per 34.5
kb. Forty-six gene models were classified as hypothetical
proteins. If these gene numbers are extrapolated to the
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entire tetraploid cotton genome, with an estimated size of
2,500 Mb, tetraploid cotton contains more than 70,000
(verified) genes (Table 1). Details on the annotation of
each predicted gene can be found in additional file 2.

Local gene density and distribution

Among the 142 analyzed BACs, 30 (21%) did not contain
either a verified or hypothetical gene. Furthermore, gene
density was estimated as the number of genes on a BAC
divided by BAC length. The results showed that on differ-
ent BACs, gene density varied from 0 to 33.2 per 100 kb
(Figure 1, Additional file 3). This indicated uneven cotton
gene distribution, and a higher gene density in some
regions than others. In AC188398 and AC189045 BACs,
30 and 19 gene models were predicted, respectively, lack-
ing repetitive elements.

Gene islands

The number of genes per one gene island can be deter-
mined by gene distribution in gene-rich regions. The
number of genes on one gene island is counted according
to the following criterion: the identifiable repetitive
sequences in the intergenic region between two neighbor-
ing genes must be less than 5 kb [21]. Furthermore, genes
at either end of a BAC or gap within one BAC are dis-
carded from the analysis because one boundary of the
gene island is not defined. Based on this criterion, 309
gene islands from one to ten genes (both verified and
hypothetical genes) were resolved (Figure 2). Two hun-
dred twenty-four of 309 (72.5%) gene islands contained
only one gene with an average of 1.5 genes per gene
island.

Tandem duplication of genes

Thirty gene islands contained more than two genes, and in
those islands, several types of tandem duplication genes
encoding the same function were identified (see Addi-
tional file 4). According to the molecular function classi-
fication of these duplication genes, most were related to
binding, such as sarl GTP-binding secretory factor, ire
kinase, RNA-binding protein 10, swi2 snf2-like protein,
succinate dehydrogenase flavoprotein alpha subunit, ade-
nylate kinase, and slI2 protein. Other genes functioned in
catalytic activities, including genes coding ornithine car-

Table I: Summary of annotation results for 142 randomly selected cotton BACs

Total number of BACs analyzed
Combined BAC lengths
Amount of identified repetitive DNA (percentage)

Amount of unidentified DNA with predicted ORFs structure (Nos, percentage)
Unidentified ORFs that show collinearity with cotton EST database (percentage)

Number of genes with similarity or collinearity support

Number of hypothetical genes with low similarity or collinearity support
Overall gene density

Number of estimated total cotton genes

142

14.2 Mb

5.7 Mb (40.1%)

1.4 Mb (1653, 9.9%)
208 (12.6%)

412

46

One gene per 34.5 kb
More than 70,000
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Gene density variation among BACs. The BACs are
sorted by overall gene density.

bamoyltransferase,  glucose-methanol-cholineoxidore-
ductase family protein, adenylosuccinate lyase, protein
phosphatase-5, protein kinase family protein, methyl-
malonate-semialdehyde dehydrogenase, calcineurin-like
phosphoesterase family proteins and serine carboxypepti-
dase ii. Additional genes were determined to serve in
transporter activities such as plasma membrane intrinsic
proteins, structural molecule activity such as 50s ribos-
omal protein 115, and unknown molecular function, such
as growth-regulating factor 1, among others. Several dis-
ease-resistant gene clusters resided in AC187066,
AC190836 and AC202830 BACs. These specific gene clus-
ters presumably accumulated more mutations in both
coding and upstream promoter regions to favor a broader
response to pathogen attack [23]. Several QTLs related to
Verticillium-resistance [24] were also found in these
regions, but warrants further investigation.

Mobile elements analysis

RepeatMasker and CENSOR program was first applied to
search for repetitive elements. In all, 1,951 mobile ele-
ments with a total length of 1,468,873 bp were predicted
(Table 2). Retro-elements were a major component and
accounted for 93.9% of the predicted elements with LTR/
gypsy comprising 61.1%, LTR/copia 31.2% and LINE ele-
ments 1.5%. Four types of DNA transposons were identi-
fied, including hobo-Activator (0.3%), En-Spm (3.6%),
MUDR-IS905 (0.6%) and Tourist/Harbinger (0.2%).
DNA transposons accounted for 4.7% of all predicted ele-
ments. A scan of the 142 cotton BACs predicted 0.2% RC/
Helitron and 1.1% unclassified mobile elements. Three
hundred forty-four intact LTR retrotransposons were pre-
dicted and identified by LTR_finder software, leading to
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an additional 656,779 bp of LTR repetitive sequences.
Including the 3,526,152 bp sequence length repeats iden-
tified via gene models, mobile DNA accounted for at least
5.7 Mb or 40% of the BAC sequences (Table 1).

Sequence analysis of gene-free BACs

Among the 142 analyzed BACs, 30 showed the complete
absence of genes. To further investigate the content of
such genomic regions, seven of the 30 BACs with com-
plete sequence assembly were selected. These regions were
largely comprised of LTR retrotransposons and were all
the primary components of all seven BACs. In retrotrans-
poson types, a number of fragmented gypsy-like elements
were found in a large "gypsy-landing pad", indicating
gypsy-like retroelements were substantial components of
gene-free BACs. All retroelements identified in
AC187849, AC194319, AC189931 and AC190814 were
gypsy elements. The second component of retroelements
was a copia-like element. The seven gene-free BACs
showed the absence of any LINE element (Table 3). Most
LTR retrotransposons in the seven BACs were truncated,
and only 18 had two intact LTRs and target site duplica-
tions (TSD). Most of these LTRs were organized in nested
structures.

Comparative analysis of genome structure and
composition between A- and D- subgenome chromosomes
Temporal mapping of 70 BACs based on SSRs

To compare the A- and D-subgenome chromosome struc-
tures and compositions, the BACs must be anchored into
their corresponding subgenome or chromosomes. We
firstly based the present research on developed SSR mark-
ers and our mapping population. By polymorphism anal-
ysis, one hundred sixty-one primer pairs developed from
79 BACs could produce 183 polymorphic loci in the two
mapping parents, TM-1 and Hai7124. Because TM-1 was
used as the recurrent parent in the backcrossed popula-
tion, 17 dominant TM-1 loci, (of the 183 polymorphic
loci) could not be used to anchor the related-BACs to their
corresponding chromosomes. The remaining 166 poly-
morphic loci, amplified from 144 polymorphic SSR
primer pairs were integrated into our previously pub-
lished map containing 1,790 loci and spanning 3425.8
cM [25]. Subsequently, a new updated genetic map com-
posed of 2,247 loci in 26 linkage groups covering 3540.4
cM with an average inter-marker distance of 1.58 cM was
produced (Figure 3, 4, 5, 6, 7, 8, 9). Based on the new inte-
grated genetic map, 166 polymorphicloci developed from
70 BAC clones were anchored to their corresponding
chromosomes. Further analysis of 70 BACs with tagged
results revealed 18 BACs, one possessing more than two
polymorphic loci, which were then mapped within 0.5 cM
in one linkage group. For example, our results found six
polymorphic loci produced by SSR primer pairs
NAUG6520, NAUG6530, NAUG6593, NAU6658, NAUGG675,
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and NAU6697 from BAC AC202830 all tagged in chro-
mosome D11 (Figure 8). We also found 13 BACs in which
more than two polymorphic loci from one BAC were
mapped in their homoeologous chromosome pairs. For
example, among six polymorphic loci amplified by SSR
primers developed from the same BAC (AC188035), two
loci amplified by NAU6615 and NAU6667 were tagged in
chromosome A10, however, four loci by NAU6215,
NAU6476, NAU6515 and NAUG6667 tagged in chromo-
some D10 (Figure 7). Additionally, 11 BACs with more
than two polymorphic loci produced by SSR primer pairs
from the same BAC were tagged in non-homoeologous
chromosomes (for example, two polymorphic loci ampli-
fied by NAU6389 and NAUG6626 developed from
AC190805 were anchored in A4 and D8, respectively (Fig-
ure 5, 6)) and 28 BACs in which only one polymorphic
locus was tagged (see Additional file 1). Based on these
SSR mapping results, however, we could not definitively
establish if the mapped polymorphic locus is at exactly the
BAC clone position, since these polymorphic loci can be

Table 2: Types of Transposable elements in cotton genome
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amplified either from the A- or D-subgenome and even
other chromosomes in allotetraploid cotton.

Identified tagging of 37 BACs based on amplified product analysis

We are left to question if we can exactly anchor these BACs
into their corresponding chromosomes by their-derived
SSR markers. It is well known that allotetraploid cotton
contains two distinct genomes, which resemble the extant
A-genome of G. herbaceum (n = 13) and D-genome of G.
raimondii Ulbrich (n = 13). The A- and D-genome species
diverged from a common ancestor approximately 6-11
million years ago. Therefore, most SSR primers should
easily amplify two loci, one from At- and the second from
Dt-subgenome chromosomes. So, if one polymorphic
locus was detected and mapped between Hai7124 and
TM-1, and the amplified product was the same as that in
Maxxa (from which BAC clones were isolated and SSRs
developed), we concluded that this SSR derived-BAC
should be anchored at its SSR tagging position. For exam-
ple, SSR primer NAU6627, derived from AC187848, gen-
erated two loci from G. hirsutum acc. TM-1, and G.
barbadense cv. Hai7124 (Figure 10A). One locus produced
two polymorphic alleles, NAU6627 ,5, in Hai7124 and
NAU6627 ,,,in TM-1, and mapped on chromosome D11
(Figure 8, Additional file 1). NAUG6627 was designed
based on sequence information from AC187848 in Maxxa
and its expected product size was 247 bp in Maxxa, there-
fore we concluded that the BAC was anchored into chro-
mosome D11 in the D-subgenome. Following further
analysis of amplified products from primer NAU6627 in
diploid species G. herbaceum var. africanum and G. raimon-
dii, (the two closest extant relatives of the original tetra-
ploid progenitors), we could still anchor this
polymorphic locus into the D-subgenome, given G. rai-
mondii produced almost the same fragment at the
expected 247 bp product size. Furthermore, two loci were
amplified from each TM-1 and Hai7124, with one mono-
morphic locus producing the expected product size from

Retroelements No. elements Length occupied (bp) Percentage
Lines(L1/CIN4) 30 7242 1.50%
LTR elements(Ty|/Copia) 608 384327 31.20%
LTR elements(Gypsy/DIRSI) 1192 1052315 61.10%
LTR elements(unclasiffied) 2 396 0.10%
Total 1832 1444280 93.90%
DNA transposons
hobo-Activator 6 1525 0.30%
En-Spm 70 16371 3.60%
MUDR-IS905 12 961 0.60%
Tourist/Harbinger 5 1504 0.20%
Total 93 20361 4.70%
RC/Helitron 4 238 0.20%
Unclassified 22 3455 1.10%
Total 1951 100%
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the BAC clone in Maxxa and the other a polymorphic
locus tagged in the genetic map. Therefore, we associated
this BAC clone with the subgenome chromosome by tag-
ging comparisons of the polymorphic locus and the
amplified products from G. herbaceum var. africanum and
G. raimondii. The SSR primer NAU6202 derived from
AC190263 generated two loci in both TM-1 and Hai7124
(Figure 10B), validating the former results. One SSR locus
was monomorphic, the alleles approximately 350 bp in
size, and the other locus produced two polymorphic alle-
les, NAU6202 34, in Hai7124 and NAU6202_,,,in TM-1,
which subsequently mapped on chromosome A7 (Figure
6, Additional file 1). Since NAU6202 was designed based
on sequence information from AC190263 in Maxxa and
its expected product size was 349 bp, close to the mono-
morphic allele size in G. raimondii, we concluded that the
BAC was anchored into the D-subgenome. Finally, two
loci were amplified by SSR primer pairs, which exhibited
the same molecular size between TM-1 (Maxxa) and
Hai7124 for each locus. In addition, the two loci were
individually amplified in their diploid progenitors G. her-
baceum and G. raimondii with almost the same fragment
size as in the corresponding tetraploid subgenome. The
sub-genome composition of the amplified product was
confirmed by comparing its product with diploid G. her-
baceum and G. raimondii (Figure 10C). For example,
NAUG6465 SSR primer pairs amplified two monomorphic
loci with product sizes of 170 bp and 150 bp, respectively
in TM-1 and Hai7124. Two fragments of 150 bp and 170
bp respectively from diploid G. herbaceum and G. raimon-
dii were also generated. NAUG6465 SSR primer pairs were
developed based on sequence information from
AC188140 in Maxxa with an expected size of 171 bp
(Additional file 1). G. raimondii produced a 170 bp frag-
ment very near the expected 171 bp. Therefore, we deter-
mined that the AC188140 clone was anchored in the D-
subgenome.

According to the criteria described above, 37 clones were
truly anchored to the A- and D-subgenomes. Twelve BACs
belonged to the A-subgenome and 25 to the D-subge-
nome (Table 4). The remaining 33 BACs could not be
anchored to their subgenome because two distinct ampli-
fied loci corresponding to A- or D- subgenome were not

Table 3: Repetitive elements in 7 gene-free BACs
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resolved in tetraploid cotton. Therefore, the need for fur-
ther experimentation, such as BAC-FISH analysis was rec-
ommended. Interestingly, among 25 BACs belonging to
the D-subgenome, 19 BAC taggings coincided with SSR
mapping. However, among 12 BACs within the A-subge-
nome, four (AC187470; AC187836; AC194383 and
AC202821) were not consistent with SSR mapping. The
four BACs were all anchored on the A-subgenome, but
more than two polymorphic SSR loci from the same BAC
were mapped on D-subgenome chromosomes (Table 4,
Additional file 1). These results indicated that different
evolutionary pressures acted on the A-subgenomes and D-
subgenomes among different tetraploid cotton species in
their corresponding homoeologous loci, and that the D-
subgenomes exhibited more rapid evolutionary rates with
increased nucleotide and allelic diversity than the A-subg-
enomes.

Comparative sequence analysis between the A- and D-subgenome
chromosomes

Thirty-seven BACs with verified origins were identified in
this study, 12 BACs belonging to the A-subgenome with a
total length of 1,200,814 bp length including 69 gaps
(average 5.75 gaps/BACs); and 25 BACs within the D-sub-
genome covering 2,374,313 bp length with 37 gaps (aver-
age 1.48 gaps/BACs). These results indicated that A-
subgenome BACs possessed regions more difficult to
sequence than those from the D-subgenome. Further-
more, the genes predicted from the 37 BACs were evalu-
ated for possible intron size contributions that correlated
with genome size between the A- and D-subgenome chro-
mosomes. In the 12 BACs belonging to the A-subgenome,
67 genes were predicted with an average of 937 bp exons
and 920 bp introns for each gene; however, in the 25
BACs belonging to the D-subgenome, 104 genes were pre-
dicted with an average of 1297 bp exons and 1414 bp
introns for each gene. Therefore, introns might have no
contribution to different subgenome size in Gossypium.

Discussion

Characteristics of genome structure in allotetraploid
cotton

Cotton is the world's most important natural textile fiber
and a significant oilseed crop. Cotton fiber is also an out-

BACs Length (bp) No. mobile elements Gypsy-like Copia-like RC/helitron No. intact LTRs
ACI187206 87776 22 16 6 2
ACI187396 95093 16 8 7 0
AC187849 103016 55 55 5
AC189743 110888 17 Il 6 2
ACI189931 103756 28 28 2
ACI190814 103822 18 18 |
ACI194319 77717 40 40 6
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A updated genetic map of Al/DIl and A6/D6 homoeologous pairs. Note: Genetic map was constructed using a BC,
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standing single-cell model to study plant cell elongation,
and cell wall and cellulose biosynthesis [26]. Of all 50 cot-
ton species, Gossypium hirsutum provides over 95% of the
annual cotton crop worldwide. Elucidating the tetraploid
cotton genome composition and structure, especially
upland cotton, will vastly expand opportunities in cotton

research and agronomic improvements worldwide. How-
ever, cotton possesses a complex genome so whole
genome sequencing of tetraploid cotton represents a sub-
stantial challenge [13]. The GeneTrek approach has been
proposed as an efficient means to evaluate the general
properties of any genome by annotating a small set of ran-
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A updated genetic map of A2/D2 and A3/D3 homoeologous pairs. All legends are same as described for Figure 3.
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A updated genetic map of A4/D4 and A5/D5 homoeologous pairs. All legends are same as described for Figure 3.
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A updated genetic map of A7/D7 and A8/D8 homoeologous pairs. All legends are same as described for Figure 3.

Deviated interval in A7 and D7 is boxed.
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A updated genetic map of A9/D9 and A10/D10 homoeologous pairs. All legends are same as described for Figure 3.

domly selected BACs [19,20]. In maize, sequence analysis
of 100 randomly selected BACs led to the prediction of
42,000-56,000 genes with at least 66% repetitive DNA
[27]. In addition, sequence analysis of 74 randomly
selected BACs showed that the maize nuclear genome

contains about 37,000 candidate genes and 5,500 trun-
cated and probable pseudogenes. However, the distribu-
tion of genes and repetitive elements is uneven [21]. In
the present study, properties of the upland cotton
genome, such as total gene number, amount and distribu-
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Figure 9
A updated genetic map of A13/D13 homoeologous pairs. All legends are same as described for Figure 3.
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Figure 10

Identification of three BACs (AC187848, AC190263 and AC188140) belongings by amplified size analysis. Note:
I. G. hirsutum cv. Maxxa; 2. G. hirsutum acc. TM-1; 3. G. barbadense cv. Hai7124; 4. G. herbaceum var. africanum; 5. G. raimondii
Arrow: amplified product with expected size from Maxxa. A: NAU6627 for AC187848 with expected size 247 bp. SSR tagging
position was consistent with BAC clone belongings. B: NAU6202 for AC190263 with expected size 349 bp. BAC clone belong-
ings is in homoeologous chromosome of SSR tagging position. C: NAU6465 for AC188140 with expected size 171 bp. BAC
clone belongings is confirmed by comparing amplified product size in tetraploid with that in their diploid progenitors G. her-

baceum and G. raimondii.

tion of repetitive DNA, and gene distribution, were first
predicted based on the annotation of 142 randomly
sequenced BACs. Compared with a density of one gene
every 7.5 kb in the CesA region of homoeologous BACs
[14], the AdhA region of homoeologous BACs exhibits
one gene per 20 kb for the A-subgenome and one gene

Table 4: The subgenome belongings of BAC clones

every 13 kb for the D-subgenome [18]. These data led to
the prediction of more than 70,000 genes with one gene
per 34.5 kb in upland cotton. Because upland cotton is an
allotetraploid and has duplicated copies of genes in
homoeologous regions of the A- and D-subgenomes,
approximately 35,000 genes were predicted in each subg-

BAC:s Chro. Tagged* Subgenome™*
ACI187225 A2/D2 A
ACI187470 DIl A
ACI187478 AIO/DIO A
ACI187836 D5 A
ACI188017 Al2/D12 A
AC188842 A2/D2 A
ACI193383 All A
ACI194364 AlI3/DI13 A
AC194383 DI0 A
AC202821 DIl A
AC202822 A9 A
ACI193751 unknown A

BACs Chro. Tagged* Subgenome™*
AC187200 DI3 D
ACI187214 DI D
AC187471 Dé D
ACI187578 A7/D7 D
AC187810 DI D
ACI187794 DIl D
AC187848 DIl D
AC188026 D9 D
AC188035 DlO D
AC188140 DIo0 D
AC188200 DI0 D
AC188401 D8 D
AC188760 D2 D
AC189748 D3 D
AC190263 A7/D7 D
AC190279 D9 D
ACI193505 A5/D4 D
ACI193514 Dl D
AC193940 D9 D
AC193994 Dé D
ACI197182 A5/D5 D
AC202830 DI D
AC202831 D5 D
ACI187545 unknown D
ACI187548 unknown D

*The chromosome tagging position of polymorphic SSR loci that SSR primer pairs were developed from corresponding BAC clone.

** The subgenome belongings of corresponding BAC clone.
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enome. In tetraploid cotton, the distribution of genes is
uneven, with gene-rich and gene-free regions. We also
found 21% of BACs lacked genes and 72.5% of the gene
islands contained only one gene. These results indicated
that selecting only gene-rich BACs for cotton genome
sequencing is not adequate to cover the entire genome,
owing to the fact that more than one fifth of BACs exhibit
an absence of genes.

In this study, 1,653 predicted gene models lacked homol-
ogy to other species in the NCBI protein database. In addi-
tion, we verified 208 ESTs by BLASTN queries against the
cotton EST database. However, we could not confirm if
these transcripts were related to mobile elements, gene
candidates, or special products in cotton. Therefore, we
have not used the information to predict the structure and
composition of the upland cotton genome. However, the
functions and properties of these transcripts warrant fur-
ther study to enhance the understanding of the complex
upland cotton genome.

Structure difference between A- and D-subgenome
chromosomes

In plants, the following factors have been summarized as
the main mechanisms for genome size expansion: (1)
long terminal repeat (LTR) retrotransposable element
amplification and insertion such as that in maize [28]; (2)
variation in intron size [29]; (3) expansion of tandemly
repetitive DNA sequences [30]; (4) segmental duplica-
tions [31]; (5) accumulation of pseudogenes [32]; and (6)
transfer of organellar DNA to the nucleus [33]. The culti-
vated cotton species Gossypium hirsutum has long been
known as an allotetraploid possessing a nuclear A- and D-
subgenome. A- and D-genome species diverged from a
common ancestor approximately 5-10 Mya and acquired
genomes that differ nearly twofold in size [2]. Based on
the putative mechanisms of genome size expansion
described above, it is uncertain which of the mecha-
nism(s) played an important role in the composition and
structure of the tetraploid cotton genomes. To explore this
question, several studies have been initiated through com-
parative sequence analysis of specific genomic regions or
by application of more global approaches [14,16,18].
Grover et al. (2004)[14] investigated A- and D-genome
size evolution from tetraploid cotton in a 104 kb contigu-
ous sequence surrounding the CesAl gene, and demon-
strated no evidence of genome size variation between the
A- and D-subgenome genic regions. In a similar study,
Grover et al. (2007)[18] obtained the aligned length sur-
rounding the AdhA gene with 101.7 kb in the A-subge-
nome, 49 kb in the D-subgenome, 112.3 kb from the
diploid A-genome and 55 kb from the diploid D-genome.
The results revealed the aligned length size variation was
mainly attributed to differential accumulation of retroele-

http://www.biomedcentral.com/1471-2164/9/314

ments. Hawkins et al. (2006)[16] compared diploid A-
and D-genome size differences by utilizing the whole
genome shotgun (WGS) method and concluded that
40%-65% of each genome is composed of transposable
elements, with Copia-like sequences accumulated in
smaller genomes and Gypsy-like sequences in larger
genomes.

Based on the sequence analysis of 37 subgemone-known
BACs, we found no relationship between introns and dif-
ferent subgenome size in Gossypium. However, an average
of 5.75 gaps/BAC indicated an increased number of gaps,
lending difficulty to BAC assembly in the A-subgenome.
The D-subgenome had an average of 1.48 gaps/BAC, dem-
onstrating that BACs from the A-subgenome are more dif-
ficult for sequence assembly than those from the D-
subgenome. This and previous studies revealed the pres-
ence of homeolog sequence and structure conservation in
gene-tich regions, suggesting large amplification of trans-
posable elements may not be in gene-rich regions, but
may reside in low-density gene or gene-free regions. In
future studies, the structure and function of DNA
sequences in these gap regions can be confirmed by whole
BAC sequence assembly analysis; and A-specific and D-
specific regions related with transposable elements can be
located using combined BAC-FISH technology.

The D-subgenome has a more rapid evolutionary rate in
different tetraploid cotton species

Sequence and marker analyses from several previous stud-
ies indicated that varied evolutionary pressures might act
on the D-subgenomes from different tetraploid cotton
species. In both G. hirsutum and G. barbadense, the D-sub-
genome maintained greater nucleotide and allelic diver-
sity than did the A-subgenome, results supported by
duplicated paralogous Adh loci comparisons [34,35]. In
addition, G. raimondii-derived EST-SSR markers had high
polymorphic frequencies between G. hirsutum and G. bar-
badense [25]. In this paper, we investigated whether BACs
were characterized by an A- or D-subgenome. SSR marker
BACs were largely tagged in the D-subgenome determined
by integration of polymorphic marker loci with our tetra-
ploid cotton backbone linkage groups. Our results further
confirmed previous studies where sequence and structure
conservation of homeologs between the A- and D- subge-
nomes was high. These data are consistent with the evolu-
tionary history of tetraploid cotton progenitors, where
diploid A- and D-genome species were derived from the
same ancestor approximately 5-10 Mya. Alternatively,
relaxed selection acted on the D-subgenomes from differ-
ent tetraploid cotton species, evidenced by greater DNA
sequence diversity among D-subgenomes than A-subge-
nomes in different tetraploid cotton species.
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Conclusion

The study provided us the first glimpse at cotton genome
complexity, and the results indicated that the gene distri-
bution in cotton genome is uneven with gene-rich and
gene-free regions, and rich in repetitive elements. This
study will serve as a foundation for tetraploid cotton
whole genome sequencing in the future.

Methods

Cotton BACs

One hundred forty-five cotton BAC sequences were down-
loaded from the National Center for Biotechnology Infor-
mation (NCBI) [22] on June 2, 2007. As part of the maize
sequencing project by the Genome Sequencing Center,
Washington University School of Medicine, the BACs
were initially submitted as Zea mays. However, further
analysis, determined the clones were from Gossypium hir-
sutum cv. Maxxa. The sequence data used in this paper
were the product of collaborative efforts by The Maize
Sequencing Consortium, including the University of Ari-
zona, Cold Spring Harbor Laboratory, Iowa State Univer-
sity, and the Genome Sequencing Center at Washington
University School of Medicine in St. Louis. We selected
142 from 145 BACs with sizes > 20 kb for gene annota-
tion. A 32,101 bp length gap region from AC189045 was
later excluded because the predicted genes were phage
related and it was decided the sequence data were contam-
inated. Finally, 142 BACs spanning nearly 14.2 Mb
(0.5%) of the cotton genome were used for the analysis.

Genetic mapping of BAC clones based on the simple
sequence repeats (SSRs)

Each BAC was searched for SSRs with the online software
SSRIT [36]. SSRIT, written in Perl script, is a microsatellite
search tool available at the USDA-ARS Center for Bioin-
formatics and at Comparative Genomics at Cornell Uni-
versity. Dinucleotide, trinucleotide, tetranucleotide,
pentanucleotide and hexanucleotide SSRs were detected
with SSRIT. The search standards for different repeat
motifs were as described in Wang et al. (2006) [37].
Primer pairs flanking the SSRs were designed using the
program Primer3.0 [38] and tested against our mapping
parents, G. barbadense cv. Hai7124 and G. hirsutum acc.
TM-1, standard lines for genetic and genomic research.
Furthermore, the polymorphic SSRs were integrated into
our backbone genetic map of allotetraploid cultivated cot-
ton [25] using Joinmap 3.0 software with a minimum log-
of-odds (LOD) score of 6.0. The structure of known BACs
was further identified using mapping results and molecu-
lar size comparisons among G. hirsutum cv. Maxxa, G. hir-
sutum acc.TM-1, and G. barbadense cv. Hai7124, with
diploid G. herbaceum var. africanum and G. raimondii as
controls.

http://www.biomedcentral.com/1471-2164/9/314

Annotation of LTR retrotranspons and other mobile
elements

Repetitive element prediction was accomplished through
Repeatmasker [39], CENSOR [40], and BLAST identity to
characterize elements in REPBASE (version 8.5) [41].
Compared with the results of repetitive element predic-
tion, LTR retrotranspons were further identified by
LTR_finder software [42], and manually verified by struc-
tural features such as LTR and TSD pairs, a primer binding
site and a polypurine tract.

Sequence analysis and gene annotation

BAC sequences were subject to three ab initio gene predic-
tion programs, FGENESH (Softberry) [43], GENS-
CAN+[44] and GENEMARK.HMM [45]. Gene models
provided query sequences to search the National Center
for Biotechnology Information (NCBI) non-redundant
protein database and the Arabidopsis thaliana protein data-
base [46]. All BLASTP hits were manually evaluated to
determine if a gene model was likely to be a real gene or
not based on e-value, query alignment and hit annotation.
The integral parts of known repetitive elements were
removed from the above gene models for further analysis.
In addition, the sequences with gene models but no anno-
tations were subjected to BLASTN queries against the cot-
ton EST database released in the NCBI website [47]. Gene
Ontology (GO) of tandem duplication genes was
obtained from UniProt Gene Ontology [48]. The GO val-
ues for the best homologous hits were used to determine
the ontology of molecular function, cellular components
and biological processes for these sequences.
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Long Tandem Repeat; TSD: Target Site Duplications; SSR:
Simple Sequence Repeat; WGS: Whole Genome Shotgun.
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